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Abstract
A dynamic, physics-based model is presented for ionic polymer–metal
composite (IPMC) sensors. The model is an infinite-dimensional transfer
function relating the short-circuit sensing current to the applied deformation.
It is obtained by deriving the exact solution to the governing partial
differential equation (PDE) for the sensing dynamics, where the effect of
distributed surface resistance is incorporated. The PDE is solved in the
Laplace domain, subject to the condition that the charge density at the
boundary is proportional to the applied stress. The physical model is
expressed in terms of fundamental material parameters and sensor
dimensions and is thus scalable. It can be easily reduced to low-order models
for real-time conditioning of sensor signals in targeted applications of IPMC
sensors. Experimental results are provided to validate the proposed model.

(Some figures in this article are in colour only in the electronic version)

Nomenclature

α0 charge–stress coupling constant (J C−1)
� V volumetric change (m3 mol−1)
κe dielectric permittivity (F m−1)
φ electric potential (V)
ρ charge density (C m−3)
σ induced stress (Pa)
C+ cation concentration (mol m−3)
C− anion concentration (mol m−3)
D electric displacement (C m−2)
d ionic diffusivity (m2 s−1)
E electric field (V m−1)
F Faraday constant (C mol−1)
F(t) external force (N)
h distance from neutral axis to surface (m)
I moment of inertia (m4)
i short-circuit current (A)
ip sensing current density (A m−1)
is surface current (A)
J ion flux vector (A m−2)
L free length of IPMC beam (m)

1 Author to whom any correspondence should be addressed.

M bending moment (N m)
p fluid pressure (Pa)
Q sensing charge (C)
R gas constant (J mol−1 K−1)
r0 surface resistance per length and width (�)
v free solvent velocity field (m s−1)
W width of IPMC beam (m)
w tip deflection (m)
Y Young’s modulus (Pa)

1. Introduction

Ionic polymer–metal composites (IPMCs) form an important
category of electroactive polymers and have built-in actuation
and sensing capabilities [1, 2]. An IPMC sample typically
consists of a thin ion-exchange membrane (e.g. Nafion),
chemically plated on both surfaces with a noble metal as
electrodes [3]. Transport of ions and solvent molecules within
an IPMC under an applied voltage leads to bending motions
of the IPMC, and hence the actuation effect. IPMC actuators
have various promising applications in biomedical devices,
bio/micromanipulation and biomimetic robotics [4–10]. On
the other hand, a mechanical stimulus on an IPMC causes
redistribution of charges and produces a detectable electrical
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signal, suggesting the use of IPMCs as mechanical sensors
for force, pressure, displacement or velocity measurement
in medical applications, structural health monitoring and
robotics [11–15].

Comparing with the extensive work on modeling of IPMC
actuators (see, e.g., [16–24]), research on IPMC sensing
models has been relatively limited. De Gennes et al proposed
a static model based on linear irreversible thermodynamics to
capture both actuation and sensing mechanisms of IPMCs [25].
Using an analogy to piezoelectric materials, Newbury and Leo
presented a geometrically scalable ‘grey-box’ model for IPMC
actuators and sensors [17, 26]. The latter model was further
elaborated and verified by Bonomo et al [27]. Farinholt and
Leo derived the charge sensing response for a cantilevered
IPMC beam under a step change in tip displacement [28].
The derivation was based on a linear, one-dimensional partial
differential equation governing the internal charge dynamics,
which was first developed by Nemat-Nasser and Li for
studying the actuation response of IPMCs [18]. A key
assumption in [28] is that the initial charge density at the
boundary is proportional to the applied step deformation.
Farinholt and Leo then obtained an analytical but approximate
solution by assuming that the solution is separable as a product
of temporal and spatial components.

The contribution of the current paper is an explicit,
dynamic, physics-based model for IPMC sensors. The
starting point of the model development is the same governing
PDE as in [18, 28] that describes the charge redistribution
dynamics under electrostatic interactions, ionic diffusion and
ionic migration along the thickness direction. But this
work extends previous studies significantly in three aspects.
First, it incorporates the effect of the distributed surface
resistance, which is known to influence the actuation and
sensing dynamics [29, 30]. The consideration leads to
additional dynamics on IPMC surfaces along the length
direction. Second, an exact, analytical solution to the PDE
is obtained by converting the original time-domain equation
to the Laplace-domain version. Third, instead of limiting to
step deformation only, an arbitrary mechanical deformation
stimulus is allowed, which is of interest for real applications.
For the boundary condition, an assumption analogous to that
in [28] is made: the charge distribution at the boundary is
proportional to the externally applied stress. The derived short-
circuit sensing current is related to the mechanical deformation
through an infinite-dimensional transfer function involving
hyperbolic and square-root terms. The transfer function model
is expressed in terms of fundamental physical parameters and
sensor dimensions, and is thus geometrically scalable. It can
be further reduced to low-order models in the form of rational
transfer functions, which are again scalable.

Experiments have been conducted to validate the proposed
dynamic model for an IPMC sensor in a cantilever
configuration. Good agreement, both in magnitude and in
phase, has been achieved between the measured sensing
response and the model prediction for periodic mechanical
stimulation from 1 to 20 Hz. The results show that considering
the surface resistance leads to more accurate predictions.
The geometric scalability of the sensor model has also
been confirmed without re-tuning of the identified physical
parameters. Experiments for an IPMC sensor under a damped

oscillatory deformation and a step deformation have further
verified the reduced, low-order model. The influence of the
IPMC hydration level on the sensing performance has also
been studied.

The salient feature of the proposed model is its
combination of the usually incompatible advantages of
physics-based models and simple models. As a physical
model, its effectiveness in predicting sensing responses
in experiments provides valuable insight into the sensing
mechanism of IPMCs. On the other hand, the model, as a
transfer function, is suitable for analysis and design using the
rich set of system-theoretic tools. In particular, the reduced
low-order models can be conveniently used to construct
compensation circuits or algorithms for real-time conditioning
of IPMC sensor signals.

The remainder of the paper is organized as follows. The
governing PDE is reviewed in section 2. In section 3 the
exact solution and thus the model are derived, with and
without considering the surface resistance. Model reduction
is discussed in section 4. Experimental validation results
are presented in section 5. Finally, concluding remarks are
provided in section 6.

2. The governing partial differential equation

The governing PDE for charge distribution in an IPMC was
first presented in [18] and then used by Farinholt and Leo [28]
for investigating the sensing response. Let D, E, φ and ρ

denote the electric displacement, the electric field, the electric
potential and the charge density, respectively. The following
equations hold:

E = D
κe

= −∇φ, (1)

∇ · D = ρ = F(C+ − C−), (2)

where κe is the effective dielectric constant of the polymer,
F is Faraday’s constant, and C+ and C− are the cation and
anion concentrations, respectively. The continuity expression
that relates the ion flux vector J to C+ is given by

∇ · J = −∂C+

∂t
. (3)

Since the thickness of an IPMC is much smaller than its length
or width, one can assume that, inside the polymer, D, E and J
are all restricted to the thickness direction (x direction). This
enables one to drop the boldface notation for these variables.
The ion flux consists of diffusion, migration and convection
terms:

J = −d

(
∇C+ + C+ F

RT
∇φ + C+�V

RT
∇ p

)
+ C+v, (4)

where d is the ionic diffusivity, R is the gas constant, T is
the absolute temperature, p is the fluid pressure, v the free
solvent velocity field and �V is the volumetric change, which
represents how much the polymer volume swells after taking
water. From (2), C+ can be written as

C+ = 1

F
ρ + C−, (5)
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Figure 1. Geometric definitions of an IPMC beam in the cantilevered configuration.

where C− is homogeneous in space and time-invariant since
anions are fixed to the polymer backbone. Taking the gradient
with respect to x on both sides of (5) and using (1) and (2), one
gets

∇C+ = κe

F
∇2 E . (6)

Darcy’s Law [31] is used to relate the fluid velocity v to the
pressure gradient ∇ p [32],

v = k ′(C− FE − ∇ p), (7)

where k ′ denotes the hydraulic permeability coefficient.
Neglecting the convection term [28], i.e. assuming v = 0,
leads to

∇ p = C− FE . (8)

Substituting (5), (6) and (8) into the original ion flux
equation (4) and using ∇φ = −E , one can rewrite J as

J = −d

(
κe

F
∇2 E − κe

(
1 − C−�V

)
RT

∇E · E

− FC− (
1 − C−�V

)
RT

E

)
. (9)

Assuming κe∇E � C− F (see [19] for justification), the
nonlinear term involving ∇E · E in (9) is dropped, resulting
in

J = −d

(
κe

F
∇2 E − FC−

RT

(
1 − C−�V

)
E

)
. (10)

Next writing

∂C+

∂t
= 1

F

∂ρ

∂t
= κe

F

∂ (∇E)

∂t
= κe

F

∂2 E

∂x∂t
,

and using (3), one obtains the following equation involving E :

κe

F

∂2 E

∂x∂t
= d

(
κe

F

∂3 E

∂x3
− FC−

RT

(
1 − C−�V

) ∂E

∂x

)
. (11)

Equation (11) can be expressed in terms of ρ = κe∇E = κe
∂E
∂x :

∂ρ

∂t
− d

∂2ρ

∂x2
+ F2dC−

κe RT

(
1 − C−�V

)
ρ = 0, (12)

which is the governing PDE for the charge density ρ inside the
polymer.

Farinholt and Leo investigated the short-circuit current
(and charge) sensing response of a cantilevered IPMC beam
when the tip is subject to a step displacement [28], as
illustrated in figure 1. Their work is based on obtaining an

analytical but approximate solution ρ(x, t) to (12), which is
assumed to take a separable form ρ(x, t) = P(x)Q(t). A
key assumption in [28] is that the initial charge density at
any point on the IPMC surface along the length direction
(denoted as the z direction) is proportional to the induced
stress at the same point. This assumption, which serves
as an initial/boundary condition for (12), is made based
upon that a similar assumption was used in modeling the
actuation response of IPMCs [18], and that IPMCs demonstrate
reciprocity between sensing and actuation [26]. Note that
the solution ρ(x, t) has implicit dependence on the length
coordinate z due to the nonuniform stress profile on the surface.

3. Dynamic sensing model

The objective of this paper is to derive a sensing model
for IPMCs that accommodate arbitrary mechanical stimuli
(including step deformations as a special case). While
Farinholt and Leo assume perfectly conducting surface
electrodes [28], we also incorporate the distributed surface
resistance into the proposed model, which will be shown to
produce more accurate predictions in experiments. The model
is based upon the exact solution to (12) subject to appropriate
boundary conditions, which is made possible by converting
it to the Laplace domain. The latter also makes the transfer
function a natural representation for the model. Note that only
small deflections of the IPMC beam are considered in this
paper, where one can ignore the nonlinearity of stress profile as
well as the surface resistance variation due to deformation [30].

Consider figure 1, where the beam is clamped at one end
(z = 0) and is subject to an external force F(t) at the other
end (z = L) producing the tip displacement w(t). The neutral
axis of the beam is denoted by x = 0, and the upper and lower
surfaces are denoted by x = h and x = −h, respectively.

To ease the presentation, define the aggregated constant

K
�= F2 dC−

κe RT

(
1 − C−�V

)
.

Performing a Laplace transform for the time variable of
ρ(x, z, t), one converts (12) into the Laplace domain:

sρ (x, z, s) − d
∂2ρ (x, z, s)

∂x2
+ Kρ(x, z, s) = 0, (13)

where s is the Laplace variable. After rearranging, (13)
becomes

∂2ρ (x, z, s)

∂x2
= (s + K )

d
ρ (x, z, s) . (14)
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Define β(s) such that β2(s) = s+K
d . A generic solution to (14)

is obtained as

ρ (x, z, s) = c1(z, s)e−β(s)x + c2(z, s)eβ(s)x , (15)

for some appropriate functions c1(z, s) and c2(z, s). An
assumption, analogous to the one in [28], will be made to
determine c1(z, s) and c2(z, s). In particular, it is assumed
that the charge density ρ(±h, z, s) at the boundary x = ±h
is proportional to the induced stress σ(±h, z, s):

σ(±h, z, s) = α0ρ(±h, z, s), (16)

where α0 is the charge–stress coupling constant. From
σ(h, z, s) = −σ(−h, z, s), one gets

ρ(h, z, s) + ρ(−h, z, s) = 0,

which implies c1(z, s) = −c2(z, s) and thus

ρ(x, z, s) = 2c2(z, s) sinh(β(s)x). (17)

One can further relate σ(h, s) to the external stimuli. In
the time domain,

σ(h, z, t) = M(z, t)h

I
, (18)

where M(z, t) is the bending moment and I = 2
3 W h3 is the

moment of inertia, with W being the beam width (refer to
figure 1). M(z, t) is related to the external force F(t) at z = L
by

M(z, t) = F(t)(L − z), (19)

where L is the beam length. The out-of-plane deflection w(t)
at the tip can be related to the force F(t) by [33]

w(t) = L3 F(t)

3Y I
, (20)

where Y denotes the Young’s modulus of the beam.
Combining (18)–(20) yields

σ(h, z, t) = 3Y h(L − z)

L3
w(t). (21)

Transforming (21) into the Laplace domain and combining
with (16), one gets

ρ(h, z, s) = 3Y h(L − z)

α0L3
w(s), (22)

which, together with (17), implies

c2(z, s) = 3Y h(L − z)

2α0L3 sinh (β(s)h)
w(s). (23)

Using (17) and the field equations (1) and (2), one can
derive the expressions for the electric field E and then for the
electric potential φ in the Laplace domain:

E(x, z, s) = 2c2(z, s)
cosh(β(s)x)

κeβ(s)
+ a1(z, s), (24)

φ(x, z, s) = −2c2(z, s)
sinh(β(s)x)

κeβ2(s)
− a1(z, s)x + a2(z, s),

(25)

Figure 2. Illustration of the distributed surface resistance for the
IPMC sensing model.

where a1(z, s) and a2(z, s) are appropriate functions to be
determined based on boundary conditions on φ. Two different
boundary conditions are discussed next, one ignoring the
surface electrode resistance and the other considering the
resistance. In both cases it will be shown that the final
sensing current is proportional to the applied deformation
w(s), and thus a transfer function relating the sensor output
to the deformation input can be derived.

3.1. Model ignoring the surface resistance

First consider the case where the surface electrodes are
perfectly conducting, as was assumed by Farinholt and
Leo [28]. In the short-circuit current (or charge) sensing mode,
the electric potential is uniform across both surfaces x = ±h,
and without loss of generality, the potential is set to be zero:

φ(h, z, s) = φ(−h, z, s) = 0. (26)

Note that the z dependence of φ is made explicit in (26) for
clarity (but with abuse of notation). Combining (26) with (25),
one can solve for a1(z, s) and a2(z, s):

a1(z, s) = −2c2(z, s)
sinh(β((s)h))

hkeβ2(s)
, (27)

a2(z, s) = 0. (28)

The total induced sensing charge is obtained by integrating the
electrical displacement D on the boundary x = h:

Q(s)=
∫ W

0

∫ L

0
D(h, z, s) dz dy =

∫ W

0

∫ L

0
κe E(h, z, s) dz dy.

(29)
Combining (23), (24), (27) and (29), one can derive Q(s) (see
the appendix A for details), which is linear with respect to the
external stimulus w(s):

Q(s) = 3Y W (β(s)h coth(β(s)h) − 1)

2α0Lβ2(s)
w(s). (30)

The short-circuit current i(t) is the time derivative of the charge
Q(t), and hence i(s) = s Q(s) in the Laplace domain. The
transfer function from the mechanical input w(s) to the sensing
output i(s) is then derived as

H1(s) = i(s)

w(s)
= 3sY W (β(s)h coth(β(s)h) − 1)

2α0Lβ2(s)
(31)

with β(s) =
√

s+K
d .
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3.2. Model considering distributed surface resistance

The surface electrode of an IPMC typically consists of
aggregated nanoparticles formed during chemical reduction of
a noble metal salt (such as platinum salt) [3]. The surface
resistance is thus non-negligible and has an influence on the
sensing and actuation behaviour of an IPMC [29]. In this
paper the effect of distributed surface resistance is incorporated
into the sensing model, as illustrated in figure 2. An IPMC
beam is clamped at one end (z = 0) and is subject to
an applied displacement w(s) at the other end (z = L).
Let the resistance per unit length be r = r0/W , with r0

representing the surface resistance per unit length and unit
width (a parameter independent of IPMC dimensions). For
each section �z of the IPMC, a current ip(z, s)�z is generated
inside the polymer and then joins the surface current is(z, s).
Note that, by the continuity of current, the current is(z, s) on
the top surface equals that on the bottom surface but with an
opposite direction. The surface current is(0, s) collected at
z = 0, where φ(h, 0, s) = φ(−h, 0, s) = 0, is the short-
circuit sensing current i(s).

The following equations capture the relationships between
the surface current is(z, s), the sensing current density ip(z, s)
within the polymer and the electric potential φ(±h, z, s) on the
surfaces:

∂φ(h, z, s)

∂z
= ris(z, s) = r0

W
is(z, s), (32)

∂φ(−h, z, s)

∂z
= −ris(z, s) = − r0

W
is(z, s), (33)

∂is(z, s)

∂z
= −ip(z, s). (34)

From the short-circuit condition at z = 0, i.e. φ(h, 0, s) =
φ(−h, 0, s) = 0, the boundary conditions for (25) are derived
as:

φ(h, z, s) =
∫ z

0

r0

W
is(τ, s) dτ, (35)

φ(−h, z, s) = −
∫ z

0

r0

W
is(τ, s) dτ. (36)

Combining (35) and (36) with (25), one can solve for the
functions a1(z, s) and a2(z, s) in the generic expression for
φ(x, z, s):

a1(z, s) = −
∫ z

0 r0is(τ, s) dτ

hW
− 2 c2(z, s)

sinh (β(s)h)

hκeβ2(s)
, (37)

a2(z, s) = 0. (38)

Next we will eliminate ip(z, s) in (34) so that the equation
involves is(z, s) only, which can then be solved for the sensing
output is(0, s). Note that the generated sensing charge on a �z
section can be expressed as D(h, z, s)W�z, i.e.

ip(z, s)�z

s
= D(h, z, s)W�z = κe E(h, z, s)W�z,

implying
ip(z, s) = sκe E(h, z, s)W. (39)

Evaluating E(h, z, s) using (24) with (23) and (37) plugged
in for c2(z, s) and a1(z, s), respectively, one gets (after
simplification):

ip(z, s) = A(s)(L − z) − B(s)
∫ z

0
is(τ, s) dτ, (40)

where

A(s) = 3sY W (β(s)h coth(β(s)h) − 1)

α0L3β2(s)
w(s), (41)

B(s) = sκer0

h
. (42)

Plugging (40) into (34), one obtains an integro-differential
equation for is(z, s):

∂is(z, s)

∂z
= −A(s)(L − z) + B(s)

∫ z

0
is(τ, s) dτ. (43)

Equation (43) can be solved analytically through (yet another)
Laplace transform, this time for the z variable. For details,
refer to the appendix B. In particular, the short-circuit sensing
current i(s) = is(0, s) is obtained as

i(s) = 3sY W (β(s)h coth(β(s)h) − 1)

α0L3β2(s)

×
(
1 − cosh(

√
B(s)L) + √

B(s)L sinh(
√

B(s)L)
)

B(s) cosh(
√

B(s)L)
w(s).

(44)

The transfer function from the mechanical input w(s) to the
sensor output i(s) is then

H2(s) = i(s)

w(s)
= 3sY W (β(s)h coth(β(s)h) − 1)

α0L3β2(s)

×
(
1 − cosh(

√
B(s)L) + √

B(s)L sinh(
√

B(s)L)
)

B(s) cosh(
√

B(s)L)
, (45)

where β(s) =
√

s+K
d and B(s) is as defined by (42).

Note that the model H2(s) incorporating surface resistance
is consistent with the model H1(s) ignoring surface resistance.
Indeed, H2(s) degenerates to H1(s) when the resistance r0 →
0. To see this, from (31) and (45), one can write

H2(s) = 2

L2

(
1 − cosh(

√
B(s)L) + √

B(s)L sinh(
√

B(s)L)
)

B(s) cosh(
√

B(s)L)

× H1(s).

When r0 → 0,
√

B(s) = √
sκer0/h → 0. From l’Hôpital’s

rule,

lim
a→0

1 − cosh(aL) + aL sinh(aL)

a2 cosh(aL)
= L2

2
. (46)

Taking
√

B(s) to be a in (46), one obtains

lim
r0→0

H2(s) = 2

L2

L2

2
H1(s) = H1(s).
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Table 1. Physical constants and directly measured parameters.

F R T Y [10] h r0

96 487 C mol−1 8.3143 J mol−1 K−1 300 K 5.71 × 108 Pa 180 μm 6.05 �

Table 2. Identified parameters through curve-fitting.

d C− κe α0

3.32 × 10−11 m2 s−1 1091 mol m−3 1.88 × 10−3 F m−1 104 J C−1

4. Model reduction

An important motivation for deriving a transfer function-type
sensing model H(s) is its potential use for real-time feedback
control and for sensor signal conditioning. In the case of
feedback control, knowing the sensor dynamics is essential
to the controller design [34]. For pure sensing applications
(such as structural health monitoring), the knowledge of
sensor dynamics allows us to correctly reconstruct the original
mechanical stimulus w(s) based on the sensor output i(s),
either online or offline. This can be done through inversion
of the sensor dynamics:

w(s) = Hinv(s)i(s), (47)

where Hinv(s) represents the inverse dynamics

Hinv(s) = 1

H(s)
. (48)

For practical implementation of sensor conditioning or
feedback control design, the model H(s) needs to be finite-
dimensional, i.e. being a finite-order, rational function of s.
However, the sensing models derived earlier, H1(s) and H2(s)
(equations (31) and (45)), are infinite-dimensional since they
involve non-rational functions including sinh(·), cosh(·),√·,
etc. A systematic approach to model reduction is to use the
Padé approximation [35], where one can approximate H1(s)
or H2(s) by a finite-dimensional transfer function with any
specified order. However, the resulting coefficients for the
reduced model can be complex. In the following we discuss
a simpler method for reducing the IPMC sensing models
by exploiting specific properties of hyperbolic functions and
knowledge about the range of physical parameters. The
method is less general than the Padé approximation, but it leads
to a more compact formula that is valid within the considered
frequency range. The discussion will be focused on H2(s)
since it covers H1(s) as a special case.

For ease of presentation, decompose H2(s) as

H2(s) = f (s)g(s),

with

f (s) = 3sY W (β(s)h coth(β(s)h) − 1)

α0β2(s)L3
, (49)

g(s) = 1 − cosh
(√

B(s)L
) + √

B(s)L sinh
(√

B(s)L
)

B(s) cosh
(√

B(s)L
) .

(50)

Based on the physical parameters (see tables 1 and 2 in
section 5), the composite constant K

d is of the order of 1012,
which implies

|β(s)| =
∣∣∣∣ s + K

d

∣∣∣∣ > 106,

for s = jω, where ω denotes the angular frequency of any
sinusoidal input. Since the thickness h of an IPMC is typically
bigger than 1 × 10−4 m, it can be seen that

|β(s)h| � 10,

which allows one to make the approximation

coth(β(s)h) ≈ 1. (51)

With (51), one can simplify (49) as

f (s) ≈ 3sY W (β(s)h − 1)

α0β2(s)L3
= 3sY W d

α0L3

√
s+K

d h − 1

s + K

=
3sY W

√
d

(√
s + K h − √

d
)

α0L3(s + K )
.

One can further approximate
√

s + K by its Taylor series about
s = 0. For instance, considering up to the second-order terms
results in the following approximation to f (s):

f (s) ≈
3sY W

√
d

(
h
√

K (1 + s
2K − s2

8K 2 ) − √
d
)

α0 L3(s + K )
. (52)

The following Taylor series expansions of sinh(a) and
cosh(a) will be used for g(s):

sinh(a) = a + a3

3! + a5

5! + · · · ,

cosh(a) = 1 + a2

2! + a4

4! + · · · ,

with a = √
B(s)L . This results in

g(s) =
[(

1 − 1

2!
)

B(s)L2 +
(

1

3! − 1

4!
)

B2(s)L4

+
(

1

5! − 1

6!
)

B3(s)L6 + · · ·
]

×
[

B(s)

(
1 + B(s)L2

2! + B2(s)L4

4! + · · ·
)]−1

. (53)

Recall B(s) = sκer0/h. Truncation of the series in (53) leads
to a finite-order approximation. For example, keeping the first
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Figure 3. (a) Schematic of the experimental set-up; (b) picture showing a cantilevered IPMC under mechanical deformation.

three terms in each series yields

g(s) ≈
[(

1 − 1

2!
)

B(s)L2 +
(

1

3! − 1

4!
)

B2(s)L4

+
(

1

5! − 1

6!
)

B3(s)L6

][
B(s)

(
1 + B(s)L2

2!
+ B2(s)L4

4!
)]−1

. (54)

Combining (52) and (53) leads to a fourth-order model for
IPMC sensors:

Ĥ (s) =
3sY W

√
d

(
h
√

K (1 + s
2K − s2

8K 2 ) − √
d
)

α0L3(s + K )

×
(
1− 1

2!
)

B(s)L2+ (
1
3!− 1

4!
)

B2(s)L4+ (
1
5!− 1

6!
)

B3(s)L6

B(s)
(

1+ B(s)L2

2! + B2(s)L4

4!
) .

(55)

Although Ĥ (s) is an improper rational function, i.e. the
numerator is of higher order than the denominator, it is not
a concern for feedback or sensing applications. This is
because the inverse dynamics (48), which is what matters in
implementation, will be proper.

Note that a reduced model like (55) is still a physical
model. In particular, it is described in terms of fundamental
physical parameters and is thus geometrically scalable. This
represents a key difference from other low-order, black-
box models, in which case the parameters have no physical
meanings and one would have to re-identify the parameters
empirically for every sensor.

5. Experimental verification

5.1. Experimental set-up

An experimental set-up was built to produce periodic
mechanical stimulus with controlled frequency. The schematic
of the set-up is shown in figure 3 (a), while figure 3(b) shows
its picture. A crank-slider mechanism is used to convert the
rotational motion generated by a DC motor (GM8724S009,
Pittman) into the linear, oscillatory motion of the slider, which
slides on a fixed rail. A rigid bar connects the slider and the
rotating disk, and by changing the distance from the bar end
to the disk center, the amplitude of translational motion can be
adjusted. The oscillation frequency is controlled by tuning the
voltage input to the motor, and it is measured through an optical

switch. The set-up can provide periodic excitation from 1 to
20 Hz.

The free end of a cantilevered IPMC beam is constrained
to a slit in the slider, which correlates the slider motion directly
with the tip-bending deformation w(t) of the IPMC. During
operation, the contact point between the IPMC beam and
the slider changes slightly. For relatively small oscillation
amplitude, the contact point can be treated as fixed, which
is close to the beam tip. In all experiments, the oscillation
amplitudes were chosen to be 2 mm, which is small compared
to the beam length.

A differential current-amplifier circuit is used to measure
the IPMC sensing current generated under the mechanical
stimulus. Data acquisition and processing are performed
through a PC running on a real-time Linux kernel.

5.2. Parameter identification

In the dynamic sensing models H1(s) and H2(s), some
parameters are physical constants (gas constant R and
Faraday’s constant F), some can be measured directly
(absolute temperature T , Young’s modulus Y , sensor
dimensions and surface resistance density r0), and the others
need to be identified through curve-fitting. Table 1 lists the
physical constants and the parameters obtained through direct
measurement. Since |C−�V | � 1 [18], we take 1 − C−�V
to be 1. The IPMC materials used in this work were obtained
from Environmental Robots Inc., and all samples were cut from
the same sheet to ensure consistent chemical makeup. Since
the IPMC sensing response and thus the model parameters
depend on the hydration level and other conditions of the
sample, extra care was taken to ensure consistent conditions
for all experiments except those in section 5.4. To achieve this,
an IPMC sample was soaked in water for several minutes to
get fully hydrated, and then mechanically excited in air for ten
minutes to get rid of excessive water before each experiment.

The thickness of samples is 360 μm, i.e. h = 180 μm.
For an IPMC that is 22 mm long and 7 mm wide, the
surface resistance was measured to be 19 �, corresponding to
r0 = 6.05 �. The parameters that remain to be determined
include the diffusion coefficient d, the anion concentration
C−, the dielectric constant κe and the charge–stress coupling
constant α0. The empirical frequency response of an IPMC
sensor with dimensions 22 × 7 mm was used to identify
the remaining parameters through a nonlinear curve-fitting
process, as described next.
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Figure 4. Performance of the models with and without consideration
of surface resistance.

Fix an excitation frequency f and acquire the mechanical
deformation w(t) and the IPMC sensor output i(t). Fast
Fourier transforms are then performed on w(t) and i(t) to
extract their amplitudes and phases, based on which one can
compute the magnitude gain and the phase shift of the sensor
dynamics (from the mechanical input to the sensing output)
at that particular frequency. Repeat this process for other
excitation frequencies that are available from the experimental
set-up (1–20 Hz), which produces the empirical Bode plots for
the frequency response.

One can then tune the unknown parameters of the
sensor model H2(s) to fit the empirical frequency response.
In particular, H2( j2π f ) predicts the magnitude and phase
response of the sensor at frequency f , and it is a nonlinear
function of the parameters. The Matlab function fminsearch
can be used to find the parameters that minimize the squared
error between the empirical frequency response and the model
prediction. The identified parameters are listed in table 2,
which are close to the values reported in the literature [18, 28].
For independent verification of the proposed model, the
identified parameters will be used in predicting behavior of
other IPMC sensors with different dimensions, as will be seen
in section 5.3.

5.3. Model verification

Model verification will be conducted on three aspects. First, it
will be shown that the model considering the surface resistance
is more accurate than the model ignoring the resistance, by
comparing them with the measured frequency response of
an IPMC sensor. Second, the geometric scalability of the
proposed model will be confirmed by the agreement between
model predictions and experimental results for IPMC sensors
with different dimensions. Third, the performance of the
reduced model will be illustrated through its prediction of the
time-domain sensing responses under a damped, oscillatory
excitation and a step deformation, respectively.

5.3.1. Effect of surface resistance. In order to examine the
difference between the models H1(s) and H2(s), their model

Figure 5. Frequency responses of the sensing dynamics for the big
and slim samples.

Table 3. Dimensions of three IPMC samples used for verification of
model scalability.

IPMC Length Width Thickness
beam (mm) (mm) (μm)

Big 22 14 360
Slim 22 7 360
Short 11 7 360

parameters were identified separately through the nonlinear
fitting process described in section 5.2. The experimental data
were obtained for an IPMC sensor with dimensions 22 × 7 ×
0.36 mm. Figure 4 compares the predicted frequency response
(both magnitude and phase) by each model with the measured
frequency response. Both models show good agreement with
the experimental data on the magnitude plot. On the phase
plot, however, it is clear that the model considering the surface
resistance shows better agreement than the one ignoring the
resistance. This indicates that the model incorporating the
surface resistance is more effective in capturing the sensing
dynamics of IPMC, and thus it will be used for the remainder
of this paper.

5.3.2. Geometric scalability of the dynamic model. Three
samples with different dimensions (see table 3) were cut from
one IPMC sheet and were labeled as big, slim and short for
ease of referencing. The length in table 3 represents the
free bending length of the IPMC beam. Model parameters
were first identified for the slim sample, as discussed in
section 5.2. Without re-tuning, these parameters (except
geometric dimensions) were plugged into (45), i.e. the model
H2(s), for predicting the frequency response for the big and
short samples.

Figure 5 shows the Bode plots of the frequency responses
for the slim and big samples. It can be seen that, for both
samples, good agreement between the model prediction and
the experimental data is achieved. Furthermore, since the
two samples differ only in width, the model (45) predicts that
their magnitude responses will differ by 20 log 2 = 6 dB
uniformly in frequency, while their phase responses will be

1484



A dynamic model for ionic polymer–metal composite sensors

Figure 6. Frequency responses of the sensing dynamics for the slim
and short Samples.

the same. Both predictions are confirmed in the figure: the
experimentally measured magnitude responses are parallel to
each other with a difference about 6 dB, and the measured
phase responses overlap well.

Figure 6 compares the frequency responses of the slim
and short samples. A reasonable match between the model

predictions and the empirical curves is again achieved for both
samples. The figure also indicates the need to incorporate
the surface resistance in modeling. Since the two samples
differ only in length, the model ignoring the surface resistance
(equation (31)) will predict that the magnitude responses
of the two samples would differ just by a constant while
their phase responses would be identical. But the empirical
magnitude curve for the slim sample increases with frequency
by approximately 14 dB per decade, while that for the short
sample increases by roughly 18 dB per decade. Moreover, the
empirical phase curves clearly do not overlap. All these subtle
trends, however, are captured well by the model considering
the surface resistance, as can be seen in figure 6.

5.3.3. Verification of the reduced model. Experiments were
further conducted to verify the effectiveness of the model
reduction approach presented in section 4. Two mechanical
stimuli, which were different from periodic signals, were used
to demonstrate the wide applicability of the proposed model.
In the first experiment the cantilevered slim IPMC sample was
allowed to freely vibrate upon an initial perturbation on the tip.
In the second experiment the tip of the cantilevered big sample
was subject to a step displacement and then held there. A laser
displacement sensor (OADM 20I6441/S14F, Baumer Electric)
was used to record the tip displacement trajectory w(t). The
inverse of fourth-order reduced model (55) was adopted to

Figure 7. The sensing response of the slim sample under a decaying, oscillatory mechanical stimulus. (a) The tip displacement trajectory;
(b) prediction of the sensing response versus experimental measurement.

Figure 8. The sensing response of the big sample under a step stimulus. (a) The tip displacement trajectory; (b) prediction of the sensing
response versus experimental measurement.
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Figure 9. The sensing response at 6 Hz for the slim IPMC sample
over time.

predict the bending displacement based on the short-circuit
sensing current measurement for each case, where the model
parameters from the identification experiment in section 5.2
were used directly.

Figure 7 compares the predicted bending displacement
with the experimental measurement under the damped,
oscillatory stimulus. The beam has a natural frequency of
about 30 Hz, which is outside the frequency range of the
signals used in parameter identification, yet the reduced model
is able to predict the bending displacement well. Figure 8
shows the model prediction of the bending displacement
against the experimental data for the case of a step tip
deformation. It can be seen that satisfactory agreement
between the predicted and the measured curves is again
achieved.

5.4. Impact of hydration level on sensing response

Finally, the proposed dynamic model is explored to gain
insight into the dependence of IPMC sensing response on the
hydration level of the sample. Such dependence is clearly seen
from the experimental curve in figure 9. In this experiment the
slim IPMC sample was first soaked in water, and then subject
to continuous, 6 Hz periodic mechanical excitation in air. Data
(both the stimulus and the sensor output) were collected for
about 40 min. The frequency response of the sensor at 6 Hz
at each minute was then extracted from the data, including
the magnitude gain and the phase shift. The evolution of this
response is plotted in figure 9 (note that the horizontal axis
represents time instead of frequency). The sensing response
right after the IPMC was taken out of water was not strong,
and it was not steady due to the excessive water inside. This
is consistent with what Bonomo et al reported in [27]. But we
also observed that the amplitude of the sensing signal increased
to the maximum at about t = 5 min, and it started to decrease
afterwards. Bonomo et al [27] mentioned that the IPMC still
had good sensing response after hours of work, but they did not
report quantitatively the evolution history of the sensing signal
amplitude.

Figure 10. Identified diffusion coefficient versus time.

The time-varying response is believed to arise from water
evaporation of the IPMC sample. In order to correlate this
phenomenon with the proposed model (45), we assume that
all parameters except the diffusion coefficient d are constant.
Since the sensing signal before t = 5 min is noisy and
irregular, we have used only the data after t = 5 min to identify
the diffusion coefficient of the model. Taking the values
identified in section 5.2 for those fixed parameters, we identify
the evolving value of d by fitting the measured magnitude and
phase response at each minute. The dashed curves in figure 9
show the results of model fitting with a time-dependent d. The
time trajectory of the identified d is plotted in figure 10 and
its decaying trend is consistent with the decreasing hydration
level.

Water evaporation could lead to changes in other
parameters as well. For instance, the Young’s modulus
gets bigger as the beam dries up. From the model (45),
larger Young’s modulus enhances the amplitude of the sensing
response and has no effect on the phase response. However,
figure 9 shows that, during the experiment, the amplitude
response deteriorates while the phase response also varies.
This appears to support that the change of Young’s modulus
is not a dominant factor for the change of sensing response.

The discussions above suggest that the hydration level
impacts the sensing behavior of an IPMC through its influence
on the ion diffusivity. However, since d cannot be measured
directly to confirm the identified trajectory in figure 10, more
research is needed before a conclusive statement can be made.

6. Conclusions and discussion

In this paper a dynamic model for IPMC sensors has been
developed by solving the physics-governing PDE analytically
in the Laplace domain. The model accommodates the surface
electrode resistance in an integrative manner. The mechanical
stimulus enters as a boundary condition for the PDE and the
sensing output is related to the mechanical input linearly. This
leads to a compact, explicit, transfer-function representation
of the physics-based model, which can be further reduced to
low-order models for real-time sensing and feedback control
purposes. A number of experimental results were presented
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to demonstrate the geometric scalability of the model, as well
as its applicability to arbitrary mechanical inputs. Due to the
physical nature of the model, the agreement between model
predictions and experimental results also provides insight into
the underlying sensing mechanisms of IPMC materials.

Note that there are two factors that have enabled us to
solve the governing PDE exactly. First, the core equation (12)
involves only the thickness coordinate x and is thus one-
dimensional. This is appropriate since the length and the width
of an IPMC are much larger than its thickness, making the
sample appear like a parallel-plate transmission line. Second,
the PDE is linear, after a nonlinear term is discarded during
the derivation (see section 2). The latter is justified by the
generally satisfactory performance of the derived model. On
the other hand, some of the discrepancies between the model
predictions and the experimental measurement could be due
to the unmodeled nonlinearity, which is a subject of ongoing
study.

The proposed modeling approach can be extended in
several directions. The mechanical input used in this paper
has been the IPMC tip displacement, since it was directly
controlled and measured in our experimental set-up. One
can easily switch to other mechanical inputs (e.g. velocity
or force). It is also possible to consider other IPMC
configurations, such as a double-clamped beam or an IPMC
plate. Finally, a similar approach can be taken to model the
actuation behavior of IPMCs.
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Appendix A. Derivation of equation (30)

From (29), one gets

Q(s) =
∫ W

0

∫ L

0
κe

[
2c2(z, s)

cosh (β(s)h)

κeβ(s)

− 2c2(z, s)
sinh (β(s)h)

hκeβ2(s)

]
dz dy

= 2W (β(s)h cosh(β(s)h) − sinh(β(s)h))

hβ2(s)

∫ L

0
c2(z, s) dz

= 2W (β(s)h cosh(β(s)h) − sinh(β(s)h))

hβ2(s)

×
∫ L

0

3Y h(L − z)w(s)

2α0L3 sinh(β(s)h)
dz

= 3Y W (β(s)h coth(β(s)h) − 1)w(s)

α0L3β2(s)

∫ L

0
(L − z) dz

= 3Y W (β(s)h coth(β(s)h) − 1)

2α0Lβ2(s)
w(s),

which is (30). In the above the first equality is from (24)
and (27), the second equality follows from the independence
of c2(z, s) from y, and the third equality is from (23).

Appendix B. Solving the integro-differential
equation (43)

We introduce the unilateral Laplace transform for functions
of the length coordinate z. The new Laplace variable will be
denoted as p since s has already been used for the transform of
time functions. For instance, the transform of is(z, s) will be
defined as

Is(p, s)
�=

∫ ∞

0
is(z, s)e−pz dz.

Now perform the Laplace transform with respect to the z
variable on both sides of (43). Using properties of Laplace
transforms [34, 36], one gets

pIs(p, s) − is(0, s) = −A(s)

(
L

p
− 1

p2

)
+ B(s)

Is(p, s)

p
.

(B.1)
Solving for Is(p, s), one obtains

Is(p, s) = p

p2 − B(s)
is(0, s) − pL − 1

p
(

p2 − B(s)
) A(s), (B.2)

which can be rewritten through partial fraction expansion as:

Is(p, s) = 1

2

(
1

p − √
B(s)

+ 1

p + √
B(s)

)
is(0, s)

+
(

q1(s)

p
+ q2(s)

p − √
B(s)

+ q3(s)

p + √
B(s)

)
A(s), (B.3)

with

q1(s) = − 1

B(s)
, q2(s) = 1 − L

√
B(s)

2B(s)
,

q3(s) = 1 + L
√

B(s)

2B(s)
.

The surface current is(z, s) is then obtained from (B.3) using
the inverse Laplace transform of Is(p, s):

is(z, s) = e
√

B(s)z + e−√
B(s)z

2
is(0, s)

+
(

− 1

B(s)
+ 1 − √

B(s)L

2B(s)
e
√

B(s)z

+ 1 + √
B(s)L

2B(s)
e−√

B(s)z

)
A(s)

= cosh(
√

B(s)z)is(0, s) + (−1 + cosh(
√

B(s)z)

− √
B(s)L sinh(

√
B(s)z)

) A(s)

B(s)
. (B.4)

Refer to figure 2. Since the circuit is open at z = L , the
following holds:

is(L , s) = 0. (B.5)

Plugging z = L into (B.4) and using (B.5), one obtains the
sensing current is(0, s) as

is(0, s)= A(s)(1−cosh(
√

B(s)L)+√
B(s)L sinh(

√
B(s)L))

B(s) cosh(
√

B(s)L)
.

(B.6)
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