Collective Decision Making in Ideal Networks: The Speed-Accuracy Trade-off

Vaibhav Srivastava
Department of Mechanical & Aerospace Engineering
Princeton University

Joint work with: Naomi Leonard

Oct 28, 2014
Symposium on Control of Network Systems
Boston, Massachusetts, USA

Incomplete Literature Review

Human Decision-making

Information assimilation in social networks

Collective decision-making in animal and human groups

Collective Decision Making in Socio-Cognitive Networks

Social information assimilation + decision-making = Socio-Cognitive Networks

Ideal group versus Condorcet group

Role of network structure in performance

V. Srivastava & N. E. Leonard (Princeton University)
Drift Diffusion Model and the Free Response Paradigm

- Models human decision making in two alternative choice tasks
- Evidence evolution in a two alternative choice task is modeled by
 \[dx(t) = \beta dt + dW(t), \quad x(0) = x_0 \]
- Decision process at time \(\tau \) is
 \[\begin{cases} x(\tau) > \eta, & \text{choose alternative 1,} \\ x(\tau) < -\eta, & \text{choose alternative 2,} \\ \text{else}, & \text{collect more evidence.} \end{cases} \]
- Continuous time version of Sequential Probability Ratio Test

Choice of threshold dictates the speed-accuracy trade-off

Social Interaction and the DeGroot Model

- \(p \): vector of opinions in a network
- \(A \): row stochastic matrix
- models consensus seeking in a social network by
 \[p(t + 1) = Ap(t). \]
- same as the celebrated consensus dynamics in multi-agent systems
- Continuous time consensus seeking in a social network modeled by
 \[\dot{p}(t) = -Lp(t), \quad p(0) = p_0 \]
- \(L = \text{Laplacian Matrix} \)

Coupled Drift Diffusion Model

- \(n \) decision-makers collect noisy signals and interact with each other
- the evidence aggregation process well modeled by
 \[dx(t) = -Lx(t)dt + \beta_1 dt + \sigma dW(t), \quad x(0) = 0_n, \quad (1) \]

Quantities of interest:

- Expected decision times
- Error rates (probability of wrong decision)

Coupled Drift Diffusion Model

- \(n \) decision-makers collect noisy signals and interact with each other
- the evidence aggregation process well modeled by
 \[dx(t) = -Lx(t)dt + \beta_1 dt + \sigma dW(t), \quad x(0) = 0_n, \quad (1) \]

Quantities of interest:

- Expected decision times
- Error rates (probability of wrong decision)

Standard approach:

- solve first passage time associated with the FP equation for (1)
- requires the solution of a second order PDE with \(n \) variables

Asymptotic Optimality of the Coupled DDM

- Evidence vector: \(x(t) = x_{\text{cen}}(t)1_n + \epsilon(t) \)

\[
dx_{\text{cen}}(t) = \beta dt + \frac{1}{n} \sum_{i} \epsilon_i(t) dW(t), \quad x_{\text{cen}}(0) = 0
\]

\[
de(t) = -Le(t)dt + (L_n - \frac{1}{n} \sum_{i} \epsilon_i(t)) dW_n(t), \quad \epsilon(0) = 0_n.
\]

- \(\epsilon_k(t) \to N(0, 1/\mu_k), \quad \frac{1}{\mu_k} = \sum_{p=2}^{n} \frac{1}{2 \pi \rho^2} u_k(\rho)^2 \)
- \(\mu_k \) is a certainty index determined purely by the interaction graph
Decoupled Approximation to the Coupled DDM

- Decoupled approximation to $\epsilon(t)$

 \[\frac{d\epsilon(t)}{dt} = -L\epsilon(t)dt + (L_n - \frac{1}{n}\mathbf{1}_n\mathbf{1}_n^T)dw(t), \epsilon(0) = 0_n \]

- $\epsilon_k(t)$ is a continuous Gaussian process and converges to $\mathcal{N}(0, 1/\mu_k)$
- μ_k is a measure of node certainty

- Approximate $\epsilon_k(t)$ by the O-U process

 \[\frac{d\epsilon_k(t)}{dt} = \frac{\mu_k}{2} \epsilon_k(t)dt + dw(t), \epsilon_k(0) = 0 \]

Efficiency of approximation

\[\lim_{t \to +\infty} \text{corr}(\epsilon_k(t), \epsilon_k(t)) = \mu_k \sum_{p=1}^{n} \frac{1}{2 \text{eig}_p(L + \text{diag}(\mu/2))} (\text{eig}_p)^2 - \frac{2}{n} \]

- Approximate evidence at node k: $x_{\text{cen}}(t) + \epsilon_k(t)$
- Decision time and Error Rate: need to solve n elliptic PDEs with two variables opposed to a PDE with n variables earlier

Numerical Illustration: Decoupled Approximation

The reduced DDM approximates the coupled DDM well.
Further Approximations

- bound the contribution by the O-U process $\varepsilon_k(t)$
- for sufficiently large K, with high probability
 \[\max_{t \in [0,T]} |\varepsilon_k(t)| \leq \frac{K}{\sqrt{4K}} \]
- effective threshold for the centralized DDM belongs to the set $(\eta - K/\sqrt{4K}, \eta + K/\sqrt{4K})$

Expected decision time

Bounds on Decision Time and Error Rates

\[\frac{\eta_k - K}{\beta \sqrt{\gamma}} \tanh \left(\beta n (\eta_k - K) \right) \leq ET_k \leq \frac{\eta_k + K}{\beta \sqrt{\gamma}} \tanh \left(\beta n (\eta_k + K) \right) \]
\[\frac{1}{1 + \exp \left(2\beta n (\eta_k + \frac{K}{\sqrt{4K}}) \right)} \leq ER_k \leq \frac{1}{1 + \exp \left(2\beta n (\eta_k - \frac{K}{\sqrt{4K}}) \right)} \]

Empirical Estimates for Threshold Correction

- coupled DDM approximated well by centralized DDM with a modified threshold
- effective threshold at node $k = \eta - \frac{K(\beta)}{\sqrt{4K}}$, $K(\beta) = \frac{e^{\frac{-1}{\sqrt{\gamma}}}}{\sqrt{\pi(1+\beta/3)}}$

Numerical Illustration: Threshold Corrected Centralized DDM

Centralized DDM with corrected thresholds approximates the coupled DDM well.
Information Centrality and Node Certainty

Information Centrality

The inverse of the mean of the effective path lengths from the given node to every other node in the interaction graph.

- It is known that
 \[
 \frac{1}{\mu_k} = \frac{\sigma^2}{2} \left(\frac{1}{\text{Kirchoff Index}(k)} - \frac{K_f}{\sigma^2} \right)
 \]

- Node centrality is equivalent to information centrality

Speed-Accuracy Trade-off

Wald Criterion:
- Choose threshold to achieve a desired accuracy (error rate)
- More centrally located node has smaller threshold
- More centrally located node has smaller expected decision time

Bayes Risk Criterion:
- Choose threshold to minimize Bayes risk
 \[
 \text{BR}_k = c\text{ER}_k + ET_k
 \]
- More centrally located node has smaller threshold
- Each node has the same expected decision time and error rate

Similar story for reward-rate criterion

Conclusions and Future Directions

Conclusions:
- towards rigorous modeling and analysis of socio-cognitive networks
- coupled DDM as model for social decision-making in 2-AC tasks
- a computationally tractable decoupled approximation to coupled DDM
- further approximation by the threshold corrected centralized DDM
- ideas extend to multi-alternative choice tasks and 2-AC tasks with recency effect

Future Directions:
- relaxing the continuous communication assumption
- heterogeneous individuals
- general decision-making tasks, e.g., multi-armed bandits
- experiments with fish schools and humans