Inversion-free Stabilization and Regulation of Systems with Hysteresis viaIntegral Action

Alex Esbrook, Xiaobo Tan, Hassan K. Khalil

Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA
esbrooka@msu.edu (A. E.), xbtan@egr.msu.edu (X. T), khalil@egr.msu.edu (H. K.)

Abstract

In this paper, we present conditions for the stabilization and regulation of the tracking error for an \(n \)-dimensional minimum-phase system preceded by a Prandtl-Ishlinskii hysteresis operator. A general controller structure is considered; however, we assume that an integral action is present. The common Lyapunov function theorem is utilized together with a Linear Matrix Inequality (LMI) condition to show that, under suitable conditions, the tracking error of the system goes to zero exponentially fast when a constant reference is considered. A key feature of this LMI condition is that it does not require the hysteresis effect to be small, meaning that hysteresis inversion is not required. We use this condition together with a periodicity assumption to prove that a servocompensator-based controller can stabilize the system without using hysteresis inversion. Additionally, we draw parallels between our LMI condition and passivity-based results achieved in the literature. We then verify our LMI results in simulation, where we show that the LMI condition can accurately predict the stability margins of a system with hysteresis. Finally, we conduct experiments using a servocompensator-based controller, where we verify the stability of the system and achieve a mean tracking error of 0.5% for a 200 Hz sinusoidal reference.

Key words: Linear matrix inequality, hysteresis, regulation, servocompensation

1 Introduction

Smart materials have become a popular topic of research in the field of engineering, due to a number of emerging applications employing these novel materials [1]. The control of smart materials is a complicated and interesting topic, due in great deal to the phenomenon of hysteresis, which smart materials ubiquitously exhibit. The theory of mathematical models of hysteresis, known as hysteresis operators [2,3], were formalized in the 1970’s. Examples of such models include the Preisach operator [4], Prandtl-Ishlinskii (PI) operator [5], and the Preisach-Krasnosel’skii-Pokrovskii (PKP) operator [6]. Each of these operators is based on the weighted superposition of many (and even infinitely many) elementary hysteretic units called hysterons. Other examples of hysteresis operators include the Duhem model [7,8] and Bouc-Wen model [9]. These hysteresis operators form the basis of many smart material models.

While a number of models for smart materials exist, a common model structure for smart material actuators is a linear dynamical system preceded by a hysteresis operator [5,10,11]. Such models are especially common in the field of nanopositioning, where piezoelectric actuators are used to generate controllable motion with nanometer resolution. A wide variety of control techniques have been proposed for such systems [12], including sliding-mode control [13], adaptive control [14], two-degree-of-freedom control [15], and many more [16,17]. In particular, hysteresis inversion [18–21] has been used extensively due to its effectiveness in mitigating the effect of hysteresis on the system.

Many of the above mentioned results have focused on proving boundedness of states by considering hysteresis as a disturbance. A new wave of research over the past five years has focused on direct analysis of systems with hysteresis, based on the mathematical formulations of the hysteresis operators. These works have provided some analytical results showing the stability of systems with hysteresis and convergence of the tracking error to zero, and importantly, can do so without hysteresis inversion or requiring the hysteresis effect to be small. Such a result was proved in [22], where an LMI framework is utilized to provide sufficient conditions for the stability and tracking error convergence for a PID-controlled linear system preceded by a modified PI operator [23], where the zero dynamics is absent from the linear system. In [24], stability and tracking error convergence of a non-dynamic plant modeled by a Preisach operator was
proved using monotonic properties of the operator. The authors of [25] proved closed-loop stability for a system involving a PID-controlled second-order system preceded by a general hysteresis operator, and provided guidelines on the selection of controller gains. Logemann and Mawby established the stability and asymptotic tracking of constant references for an integral-controlled, linear, infinite-dimensional system with input hysteresis, under the condition of a sufficiently low controller gain [26].

Several other tools, including passivity theory, have been utilized to establish the stability of systems with hysteresis. For example, Gorbet et al. exploited the passivity in the relationship between the input and the time-derivative of output of a Preisach operator, to show the finite-gain stability for a smart actuator system under a velocity controller [27]. Dissipativity properties have also been shown for the PI operator [2] and the Duham operator [28]. Using the circle criterion, Jayawardhana and coworkers exploited the sector bound properties of a Preisach operator to analyze input-to-state stability of its feedback connection with a linear system [29]. A weakness of these results is that they are able to only show boundedness, even for constant reference trajectories. In addition, the conditions required for passivity are not satisfied by many plants and controllers. Outside of passivity focused results, an interesting contribution is from [30], where tight input-output stability bounds are shown for systems with play operators without explicit passivity assumptions. Finally, the stability of the feedback interconnection between a linear system and a single play operator is proven under an LMI condition [31]; however, this result did not consider any controller or its associated stabilization performance.

In this paper, we discuss the stability and tracking error convergence of a system with hysteresis using a general feedback controller containing an integral action. It is assumed that the hysteresis is modeled by a Prandtl-Ishlinskii (PI) operator, which has become a popular model for smart material hysteresis [12, 17, 32]. The theory of switched systems, in particular, that of the common Lyapunov function [33], and a linear matrix inequality (LMI) condition will be used to prove that the tracking error and state vector converge exponentially to zero for a constant reference. The principal contribution of this work is to present sufficient conditions (in the form of an LMI) for the regulation of the closed-loop system in terms of the hysteresis parameters, without requiring the hysteresis to be small. This condition can be utilized in an iterative design procedure in order to stabilize a system with hysteresis modeled by a PI operator. Our LMI approach is closely related to but also distinct from that reported in [22]; comparing to [22], our proposed framework is able to accommodate zero dynamics and a wide class of controllers (not limited to PID control). In particular, the class of controllers which can be incorporated into this design framework includes servocompensators, which have shown great promise in the control of systems with hysteresis, particularly nanopositioning systems [34]. For this reason, our experimental results will focus on servocompensators-based systems.

We then connect our LMI result to the aforementioned passivity results, by demonstrating that if the system obeys a certain positive real condition, a solution to the LMI problem can be found analytically. In addition, we apply our LMI results to show that servocompensator-based controllers can stabilize systems with hysteresis, without requiring inversion of the hysteresis. Our simulation results then confirm the effectiveness of the LMI condition at predicting the global convergence of the tracking error. We further verify our results through experiments conducted on a commercial nanopositioner. These experiments focused on comparing the performance of servocompensator-based controllers [34] with and without hysteresis inversion. We first verify the LMI condition presented in the paper, in order to prove stability of the system. Our experimental results indicate that servocompensator-based controllers without hysteresis inversion can achieve half the mean tracking error as that achieved by the same control method with inversion, while also being less computationally intensive.

The remainder of this paper is organized as follows. Section 2 introduces the PI hysteresis operator used in this work. Section 3 contains the main results of the paper, showing tracking error convergence and exponential stability for the closed-loop system. This result is then extended in Section 4 where we provide specialized results for cases of servocompensator-based controllers. Simulation results verifying our LMI results are presented in Section 5. Section 6 contains the experimental results of the paper, and concluding remarks are presented in Section 7.

2 The Prandtl-Ishlinskii operator

In this section, we provide a review of the Prandtl-Ishlinskii (PI) hysteresis operator [2, 23]. The PI operator consists of a weighted superposition of basic hysteretic units called play operators, shown in Fig. 1. Each play operator P_r is parameterized by a parameter r, representing the play radius or threshold. When the input $v(t)$ is monotone and continuous, we can express the output $u_r(t)$ of a play operator P_r as

$$u_r(t) = P_r[v; u_r(0)](t) = \max(\min(v(t) + r, u_r(0)), v(t) - r)$$

For a system with input $v(t)$, the output $u_r(t)$ of the play operator P_r is given by

$$u_r(t) = \max(\min(v(t) + r, u_r(0)), v(t) - r)$$

Fig. 1. Illustration of a play operator.

Preprint submitted to Automatica
Received June 26, 2013 16:53:41 PST
The output \(u_t(t) \) is also referred to as the state of the play operator \(P_r \). For general inputs, the input signal is broken into monotone segments, and the output is then calculated by setting the last output of one monotone segment as the initial condition for the next. Notice from Fig. 1 and (1) that there are two basic modes in which the state of a play operator can reside: the first is the linear region, in which \(u_t(t) = v(t) \pm r \). The second mode of operation is the play region, where \(u_t(t) \) is constant, represented in (1) by the term \(u_t(0) \). We will make use of the linear and play region terminology throughout the paper.

In general, the PI operator is an infinite-dimensional operator, comprised of a continuum of play operators integrated over some interval of play radii. However, in the interest of practical implementation, we will consider only a finite-dimensional PI operator, representable by a weighted sum of \(k \) play operators. The output of the PI operator \(\Gamma_h(t) \) under an input \(v(t) \) is then given by

\[
u(t) = \Gamma_h[v; W(0)](t) = \sum_{i=0}^{k} \theta_i P_{r_i}[v; W_{i}(0)](t) \tag{2}\]

\(W_i(t) \) represents the state of the play operator \(P_{r_i} \) at time \(t \), and

\[
W(t) = [W_0(t), W_1(t), \ldots, W_k(t)]^T
\]

where the superscript \(^T\) denotes the transpose, and \(W(0) \) represents the initial condition of the operator \(\Gamma_h(t) \). The vector \(\theta = [\theta_0, \theta_1, \ldots, \theta_k]^T \) represents the weights of individual play elements of the operator, where each \(\theta_i \) is assumed to be bounded and non-negative, and \(\theta_0 > 0 \). We will use \(r \) to denote the vector of radii, \(r = [r_0, r_1, \cdots, r_k]^T \), where \(r_0 = 0 \). We also define the operator \(\mathcal{P} = [P_{r_0}, P_{r_1}, \cdots, P_{r_k}]^T \), which captures the evolution of the state \(W(t) \) of \(\Gamma_h(t) \) under input \(v(t) \), i.e.,

\[
W(t) = \mathcal{P}[v; W(0)](t) \tag{3}
\]

This will allow us to write the output \(u(t) \) as

\[
u(t) = \theta^T W(t) \tag{4}\]

It is conventional to include the \(r_0 = 0 \) term in the definition of the hysteresis operator, even though this term results in simply a linear gain. For our work, we will separate this term from the nonzero radii play operators, thus

\[
u(t) = \theta_h v(t) + \theta_h^T W_h(t) \tag{5}\]

where

\[
\theta_h = [\theta_1, \cdots, \theta_k]^T,
\mathcal{P}_h = [P_{r_1}, \cdots, P_{r_k}]^T,
W_h(t) = \mathcal{P}_h[v; W_h(0)](t)
\]

Having presented our hysteresis model, we are now prepared to discuss the stabilization problem for systems with hysteresis. Consider an \(n \)-dimensional linear system with transfer function,

\[
\mathcal{G}_p(s) = \frac{k_0(s^{m} + b_{m-1}s^{m-1} + \cdots + b_1s + b_0)}{s^n + a_{n-1}s^{n-1} + \cdots + a_1s + a_0}, \quad m < n \tag{6}
\]

with input \(u(t) \) and output \(y(t) \). We will assume that this transfer function is minimum phase. Our control objective is to regulate the output of the cascade connection of a PI operator (4) and \(\mathcal{G}_p(s) \), illustrated in Fig. 2. In particular, we will design the input \(v(t) \) to the hysteresis to stabilize the resulting feedback connection, and also drive \(y \) to a constant reference \(y_r \). We will consider a normal-form state-space representation for the transfer function \(\mathcal{G}_p(s) \) [35],

\[
\begin{align*}
z(t) &= Fz(t) + Gx_1(t) \tag{7} \\
x(t) &= A_0x(t) + Bu(t) + \lambda x(t) + \psi z(t) \tag{8} \\
y(t) &= Cx = x_1(t) \tag{9}
\end{align*}
\]

where \(u(t) \) obeys (5). The matrices \(F \in \mathbb{R}^{m \times m}, G \in \mathbb{R}^m, A_0 \in \mathbb{R}^{p \times p}, \) and \(B \in \mathbb{R}^p \) are given by

\[
F = \begin{bmatrix}
0 & 1 & \cdots & 0 \\
0 & \ddots & 0 \\
0 & \cdots & 1 \\
-b_0 & -b_1 & \cdots & -b_{m-1}
\end{bmatrix},
G = \begin{bmatrix}
0 \\
\vdots \\
1
\end{bmatrix},
A_0 = \begin{bmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & \ddots & 0 \\
0 & \cdots & 1 \\
0 & 0 & 0
\end{bmatrix},
B = \begin{bmatrix}
0 \\
\vdots \\
k_0
\end{bmatrix}
\]

and \(\lambda \in \mathbb{R}^{1 \times p}, \psi \in \mathbb{R}^{1 \times m} \) are row vectors that result from transforming \(\mathcal{G}_p(s) \) into the normal form.

Remark 1 For simplicity but without loss of generality, we will assume in the following equations that \(\theta_0 = 1 \). This is because the gain of the hysteresis operator can be rolled into the DC gain of the linear dynamics. In order to transform
a system where $\theta_0 \neq 1$ into the form considered here, we multiply k_0 in B by θ_0, and divide the elements of θ_h, λ, and ψ by the same value.

We will consider a general linear controller to control (5), (7)-(9). The controller includes a dynamic compensator represented in the state-space form,

$$\hat{\eta}(t) = C^* \eta(t) + B^*(x_1 - y_r) \quad (10)$$

with $C^* \in \mathbb{R}^{q \times q}$ and $B^* \in \mathbb{R}^q$. Here we use the tracking error $x_1 - y_r$ as an input to the controller; however, our analysis could be adjusted to accommodate different inputs. We will also require our linear controller to contain an integral action, $\sigma(t)$.

Using (10) and (11), we can define our control signal to the plant/hysteresis operator;

$$v(t) = -K_1 z(t) - K_2 x(t) - K_3 \eta(t) - K_4 \sigma(t) \quad (12)$$

where $K_1 \in \mathbb{R}^{1 \times m}$, $K_2 \in \mathbb{R}^{1 \times p}$, $K_3 \in \mathbb{R}^{1 \times q}$, and $K_4 \in \mathbb{R}$ are constant gains. Applying (5) and (10)-(12) to (7)-(9) yields,

$$\begin{bmatrix} \dot{z}(t) \\ \dot{x}(t) \\ \dot{\eta}(t) \\ \dot{\sigma}(t) \end{bmatrix} = \begin{bmatrix} F & GC & 0 & 0 \\ -B(K_1 - \psi) & A_0 - B(K_2 - \lambda) & -BK_3 & -BK_4 \\ 0 & B^*C & C^* & 0 \\ 0 & C & 0 & 0 \end{bmatrix} \begin{bmatrix} z(t) \\ x(t) \\ \eta(t) \\ \sigma(t) \end{bmatrix} + \begin{bmatrix} 0 \\ B\theta^T_h W_h[v;W_h(0)](t) + Bc_0 y_r \\ 0 \\ 0 \end{bmatrix} \quad (13)$$

As the PI operator is continuous, the system (12)-(13) is well-posed, and possesses a continuous and unique solution, which was proved in [36]. Next, define the coordinate transforms

$$\begin{align*}
\bar{z}(t) &= z(t) - [1,0]^T y_r \\
\bar{\sigma}(t) &= \sigma(t) - C^T y_r
\end{align*} \quad (14)$$

with 0 is an $m - 1$ dimensional row vector of zeros. With these transforms, Eq. (13) then becomes

$$\begin{bmatrix} \dot{\bar{z}}(t) \\ \dot{\bar{x}}(t) \\ \dot{\bar{\eta}}(t) \\ \dot{\bar{\sigma}}(t) \end{bmatrix} = \begin{bmatrix} F & GC & 0 & 0 \\ -B(K_1 - \psi) & A_0 - B(K_2 - \lambda) & -BK_3 & -BK_4 \\ 0 & B^*C & C^* & 0 \\ 0 & C & 0 & 0 \end{bmatrix} \begin{bmatrix} \bar{z}(t) \\ \bar{x}(t) \\ \bar{\eta}(t) \\ \bar{\sigma}(t) \end{bmatrix}$$

where c_0 is a constant that depends on the system matrices and control gains, which appears due to the coordinate transform. We will now define

$$\alpha(t) = -K_4 \sigma(t) + \theta^T_h W_h[v;W_h(0)](t) + c_0 y_r \quad (17)$$

This definition is made in order to use Lyapunov analysis to show that all states converge to the origin, since the state of the integrator will not necessarily go to zero in a system with hysteresis, even if $y_r = 0$. The derivative of $\alpha(t)$ is given by

$$\dot{\alpha}(t) = -K_4 C \bar{x}(t) + \theta^T_h W_h[v;W_h(0)](t) \quad (18)$$

where

$$W_h[v;W_h(0)](t) = [P_{r_1}[v;W(0)](t), \ldots, P_{r_q}[v;W_m(0)](t)]^T \quad (19)$$

The derivative of a play operator is in general discontinuous, as switching between play and linear regions can cause discontinuities in the value of $P_{r_i}[v;W(0)](t)$. Let $\Pi_i(t)$ denote the set of all play operators $P_{r_i}[v;W(0)]$ with states lying in the linear region at time t. Note that a point where the play operator state transitions from the linear region to the play region or vice versa is on both linear and play segments; to resolve the ambiguity, a play operator undergoing region transition at time t will be considered, without the loss of generality, an element of $\Pi(t)$. Denoting $\Pi(t)$ the complement of $\Pi(t)$, we have the expression for P_{r_i} given by

$$P_{r_i}[v;W_i(0)](t) = \begin{cases} \bar{v}, & \text{if } i \in \Pi(t) \\ 0, & \text{if } i \in \Pi^c(t) \end{cases} \quad (20)$$

where

$$\bar{v}(t) = -K_1 [F \bar{z}(t) + GC \bar{x}(t)] - K_2 [-B(K_1 - \psi) \bar{z}(t) + (A_0 - B(K_2 - \lambda)) \bar{x}(t) - BK_3 \eta(t) + B\bar{\epsilon}(t)] - K_3 [C^* \eta(t) + B^*C \bar{x}(t)] - K_4 [C \bar{x}(t)] \quad (21)$$
Denote \(S \) the collection of subsets of \(\{1, 2, \cdots, k\} \), and define
\[
\Theta_h = \left\{ \sum_{i \in S} \theta_i \right\}_{S \in S}
\]
Define \(\bar{\theta}_h(t) \in \Theta_h \) as the summation of weights for play operators in the linear region at time \(t \), i.e.,
\[
\bar{\theta}_h(t) = \left[\sum_{i \in \Pi(t)} \theta_i : i \in \Pi(t) \right]
\]
(22)
Define the state vector
\[
\gamma(t) = [\bar{e}^T(t), \bar{e}^T(t), \eta^T(t), \alpha(t)]^T
\]
Note that \(\dot{\gamma} \) can be expressed as a constant vector multiplying the state vector of the system, i.e. \(\dot{\gamma} = K_v \gamma \). Using this definition with (17) and (18), we transform (16) into
\[
\dot{\gamma}(t) = \begin{bmatrix}
F & GC & 0 & 0 \\
-B(K_1 - \psi) & A_0 - B(K_2 - \lambda) & -BK_3 & B \\
0 & B^*C & C^* & 0 \\
0 & -K_4C & 0 & 0
\end{bmatrix} \gamma(t)
\]
\[+
\begin{bmatrix}
0 \\
0 \\
0 \\
\bar{\theta}_h(t)K_v \gamma(t)
\end{bmatrix}
\]
(23)
Note that by using \(\alpha \) as our state variable, \(c_0 \gamma \), drops out of the analysis of the closed-loop system, since \(\gamma \) is constant. Alternatively, we write (23) in a compact form,
\[
\dot{\gamma}(t) \triangleq (\Sigma_0 + \bar{\theta}_h(t)B K_v) \gamma(t)
\]
(24)
where \(\bar{B} = [0, 1]^T \)
where 0 here is an \(m + p + q \) dimensional row vector of zeros. As the states \(\gamma \) can be expressed as simple functions of the states of (13) and the hysteresis state \(W(t) \), we know that the solution to the above system is well-posed, and that \(\gamma \) is continuous. Note also that \(\bar{\theta}_h(t) \in \Theta_h \), and thus \(\bar{\theta}_h \) takes values in a set of finite cardinality; therefore, we can interpret (24) as a switched system, where the switching is governed by the states of the play operators in (5). The stability of such a system can be guaranteed through an LMI condition [33],
\[
(\Sigma_0 + \bar{\theta}_h B K_v)^T P + P (\Sigma_0 + \bar{\theta}_h B K_v) < 0, \quad \forall \theta_h \in \Theta_h
\]
where \(P > 0 \). Such a condition would imply that \(V(\gamma) = \gamma^T P \gamma \) is a common Lyapunov function for (24), where \(V < 0, \forall \gamma \neq 0 \). However, since the only element that actually changes is \(\bar{\theta}_h \), from the results of [37] a sufficient condition for the existence of such a \(P \) is that
\[
(\Sigma_0 + \min(\Theta_h) B K_v)^T P + P (\Sigma_0 + \min(\Theta_h) B K_v) < 0,
\]
\[
(\Sigma_0 + \max(\Theta_h) B K_v)^T P + P (\Sigma_0 + \max(\Theta_h) B K_v) < 0
\]
(25)
Similarly, if for a given \(\Lambda \in \mathbb{R} > 0 \), a positive definite \(P \) can be found such that
\[
(\Sigma_0 + \min(\Theta_h) B K_v)^T P + P (\Sigma_0 + \min(\Theta_h) B K_v) + 2\Lambda P < 0,
\]
\[
(\Sigma_0 + \max(\Theta_h) B K_v)^T P + P (\Sigma_0 + \max(\Theta_h) B K_v) + 2\Lambda P < 0
\]
(26)
then \(\dot{V} < -2\Lambda V \), which implies that (24) is exponentially stable, and the tracking error converges to zero with decay rate of at least \(\Lambda \) [37]. In practice, the maximum \(\Lambda \) needs to be found iteratively by solving (26) for \(P \) under different trial values of \(\Lambda \).

Remark 2 One extension of this work would be to consider a modified PI operator [23] for the hysteresis model. This operator adds one-sided deadzones in a superposition to the PI operator so that asymmetric hysteresis nonlinearities can be modeled accurately. The modified PI operator can be fit into our existing framework by extending the definition of \(\bar{\theta}_h \), multiplying the result of the current definition with the summation of the weights of the active deadzone operators.

3.1 Specialization to positive real systems

By imposing a positive real assumption on the system, we can arrive at a stronger stability result. Consider the closed-loop system (7)-(9), (11), with
\[
v(t) = -K_1 z(t) - K_2 x(t) - K_4 \sigma(t)
\]
(27)
Let the system
\[
\begin{bmatrix}
\dot{\bar{e}} \\
\dot{\bar{x}}
\end{bmatrix} = \Sigma^* \begin{bmatrix}
\bar{e} \\
\bar{x}
\end{bmatrix} + \mathbb{B} u^*
\]
\[
\triangleq \begin{bmatrix}
F & GC \\
-B(K_1 - \psi) & A_0 - B(K_2 - \lambda)
\end{bmatrix} \begin{bmatrix}
\bar{e} \\
\bar{x}
\end{bmatrix} + \begin{bmatrix}
0 \\
Bu^*
\end{bmatrix}
\]
(28)
\[
y = \bar{x}_1 \triangleq C \begin{bmatrix}
\bar{e} \\
\bar{x}
\end{bmatrix}
\]
(29)
be positive real [35], where \(\bar{e} \) and \(\bar{x} \) are defined as in (14)-(15), and \(u^* \in \mathbb{R} \) will be defined momentarily. Then, there exists a symmetric positive definite matrix \(P^* \) such that
\[
P^* \Sigma^* + \Sigma^{*T} P^* = -Q
\]
\[
P^* \mathbb{B} = \mathbb{C}^T
\]
where \(Q \) is symmetric and positive definite. This system represents the dynamics portion of our model which has been rendered positive-real by state feedback. This condition is similar to the assumption on the dynamics in [27], where the dynamics of a cascaded controller and a smart material actuator are assumed to be passive. Indeed, for LTI systems, the notions of passivity and positive realness are interchangeable [38]. We will now show that under this positive real condition, and with only integral control, the LMI (26) must have a solution.

Let \(u^* \) be defined as
\[
u^*(t) = \alpha(t) = -K_4 \sigma(t) + \theta_4^T W_h[v; W_h(0)](t) + c_0 y_r
\]
where the integrator output \(\sigma \) is governed by
\[
\dot{\sigma}(t) = \mathbb{C}[\dot{z}^T, \dot{x}^T]^T
\]
Using this definition together with (27) and (28), we notice that we can recover the closed-loop system defined in (23) (excluding the terms related to \(\eta \)). Let \(\chi = [\dot{z}^T, \dot{x}^T]^T \) and consider the Lyapunov function candidate
\[
V(\chi, \alpha) = \beta \chi^T(t) P^* \dot{\chi}(t) + \frac{1}{2} \alpha^2(t)
\]
where \(\alpha \) is defined as in (17). The derivative of \(V \) can be written as (using (28)),
\[
\dot{V}(\chi, \alpha) = \beta \chi^T(t) P^* \dot{\chi}(t) + \frac{1}{2} \alpha^2(t) - \alpha(t) K_4 \chi(t) + \alpha(t) \theta_4^T W_h[v; W_h(0)](t)
- \beta \bar{\chi}^T(t) Q \bar{\chi}(t) + \alpha(t) \dot{\chi}(t)^2 \beta 2 \alpha^2 - K_4 \chi(t)
+ \alpha(t) \theta_4(t)(-K^* \alpha(t) - K^* \dot{\chi}(t) - K^* \dot{\chi}(t))
\]
where \(K^* = [K_1, K_2] \). Let \(\beta \) be defined as
\[
\beta = K_4/2
\]
and let \(F = -K^* \chi - K_4 \mathbb{C} \). We can then rewrite \(V \) in the matrix form
\[
\dot{V}(\chi, \alpha) = -\frac{1}{2} \chi^T(t)
\alpha(t) \begin{bmatrix} K_4 Q & \dot{\theta}_h(t) F^T \end{bmatrix} \begin{bmatrix} \chi(t) \\ \alpha(t) \end{bmatrix}
\]
Define \(\zeta = [\dot{\chi}^T, \alpha]^T \), and
\[
X = \begin{bmatrix} K_4 Q & \dot{\theta}_h(t) F^T \\ \dot{\theta}_h(t) F & 2 \dot{\theta}_h K^* \end{bmatrix}
\]
Let \(S \) equal the Schur complement of \(X \), i.e.
\[
S = 2 \dot{\theta}_h(t) K^* \bar{B} - \dot{\theta}_h(t)^2 F [K_4 Q]^{-1} F^T
\]
It is well known that \(X \) is positive definite if and only if both \(K_4 Q \) and \(S \in \mathbb{R} \) are positive definite. Assuming that \(\dot{\theta}_h > 0 \), we can lower bound \(S \) with the expression
\[
S \geq \frac{1}{K_4 \lambda_{\text{min}}(Q)} \dot{\theta}_h(t)^2 F^T F \dot{\theta}_h(t)
\]
Note that this equation is independent of the solution to the Lyapunov equation \(P^* \); therefore, if \(k^* \) is such that \(k^* > 0 \), we can always find a \(Q \) (and therefore a \(P^* \)) such that \(S \) is positive definite for all \(\dot{\theta}_h > 0 \). This implies that \(X \) is positive definite, and therefore there must exist a sufficiently small \(\Lambda \) such that \(\dot{X} > \Lambda P \), and therefore that \(P \) and \(\Lambda \) satisfy the LMI condition (26).

Remark 3 Note that the above analysis assumes a generic set of parameters \((K_1, K_2, K_4) \) and requires \(k^* > 0 \) and \(K_4 > 0 \). Recall that \(\bar{B} \) is a vector with all entries being zero except the last one, which is the high-frequency gain \(k_0 \) of the plant. Therefore, for a typical feedback controller, both aforementioned conditions are automatically satisfied.

We can now compare our results here with the passivity results achieved in [27] and in similar references such as [28]. In [27], dissipativity (a generalization of passivity) of the Preisach operator is shown between the input and derivative of the output of the operator. In both our results here and the results achieved in [27], by assuming the dynamics are positive real or passive, the properties of the hysteresis operator under consideration allow us to prove stability of the system without any further restrictions on the hysteresis. The principal difference is that because dissipativity can only be shown from the input to the derivative of the output of a hysteresis operator, passivity-based results cannot prove that the tracking error converges to zero, even for constant reference signals.

4 Servocompensators for controlling systems with hysteresis

One special stabilizing controller of interest to our work in nanopositioning is the servocompensator [39]. This controller is capable of completely canceling disturbances whose internal models are contained in the controller. This property is also robust to plant uncertainty, as long as the uncertainty does not destabilize the system. The form of this controller is identical to that in (10), where \(C^* \) is neutrally stable, with eigenvalues located on the imaginary axis. \(B^* \) is chosen to ensure that the pair \((C^*, B^*) \) is controllable. We now assume that the reference signal is generated by a neutrally stable exosystem,
\[
\dot{w}(t) = Sw(t)
\]
\[
y_r(t) = Ew(t)
\]
Let us assume that y_r is periodic with period T. We next set up the error coordinate transform,

$$
\tilde{z}(t) = z(t) - z^*(t)
$$

(39)

$$
\tilde{x}_1(t) = x_1(t) - y_r(t)
$$

$$
\vdots
$$

$$
\tilde{x}_n(t) = x_n(t) - y_r^{(n-1)}(t)
$$

(40)

where $z^*(t)$ is the steady state solution of

$$
\dot{z}^*(t) = Fz^*(t) + Gy_r(t)
$$

(41)

and the notation $f^{(i)}(t)$ denotes the ith derivative with respect to time. This transform changes the γ dynamics into

$$
\dot{\gamma}(t) =
\begin{bmatrix}
F & GC & 0 & 0 \\
-B(K_1 - \psi) & A_0 - B(K_2 - \lambda) & -BK_3 & B \\
0 & B^T C & C^* & 0 \\
0 & -K_\delta C & 0 & 0
\end{bmatrix}
\gamma(t)
$$

(42)

Let us assume that we have identified a P such that (26) is satisfied for a given Λ. We can then use $V(\gamma) = \gamma^TP\gamma$ as a Lyapunov function candidate, the derivative of which obeys

$$
\dot{V}(\gamma) = -2\lambda V(\gamma) + 2\gamma^TP[0, -B^T \gamma_r^{(n)}(t), 0, 0]T
$$

(43)

$$
< -2\lambda \min(P) \left\| \gamma \right\|^2 + 2\max(P) \left\| \gamma \right\| \left\| [0, -B^T \gamma_r^{(n)}(t), 0, 0] \right\| \right. \right.
$$

(44)

where $\left\| \cdot \right\|$ denotes the Euclidian norm. We can see from this equation that there must exist a sufficiently large γ such that $V < 0$; therefore γ enters a bounded positively invariant set and γ remains bounded for all t. However, the disturbance rejection properties of the servocompensator will allow us to draw some further conclusions regarding the performance of the system if we impose a periodicity assumption.

Assumption 1 The steady-state trajectory of $\gamma(t)$ is T-periodic.

Remark 4 The restrictiveness of such an assumption is worth discussing. In [40], it was shown that if a nonlinear system has an asymptotically stable T-periodic solution, the system still possesses an asymptotically stable T-periodic solution if the system is perturbed by a sufficiently small hysteresis nonlinearity. This result represents the best available theoretical result for showing that a system with hysteresis possesses a T-periodic solution, and this was utilized in [34, 36] to prove stability and periodicity of a system with hysteresis. However, the analysis of [34, 36] requires a sufficiently accurate hysteresis inversion to be incorporated into the control, which we will see in our experimental results may not be ideal. Though theoretical results are lacking, many experimental results reported in the literature have shown that systems with hysteresis seem to possess T-periodic solutions when driven by T-periodic references, regardless of whether inversion is used or not [13, 15].

Utilizing Assumption 1, we can now investigate the steady state tracking error, $\tilde{x}_1(t)$. Letting $T = 2\pi/\omega$, we can write $\tilde{x}_1(t)$ in a series form as

$$
\tilde{x}_1(t) = \sum_{i=1}^{\infty} R_i \sin(i\omega t + \phi_i)
$$

(45)

Let us assume that the matrix C^* in our servocompensator (10) has been chosen such that its eigenvalues are located at $\pm jk\omega$, $k \in \rho$, where ρ is a finite-element vector of whole numbers. Because $\tilde{x}_1(t)$ is the input to (10), the servocompensator’s error regulation properties will force all components of $\tilde{x}_1(t)$ whose internal models are contained in C^* to have zero amplitude at the steady state. Therefore, $R_i = 0, \forall i \in \rho$ in (45).

5 Simulation Example: Verification of the LMI condition

We now demonstrate the feasibility and effectiveness of our LMI condition with a simulation example. Let us consider a linear system,

$$
\mathcal{G}_\rho(s) = \frac{\omega_n^2}{s^2 + 2\xi \omega_n s + \omega_n^2}
$$

(46)

where $\xi = 0.5$ and $\omega_n = 1$. $\mathcal{G}_\rho(s)$ is preceded by a PI operator with $r = [0, r, 2r, 3r]$, where r will be considered as
a variable. The weights θ of the operator will be considered a function of r. In particular, for the play operator P_{ri}, $1 \leq i \leq 3$, θ_i will obey

$$\theta_i(r_i) = \frac{2}{2\mu - 2r_i}$$

(47)

where we introduce μ as a design parameter. This choice of θ_i is chosen to make sure the relative gains of the play operators remain constant. By this, we mean that for any $r_i < \mu$, if the input v to $P_{ri}[v;Wi(0)](t)$ is cycled periodically from $v_{\min} = -\mu$ to $v_{\max} = \mu$, then $\theta_i P_{ri}[v_{\max};Wi(0)](t) = 1$. We have illustrated this idea in Fig. 3 for $\mu = 3$. The exception to this rule will be θ_0, which we will fix at one. This cascade of a PI operator and $G_p(s)$ will be controlled by an integral controller,

$$\sigma(t) = y(t) - y_r$$

(48)

$$v(t) = -0.25\sigma(t)$$

(49)

where $y(t)$ is the output of $G_p(s)$, and y_r is a constant reference signal. Since our LMI results prove global stability, we will set y_r to be 100. The system described above can be easily fit into the LMI framework (26), with

$$\Sigma_0 + \min(\theta_h(r))B^*K_v = \begin{bmatrix} 0 & 1 & 0 \\ -\omega_n^2 & -2\zeta\omega_n & 1 \\ -0.25 & 0 & 0 \end{bmatrix},$$

$$\Sigma_0 + \max(\theta_h(r))B^*K_v = \begin{bmatrix} 0 & 1 & 0 \\ -\omega_n^2 & -2\zeta\omega_n & 1 \\ -0.25(1 + \|\theta_h(r)\|_1) & 0 & 0 \end{bmatrix}$$

where $\|\cdot\|_1$ denotes the 1-norm.

To test the viability of our proposed method, we will now begin to increase the value of r until r_{\max}, at which our LMI condition either becomes infeasible or produces a result that cannot guarantee stability. Increasing the value of r makes the hysteresis loops wider, meaning that the control becomes less and less effective at compensating the system. When $r = 0.74$, both LMIs (25) and (26) return results that cannot guarantee stability. We then simulate our system, increasing r each simulation until the tracking error no longer converges to zero. We then denote this value of r as r_{\max}. For our setup described here, $r_{\max} = 0.8$, with the system entering a limit cycle rather than converging to zero. Our LMI framework is therefore fairly effective, as it is able to guarantee stability up to 92.5% of r_{\max}.

One behavior worth noting is that the value of r_{\max} observed in simulation can vary with the value of y_r. For example, if $y_r = 3$, r can be increased to 0.89 before instability occurs. This would indicate that there is a region of attraction for this system, inside which the tracking error converges to zero. This indicates that the conservatism of our LMI condition is dependent on the value of the reference input y_r.

6 Applications to Nanopositioning Control

We now confirm the theoretical results of our paper, in particular those of Section 4, using experiments. Additional details of model development and controller design can be found in our prior work focused on servocompensator design for nanopositioning control [34].

We performed a series of tracking experiments on a commercial nanopositioner (Nano OP-65, from Mad City Labs), and compared the results under different control schemes. Online control implementation and data collection was provided by a dSPACE platform (DS1104). Our work begins with the formulation of the mathematical model of the nanopositioner used to design the controller. A hysteresis operator cascaded with linear dynamics was considered, as illustrated in Fig. 2. Two steps are required to create such a model: first, quasi-static large amplitude signals are used to identify a hysteresis model, then small-amplitude sinusoids are applied over a wide band of frequencies to identify the vibrational dynamics. As the hysteresis of our nanopositioner was not odd-symmetric, we utilized a modified PI operator Γ with 8 play operators and 9 deadzones to model the hysteresis. The weights of the play operators were

$$\theta_h = [0.694, 0.196, 0.041, 0.050, 0.040, 0.050, 0.023, 0.054]$$

and the weights of the deadzones were

$$\theta_d = [1.056, 0.650, 0.327, 0.432, 0.130, -1.138, -0.154, -0.787, -0.296]$$

Our vibrational dynamics were modeled by a 4th-order transfer function,

$$G_p(s) = \frac{4.7 \times 10^{17}}{s^4 + 1.6 \times 10^4s^3 + 6.6 \times 10^8s^2 + 5.0 \times 10^{12}s + 8.3 \times 10^{16}}$$

(50)

In order to improve computation accuracy we used a balanced state-space realization [41] of the system (50). This results in the model

$$\dot{x}(t) = 1.0 \times 10^4 \begin{bmatrix} -0.024 & 1.614 & -0.126 & 0.061 \\ -1.614 & -0.266 & 0.721 & -0.161 \\ -0.126 & -0.721 & -1.060 & 1.677 \\ -0.061 & -0.161 & -1.677 & -0.221 \end{bmatrix} x(t)$$

$$+ \begin{bmatrix} 76.47 \\ 240.4 \\ 242.7 \\ 83.37 \end{bmatrix} u(t)$$

$$y(t) = \begin{bmatrix} 76.47 & -240.4 & 242.7 & -83.37 \end{bmatrix} x(t)$$

(51)
Note that, while this nominal dynamics model will be used for controller design, the actual dynamics model of the nanopositioner would have unity gain at DC. This is a consequence of the hysteresis modeling; the gain of the system is effectively incorporated into the hysteresis model. This was discussed in Remark 1. After identifying our modified PI operator, the minimum gain of the hysteresis operator was found to be 4.69, with a maximum of 13.36, while the gain of the plant (51) is 5.62. Let the equation

\[
\begin{align*}
\dot{x}_u(t) &= A_u x_u(t) + B_u u(t) \\
y_u(t) &= C_u x_u(t)
\end{align*}
\]

(52)

(53)
denote the canonical form of the dynamics (51) with unity gain, i.e. \(y(t) = 5.62 y_u(t) \). We can then fit our nanopositioning system into the form considered in (7)-(9) by letting \(m = 0 \) and \(p = 4 \), where

\[
A_0 + B\lambda = A_u, \quad B = B_u, \quad C = C_u
\]

(54)

Our experiments focused on tracking sinusoidal signals of the form

\[
y_r(t) = 20 \sin(2\pi\omega t) + 30 \mu m
\]

(55)

where \(\omega = 5, 25, 50, 100, 200 \). We utilized two classes of controllers in our tests. First, we utilized the servocompensator controller described in Section 4. A Luenberger observer, based on the model in (51), was implemented to emulate state feedback. Because \(u(t) \) is unavailable, the control signal \(v(t) \) was used in this observer. The controller gains are chosen using a robust Riccati equation method [42] based on the nominal dynamics model (51), a method which was also used in [34]. Let \(v(t) = [K_2, K_3, K_4] y(t) \) denote the control synthesized by this method. Based on the definitions of (54) and Remark 2, \(\theta_k \) for the modified PI observer considered takes values in the interval \([4.69/5.62, 13.36/5.62] = [0.83, 2.38] \). The boundaries of this interval form the values of \(\min(\theta_k) \) and \(\max(\theta_k) \). We can then use the LMI toolbox of MATLAB to solve for the matrix \(P \) in (25) or (26).

Four different versions of the servocompensator-based controller are used in our experiments. First, we consider a single-harmonic servocompensator (SHSC) with eigenvalues of \(0, \pm j\omega \) and a multi-harmonic servocompensator (MHSC) with eigenvalues of \(0, \pm jk\omega, k = 1, 2, 3 \), both of which are coupled with hysteresis inversion. The inverse of a modified PI operator can be computed in a closed-form, a procedure that is described in [23]. Prior experimental tests have shown the effectiveness of these controllers in nanopositioning control [34].

The final two servocompensators used are the SHSC and MHSC designed to operate without hysteresis inversion, the stability of which can be guaranteed by verifying the LMI condition in (26). For example, consider an SHSC with \(\omega = \)
ever, once the MHSC is used, these harmonics are compensated and removed from the system, meaning that the overall tracking error is greatly reduced, especially when inversion is not used. In addition, the removal of the hysteresis inversion greatly reduces the computational requirements of the controller. For example, the MHSC without hysteresis inversion averaged a computation time of 28 μs per sampling period, while the MHSC with inversion required 45 μs of computation time. This is a significant savings, especially since the controller possesses half the mean tracking error when the inversion is removed.

7 Conclusions and Future Work

This paper has provided sufficient conditions for asymptotic or exponential stability of systems with hysteresis. These results contribute to the state of the art due to the lack of restrictions on the order or number of zeros in the dynamics model, and the ability to prove that the tracking error converges to zero when constant references are considered. This framework was also used to prove boundedness under general reference trajectories. Based on these results, we demonstrated the effectiveness of servocompensator-based controllers in nanopositioning systems, where our stability framework allows us to improve the tracking error performance two-fold over existing techniques.

Future work will focus on two directions. First, we will work towards a systematic controller synthesis technique in order to satisfy the LMI conditions (25) and (26). Second, we will attempt to rigorously prove the stability of observer-based controllers in systems with hysteresis by extending our existing framework.

References

