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Matrix Outer-Product Decomposition Method
for Blind Multiple Channel Identification

Zhi Ding, Senior Member, IEEE

Abstract—Blind channel identification and equalization have
recently attracted a great deal of attention due to their potential
application in mobile communications and digital TV systems. In
this paper, we present a new algorithm that utilizes second-order
statistics for multichannel parameter estimation. The algorithm
is simple and relies on an outer-product decomposition. Its im-
plementation requires no adjustment for single- or multiple-user
systems. This new algorithm can be viewed as a generalization of
a recently proposed linear prediction algorithm. It is capable of
generating more accurate channel estimates and is more robust
to overmodeling errors in channel order estimate. The superior
performance of this new algorithm is demonstrated through
simulation examples.

I. INTRODUCTION

I N POPULAR data communication systems such as the
digital mobile systems and digital television systems, data

signals are often transmitted through unknown channels that
may introduce severe linear distortion. In order to improve
system performance, it is important for receivers to remove
channel distortions through equalization or sequence estima-
tion. Because the available input training signal may be too
short or even nonexistent for channel identification, blind
channel identification can play useful roles in these systems.

Blind channel identification relies solely on the received
channel output signal and somea priori statistical knowledge
(such as whiteness) of the original channel input signal. While
blind equalization (deconvolution) is often investigated to
directly identify the effective channel inverse, the possible
existence of frequency nulls can result in undesirable noise
enhancement for linear filter equalizers. One different path,
which we adopt here, is to first identify the unknown system
and then design receiver equalizers or sequence estimators
accordingly to recover the original channel input.

Traditionally, blind channel identification and equalization
are based on exploiting higher order statistics of baud-rate
sampled channel output signals. The algorithm presented by
Tonget al. [1], which is known as the TXK algorithm, is one of
the first subspace based methods exploiting only second-order
statistics for fractionally sampled channel identification. Using
the subchannel representation of the fractionally sampled
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QAM channels, Xuet al. [2] derived a subchannel matching
algorithm that also relies on the subspace separability of
signal and noise. Another elegant subspace method for channel
estimation similar to the well-known MUSIC algorithm in
array application was presented by Moulineset al. [3]. Since
subspace separability requires the knowledge of channel model
orders, subspace methods tend to be sensitive to errors in
channel order estimates.

A linear prediction-based approach was first presented by
Slock [4], [5] and was later generalized and refined by Abe-
Meriam et al. [6]. Unlike many of the subspace methods
that tend to be very unreliable when the channel order is
over-estimated, the linear prediction approach is found to be
rather robust. However, as will become clear in this paper, the
linear prediction algorithm (LPA) tends to discard some useful
second-order statistical information of the channel output. In
essence, the linear prediction algorithm is based only on the
estimate of the first few columns of the channel parameter
outer-product matrix, which depend critically on the leading
coefficients of the unknown multi-channel impulse responses.
Hence, the estimation error can be very large if the channel has
a weak precursor impulse response. In order to derive a more
robust algorithm, the focus of this paper is to attempt to derive
the estimate based on a full outer-product decomposition of
the channel parameter vector. Our results will show that based
on the complete outer-product decomposition, performance of
channel identification can be significantly improved.

This paper is organized as follows. In Section II, we
first describe the statistical model of the blind multichan-
nel identification problem. Spectral diversities achieved from
oversampled channel output and multiple sensors (antennas)
are considered in the multiuser channel estimation prob-
lem. We show that rational fractional sampling achieves an
equivalent multiuser system. In Section III, a new outer-
product decomposition method is developed. Its practical
implementation is fully described. In Section IV, we consider
the special case of single-user channel identification and
the subsequent simplification of the new algorithm. Finally,
simulation results are provided in Section V to illustrate the
performance improvement of the new method.

II. CHANNEL IDENTIFICATION BASED

ON SECOND-ORDER STATISTICS

A. Problem Formulation

A multiuser quadrature amplitude modulation (QAM) data
communication system can be described using a baseband rep-
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resentation. Assuming that the user channels are all linear
and causal with impulse response , the
received output signal can be written as

(2.1)

where is the symbol baud period, and is the input signal
set of user The channel input sequences are typically
independent for different users and are i.i.d as well. The noise

is stationary, white, and independent of channel input
sequences but not necessarily Gaussian.

Note that is a “composite” channel impulse response
that includes transmitter and receiver filters as well as the
physical channel response. In a typical multiuser system,
multiple channels of observations will be available from
multiple sensors. If subchannels (sensors or antennas) exist,
then and are all vectors.

In blind channel identification, the objective is to identify
the unknown channel responses based on the channel
output only. Only the statistical knowledge of the channel
input sequences is known but not their actual values. In blind
equalization, the desired objective is to recover each channel
input without knowing channel responses.

The problem of single-user and single channel
blind identification and equalization has received

a great deal of attention recently. Various methods utilizing
higher order statistics have been proposed in the literature in
works such as [7]–[14] and references therein.

B. Channel Diversity from Oversampling

It has been shown by Tonget al. [1] that blind channel
identification benefits from oversampling the channel outputs.
In fact, single channel identification based on second-order
statistics is possible only for oversampled channel output. This
essentially arises from the spectral diversity available when the
channel has bandwidth higher than [15].

Let the sampling interval be , where is an integer.
The oversampled discrete signals and responses are

and

(2.2)

each of which is a vector. The channel output samples
are hence

Suppose has joint finite support that spans
integer baud periods. Let be the number sampled

channel output to be collected in a block, and let superscript

represent matrix transpose. By defining notations

...

it is evident that

...
...

Now, form an block Toeplitz matrix with
trailing zeros in the first rows

...
...

...
...

...
...

...
...

(2.3)

Clearly, is the order of the dynamic FIR channels. There
are a total of unknown parameters to identify in
the blind identification of FIR channels. With these notations,
a sampled channel output signal vector of length can be
written as

...

...

(2.4)

C. Fractional Oversampling

Historically, there has been a belief that a noninteger
oversampling factor may be more beneficial. In fact, it is
heuristically plausible that an oversampling period of

in which is an integer will yield fewer nonzero
channel samples than using Hence, argument
persists that a rational oversampling factor may help reduce
the dimensionality of channel identification and simplify the
problem. Here, we show that, in fact, a noninteger fractional
sampling generates an equivalent multiuser system whose
dimensionality is not reduced and may be more difficult to
identify.
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Let , where and are co-prime integers. The
noiseless received signal becomes

By defining equivalent signal sequences

(2.5)

and equivalent subchannel responses

(2.6)

the received signal can be viewed as an output of user
channels

(2.7)

It is therefore clear that an user system sampled at interval
of is equivalent to an user system. We can thus
formulate the rationally sampled multiuser system accordingly.

Notice that all channel impulse responses are assumed to be
finite such that for Hence, for

and

(2.8)

There are a total of unknown parameters to
identify in For noninteger oversampling that generates an
equivalent user system, we have

where

(2.9)

Hence, the blind identification problem of the fractionally
sampled multiuser system can also be described by (2.4),
where is an block Toeplitz matrix.
The total number unknown parameters for identification is

It is therefore clear that the number of unknown parameters
for identification using noninteger fractional sampling is no
less than that using integer fractional sampling. We have
thus established that noninteger fractional sampling offers no
reduction in identification cost and in the cost of implementing
Viterbi algorithm.

If noninteger fractional sampling is utilized, it has been
shown in [1] and [5] that the sufficient and necessary iden-
tification condition for to be identifiable from second-
order statistics is that must be full rank. The necessary
dimensional condition for to be full rank requires that

(2.10)

i.e.,

(2.11)

Hence, unless is zero, which means that the sampled
channel is trivial and has no memory, the fractional sampling
must satisfy

This implication is simple: The number of equivalent multi-
channels must be no less than the number of equivalent
users This also shows that when a single user is present
for a single channel, any amount of oversampling will
satisfy the necessary dimensional condition.

Overall, the use of noninteger fractional sampling results in
an additional identification ambiguity in that channels can only
be identified subject to an constant unitary matrix,
as will be shown later. Our derivation clearly shows that there
is neither computational nor algorithmic advantage in the use
of noninteger fractional sampling.

D. Channel Identification

The additional channel zero condition for to be full rank
has been characterized in [5] and is not the focus of our work.
We shall assume from here on that has full column rank
and is identifiable. Moreover, we shall also assume, without
loss of generality, that the oversampling factor is an integer

while
Assume that both the channel input signal and channel noise

are white with zero mean. Let their respective covariance
matrix be

and

Based on (2.4), the channel output covariance matrix becomes

(2.12)

Our objective is to identify the channel from the second-
order statistics of the channel output signal given in
under the identifiability condition [1] that both and are
full rank. The use of second-order statistics for single user
blind channel identification was first exploited by
Tong et al. [1]. The basic concept hinges on the signal and
noise subspace separation through singular value decomposi-
tion (SVD) of the auto-covariance matrix

The sub-channel matching (SCM) method presented in [2]
and the subspace method of [3] can both be posed as a
minimum eigenvector problem under proper channel length
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constraints. The special block Toeplitz structure is utilized in
both algorithms. When the channel length is overestimated,
common zeros must be factorized out from the subchannel
estimates. As a result, both algorithms are very sensitive to
channel length mismatching.

A nonlinear maximum likelihood method was presented by
Hua [16] that utilized the SCM as the first step of a two-
step maximum likelihood (TSML) optimization method. Given
a good initial estimate from SCM, this TSML method was
shown to provide improved performance.

In [4] and [6], a linear prediction algorithm (LPA) was
presented for channel estimation. It is shown to be more
robust to overestimated channel length. Still, as will become
evident later in this paper, the LPA only uses part of the
overall information because the channel estimate is based
on the first columns of the estimated channel parameter
vector outer-product matrix. As a more robust and accurate
channel estimation algorithm, the outer-product decomposition
algorithm we propose will exploit second-order statistics more
effectively. In addition, unlike many existing works such as
the SCM and TSML, our method is virtually unchanged for
both single and multiuser systems, as for LPA [6].

III. A LGORITHM DEVELOPMENT

A. Outer-Product Construction

We will form an outer-product of the channel parameter
matrix

...
(3.1)

Our objective is to derive a method that would allow us to form
an outer-product of the channel parameter vectorbased on
the second-order channel output statistics.

First, assume that the channel order is known. Let a
block Hankel matrix be denoted as

...
...

...
...

...
...

(3.2)

Notice that the first rows of and are identical. Denote
superscript as conjugate transpose. It can be verified that

Fig. 1. Overall channel impulse responseh(t):

we have (3.3), shown at the bottom of the page, in which we
must recall that

If we define block matrices as

(3.4)

then

...
...

...
...

(3.5)

This is an Hermitian matrix. Now,
define a new matrix from the lower right block of as

...
...

...
... (3.6)

...
...

...
...

(3.3)
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We can form another Hermitian matrix from

...
...

...
...

...

Hence, matrix forms the outer-product of the channel
parameter matrix The singular value decomposition of this
outer-product matrix can be used to generate an estimate

where is an unitary matrix. Recall from [13] and [17]
that this memoryless ambiguity is intrinsic to the multiuser
blind identification problem and cannot be resolved unless
additional information is available. For signal recovery, if a
perfect multichannel equalizer is designed according to the
channel estimate , then the receiver outputs will be
memoryless combinations of the channel inputs and will
need to be separated, as discussed in works such as [17]. This
ambiguity would also add to the cost of channel identification
using noninteger fractional sampling.

B. Outer-Product Estimation

Based on the above derivation, the key step in the algorithm
is to obtain the matrix product that can be used to
define an estimate of the channel parameter vector outer-
product. Hence, the crucial step in our algorithm development
is to find an estimate of the matrix product from the
statistics of the channel output signal Since we focus
on the use of second-order statistics, our task is to find an
estimate of the matrix product given

Let

...
(3.7)

For notational convenience, define

(3.8)

The channel output covariance covariance matrix can be
written as

...
...

...
...

(3.9)

First, it is easy to verify that another block Hankel matrix
satisfies the relationship

...
...

...
...

(3.10)

In addition, it is also evident that

(3.11)

In order to estimate the product , it is important to note
that when has full column rank

(3.12)

Note that denotes the pseudo-inverse of
Recall that the sufficient and necessary identification condi-

tion for to be identifiable from second-order statistics is that
must be full rank [1], [5]. As a result, if the multichannel

system is identifiable from second-order statistics, the matrix
product can be estimated from

(3.13)

In many digital communication systems, is known, and
hence, we can obtain the estimate of via

(3.14)

Consequently, the channel impulse response matrixcan
be estimated from the singular value decomposition of the
estimate of outer-product matrix

SVD (3.15)

We thus name the method “outer-product decomposition algo-
rithm” (OPDA).

C. Practical Considerations and Implementation

Based on the algorithm derivations in the previous section,
we can summarize the algorithm into the following steps.

1) Given baud samples of the channel output data
, form the auto-correlation submatri-

ces

(3.16)

and form the estimate of the auto-covariance matrix

...
...

...
...

(3.17)

2) Estimate the channel order from by first applying
the MDL signal rank test [18] and then determine

signal rank



3058 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 45, NO. 12, DECEMBER 1997

Fig. 2. Normalized MSE of channel estimate given different SNR levels.

Fig. 3. Normalized MSE of channel estimate given different data lengths.

Fig. 4. Normalized MSE of channel estimate given channel length mismatch.
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Fig. 5. Rank dominance factor as a function of the channel length estimate.

and estimate the noise variance as the average of the
smallest eigenvalues

3) Based on the estimated channel order, form matrices

...
...

...
...

(3.18)

and

(3.19)

4) Find the channel impulse response matrixas the
eigenvectors corresponding to thelargest eigenvalues
of the matrix using standard algorithms for eigen-
decomposition or singular value decomposition [21].

D. Information for Order Estimation from Rank Dominance

When the channel order is underestimated or overestimated,
one immediate impact is the significant departure of from
the actual matrix product. Consequently, the outer-product
estimate tends to be perturbed away from a rank(domi-
nated) matrix. When the channel order is underestimated, the
mismodeling error tends to greatly reduce the rank dominance
of the largest eigenvectors. When the channel order is
overestimated, however, the additional noise intrusion in
and estimates, together with a higher dimensional ,
will also lessen the dominance of the channel parameter
vectors.

Based on these observations, OPDA may be further en-
hanced in the channel order estimation stage by checking
the rank dominance of the largest eigenvalue in for

different order estimate Define the dominance factor of
the outer-product estimate as

Trace
(3.20)

The dominance information of the first ranks of the outer-
product estimate can be used to assist in the estimation of
channel order by selecting that maximizes the dominance
function. It can be used to signal the reliability of the channel
identification results.

IV. OVERSAMPLED SINGLE USER CHANNEL IDENTIFICATION

A. Maximum Eigenvector Solution

For a single user whose channel output is oversampled by
an integer , the effective user is one , and the outer
product decomposition can be uniquely determined as is
ideally a rank one matrix. Hence, the channel impulse response
vector can be estimated via

(4.1)

In other words, is estimated as the maximum eigenvector of
the outer-product estimate. Although, theoretically, the outer-
product matrix is a rank one matrix, the practical estimate is
likely to have higher dimensions. This explains why we would
prefer to use eigendecomposition for channel estimate. Alter-
natively, QR decomposition [21] may be a faster approach to
channel estimation. An even faster but less accurate method is
to postmultiply with a random vector.

Notice that OPDA requires two singular value (or eigen-
value) decompositions in its implementation. Its order of
complexity is therefore similar to that of the linear prediction
algorithm (LPA) presented by Meriamet al. [6], the TXK
method [1], and the subchannel matching method [2]. How-
ever, LPA estimates the channel only from the firstcolumns
of the outer-product matrix. If the channel impulse response
has weak precursor samples such that its leading coefficients
are small, then LPA is likely to be highly inaccurate since
noise and numerical error will likely dominate the first few
columns of Therefore, OPDA is expected to provide
more accurate result than LPA.

B. Simplified Outer-Product Decomposition
Algorithm (SOPDA)

For , the last step of OPDA can also be simplified by
estimating as the first column of the faster QR decompo-
sition of In fact, if the receiver computation power
is severely limited in practical systems such that it becomes
impossible to perform the entire four steps of OPDA, a less
accurate and simpler method can be implemented. Here, we
summarize a simplified OPDA algorithm.

1) Complete step 1) of OPDA by selecting a large enough
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Fig. 6. Fifty independent channel estimates.

2) Form a matrix

...
...

...
...

(4.2)

3) Form

(4.3)

and
4) Estimate channel as the first column of the matrix

in the QR decomposition [21] of

V. SIMULATION RESULTS

We now present simulation results to illustrate the channel
identification performance of the proposed OPDA. Our exper-
iments are based on a multipath channel model with a single
sensor, i.e., We consider a raised-cosine pulse
limited in with roll-off factor 0.10 and a two-ray multipath
channel

The overall channel impulse response

is shown in Fig. 1. A single user is assumed. The data input
signal is i.i.d. BPSK, and the oversampling factor is In
all our simulations, is chosen to be twice as long as

In the first set of simulation tests, we compare the two
methods OPDA and LPA based on 100 and 200 bauds of
channel output samples. The channel order is unknown and
is estimated using the MDL criterion. The normalized mean
square error (MSE) is defined as

The channel estimate under different channel SNR levels is
shown in Fig. 2. It is apparent from the simulation results that
OPDA outperforms LPA in most cases. When the SNR is very

low, the two algorithms are comparable and perform equally
poorly.

To show the effect of data length on the accuracy of
channel estimation, we implement OPDA and LPA for several
different data lengths. The resulting normalized MSE is shown
in Fig. 3. Once again, the results show that OPDA and
LPA are equally ineffective when SNR is low. The primary
reason is the inaccurate channel order estimation using MDL.
However, when the SNR is higher, the channel order estimates
are more reliable, and subsequently, the OPDA outperforms
LPA significantly. The performance improvement is more
pronounced when a large amount of data are available for
statistical approximation.

It is apparent from the estimation results that this particular
channel is difficult to estimate. The main difficulty lies in
the estimation of channel length. Since the channel impulse
response has very small tails on both sides, accurate length
determination based on noisy and short data collection is very
hard to obtain. Since LPA was presented as an algorithm that is
less sensitive to length mismatching, we would like to test the
comparative sensitivity of the two algorithms when channel
mismatching is present; see Fig. 4. Fixing SNR dB,
we manually varied the channel length estimate from 2–10.
Notice from Fig. 1 that the true channel length is The
results clearly show that while LPA is less sensitive to errors
in channel order estimate, its performance is generally much
worse compared with that of OPDA. When the channel order
estimate deviates modestly from the true channel order, OPDA
generates a much smaller normalized MSE.

Fig. 5 illustrates the dominance factor as a function of
various channel length estimates. It is apparent that when the
order estimate is close to the real channel order, the dominance
factor is near its peak. This is a strong indication that when
computation power permits, the dominance factor can be used
to assist in channel order estimation.

Finally, we compare a group of typical impulse responses
estimated from 50 independent trials of the OPDA and LPA
under 20 dB SNR and data length of Assuming
the channel length is correctly estimated, the estimated impulse
responses are shown in Fig. 6.

VI. CONCLUSIONS

We present a new robust and accurate blind channel iden-
tification algorithm OPDA based on matrix outer-product
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decomposition. This new algorithm can be viewed as a gen-
eralized method of the recently proposed linear prediction
algorithm (LPA). The new OPDA is capable of generating
superior identification results. Its application to multiuser and
rationally oversampled systems are simple and direct. For
single-user channel identification, its implementation can also
be approximated using far less computation power in exchange
for less accurate estimates. Furthermore, the implementation
of OPDA also provides a rank dominance factor test that
can either be used as an indication of output reliability or
as additional information for more accurate estimation of the
unknown channel order.
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