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Abstract 
 

Eliminating derivative causality by inserting 
parasitic elements produces modified systems that are 
two-time-scale systems. The computational accuracy 
and simulation efficiency of the solution of the modified 
system are strongly influenced by the choice of the 
parasitic element parameters. This paper 
demonstrates how the singular perturbation method 
can be used to gain insight about the behavior of the 
two-time-scale modified system. A choice for the 
perturbation parameter ε  that helps to reveal the 
time-scale properties of the modified system is given; 
a suggested singular perturbation standard form is 
shown, and an important characterization of the fast 
sub-system model is derived. 
 
INTODUCTION 

Bond graph models with derivative causality 
produce mathematical models with algebraically-
coupled derivative terms in the system equations. 
(See, for example, Rosenberg 1971; Karnopp et al., 
2000, ch.5.) Normally it is preferable to eliminate the 
derivative causality at the model level, in order to 
enable an algorithmic derivation of explicit state-space 
equations. This approach provides the user with an 
easy-to-interpret formulation and enables him or her to 
apply the many numerical solution tools available for 
such models. One way to achieve this goal is to 
reduce the storage field associated with the derivative 
causality to an equivalent form having integral 
causality. If the field is linear but has more than two or 
three elements, the algebra may be unwieldy. If the 
field is nonlinear, then the algebraic manipulation may 
be very difficult; in fact, it may not be possible to 
develop an equivalent closed-form expression. An 
alternative approach that applies generally is that of 
inserting parasitic elements to eliminate the derivative 
causality effect. Karnopp and Margolis (1979) 
demonstrated a method to eliminate derivative 
causality in bond graph models and applied it to the 

case of planar mechanisms. They broke the derivative 
causality (or algebraic) coupling between the coupled 
energy-storage elements by inserting parasitic 
compliance elements into the original model. 
Consequently, a modified model that approximates the 
original model was produced. This modified model is 
intended to be a two-time-scale (stiff) model, so that 
the dynamic behavior of the original state variables 
would not be greatly affected. Subsequently Zeid 
generalized their approach (1988). It is his results that 
are developed further in this work. Figure 1 shows a 
bond graph summary for this approach that was given 
by Zeid (1988). The inserted (so-called "parasitic") 
elements relieve the derivative causality constraint; 
two state variables are added to the original system 
model for each such intervention. The choice of values 
for the parasitic elements strongly influences both 
computational efficiency and approximation accuracy 
of the numerical solution. In fact, approximation 
accuracy can be traded off with the system stiffness. 
There are some important aspects of the modified two-
time-scale system that have not been investigated in 
detail. Edstrom (1999) explored some of aspects for 
the simpler approach of inserting a parasitic resistance 
only. Our work investigates model properties for the 
more general case of inserting a pair of parasitic 
elements of the nature shown in Figure 1. 
  
TWO-TIME-SCALE SYSTEMS AND THE 
SINGULAR PERTURBATION METHOD 

It was stated above that the "Karnopp-
Margolis-Zeid" algorithm for eliminating derivative 
causality produces a modified model that is intended 
to be a two-time-scale (stiff) model. The singular 
perturbation (SP) method has proved to be very useful 
in analysis and design of multi-time-scale dynamic 
systems (Kokotovic et al., 1986). The SP method 
decomposes a two-time-scale system into slow and 
fast sub-systems by assuming a small singular 
perturbation parameter (ε ) that can meaningfully 
approach zero. Tools to analyze the slow and fast sub-
system models and their interrelationship are 
available. There are two major issues related to the 
use of the SP method. The first issue is the 
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determination of an appropriate perturbation 
parameter (ε ). The second issue is the transformation 
of a singularly perturbed model to a standard singular 
perturbation form.  Solving the first issue is a pre-
requisite for solving the second one. 

Singular perturbation theory has undergone 
significant development and has many useful 
applications. However, theory users have a major 
concern. The time-scale separation is not always 
easily detectable. In many situations a good 
understanding of the physical process is needed in 
order to detect the separation and to choose a suitable 
perturbation parameter (or parameters) (Kokotovic et 
al., 1986). This task becomes more difficult as system 
complexity increases. It should be noted that the 
perturbation parameter of a two-time-scale system is 
not necessarily unique; there might be more than one 
possible appropriate perturbation parameter. 

The general form of the standard singular 
perturbation model is 

,,0)0(),,,,( nRxxtxtxfx ∈== εη&  (1) 

mRttxg ∈== ηηηεηηε ,0)0(),,,,(&  (2) 

where ε  is a small positive scalar; a super-dot 
denotes a time derivative; and f  and g  are functions 
assumed to be sufficiently continuously differentiable. 
This model is the most commonly studied SP model in 
the literature and the first one to be used in control and 
systems theory (Kokotovic et al., 1986). Consequently, 
numerous analysis and design tools are available for 
two-time- scale systems that are cast in the standard 
form of Eqs. (1) and (2). In addition, there are 
procedures to transform a two-time-scale model from a 
non-standard form to the standard form. Expressing a 
model in the standard form does not change its time-
scale properties, but it does reveal them more clearly. 

Zeid (1988) suggested that the modified 
system that results from removing derivative causality 
by inserting parasitic elements could be transformed to 
a standard singular perturbation form. However, he did 
not develop a method to transform the system and 
hence he made no attempt to use singular perturbation 
analysis tools. The objectives of this work are 
(1) to show a choice for the perturbation parameter 

(ε ) that reveals the two-time-scale properties of 
the modified system, and 

(2) to show how the general procedures outlined in 
Kokotovic et al. (1986) for transforming singularly 
perturbed models to the standard form can be 
used to obtain a preferred standard singular 
perturbation form (PSSPF) and to gain insight into 
the problem. 

SUMMARY OF THE TRANSFORMATION 
PROCEDURE 

The transformation procedure can be 
summarized as follows: 
(1) Put the singularly perturbed system in the form 

νενε *)(F=& ,  mnR +∈ν  (3) 
where  n  is the order of the slow sub-system 
and m  is the order of the fast sub-system. Let 

)(1*0)( εεε FFF += .   (4) 

For two or more time-scales to appear the 
following condition must be satisfied: 

0)0(det =F . 
(2) To select a fast-variable vector η  choose m 

linearly independent vectors in mnR +  

orthogonal to the null-space Ν  of 0F  and 

arrange them as the rows of an )( mnxm +  

matrix Q . Note that N of 0F  is called 

sometimes right null space of 0F  and is defined 

as { }00:)0( =≡Ν yFyF  

(3) To select a slow-variable vector x  find P  (the 

left null space of 0F ) such that 

00 =PF  

 The change of coordinates 









===

Q
P

TQPx ;, νην  (5) 

will transform the system into the standard form 
ηεε )(12)(11 AxAx +=&   (6) 

ηεεεηε )()( 2221 AxA +=&   (7) 

provided the transformation matrix T  is nonsingular. 

In addition, )0(11A  contains the n  slow eigenvalues 

and )0(22A  contains the m  fast eigenvalues. 

 
APPLYING THE TRANSFORMATION 
PROCEDURE 

To illustrate how to apply the transformation 
procedure, we use the electrical circuit example shown 
in Figure 2 (a). The corresponding bond graph model 
of part (b) has derivative causality. Fig. 3 shows a 
schematic diagram and a bond graph for the model 
after inserting the parasitic elements to eliminate the 
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derivative causality. Following the SCAP (Rosenberg 
et al. 1983), the homogeneous original system 
equations are 


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 +−=

dt
dp
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and the homogeneous modified system equations are 
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Next, we will follow the transformation procedure to 
convert the modified system to the standard form. 

First, the modified system equations (10) - (12) 
can be expressed in the matrix form 
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At this point we take 
R
1

=ε  and take CR2=α  as a 

constant. That is, we convert the parasitic parameters 
R and C to the SP parameters e and a. It is also 
useful to scale the variable q  as Rq , so as to put the 
system of Eq. (13) in the form of Eq. (3). The 
substitutions and scaling produce 
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Comparing Eqs. (3) and (4) with Eq. (14), we see that 
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Next, to select the fast variables, find the right null 

space ( y ) of 0F . Calculating y  from 00 =yF  leads 

to 
















=

0

1
1
2
1

y
I

mI
y

y , where 1y  is an arbitrary constant. 

The next step is to choose two linearly independent 
vectors that are orthogonal to y . Clearly, these 
vectors are not unique. We suggest that the two 
orthogonal vectors be 































−

0

2
1

1

I

I
m

  and    

















1
0

0

.   (16) 

This choice is recommended because the two fast 
variables are physically meaningful, Omara (2000). 
The two fast variables are 


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The first fast variable can be understood as the error 
introduced into Eq. (9) of the original system model 
due to inserting the parasitic elements. The second 
fast variable ( Rq ) is a scaling of the charge of the 

parasitic capacitance; basically, it is the time integral of 
the first fast variable. 
Third, select the slow variable. Find P  (the left null 

space of 0F ) such that 00 =PF . This will produce 

[ ]011 mPPP =    (18) 
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where  1P  is an arbitrary constant. We chose it equal 
to one; so that 

[ ]01 mP =    (19) 
With this choice, the slow variable becomes 

21 mpp +     (20) 
This slow variable has physical meaning. If we had 
algebraically manipulated the original system 
equations (8) and (9) to formulate them in explicit 
state-space form, this variable would have emerged. 
With P  and Q  available, the transformation matrix T  

can be written as 
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Consequently, the system matrix of the transformed 
system is 
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Therefore, this system can be written in the standard 
singular perturbation form of Eqs. (6) and (7) with  

21 mppx += , 
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The eigenvalue of the original system is equal to that 
implied by 11A , as expected. Furthermore, )0(22A  

implies the eigenvalues of the fast sub-system. 
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Using equation (22), the eigenvalues (λ ) of the fast 
sub-system can be calculated from  
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Equation (23) is the characteristic equation of a series 

R-L-C circuit, with the term 



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 as the 

equivalent inductance of L. This result shows that the 
as ε  tends to zero, the fast sub-system can be 
accurately approximated by the parasitic capacitance, 
the parasitic resistance, and the equivalent of the I-
field at the port where the parasitic elements were 
inserted. Figure 4 shows a model for the fast sub-
system as ε  tends to zero, where I-eq refers to the 
equivalent of the I-field. The result applies to nonlinear 
systems also, Omara (2000). Our choices placed the 
eigenvalues of the fast sub-system at a user specified 
location; more details will be forthcoming in a future 
publication. 
 
 THE TRANSFORMATION MATRIX 

Assume that a linear system includes a 
derivative-causality energy-storage field together with 
other energy-storage elements that have integral 
causality. Further, assume that the coupled field 
includes only one dependent energy-storing element 
and that the algebraic equation obtained from the 
SCAP for its elements is in the general form of Eq. 
(24) below. 

iididd XSJXS *** =   (24) 

Note that iX  is the independent energy variables 

vector, dX  is the dependent energy variables vector, 

and iS  and dS  are inverse inertia matrices. Assume 

that the state vector of the energy storing elements 
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that are not among the coupled field elements is rX  
and its dimension is r . One way to recognize the 
elements of the coupled field is by the appearance of 
their parameters in diJ . Assume that the state vector 

of the corresponding modified explicit system is 
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, where q  is the state of the inserted 

parasitic capacitance. The transformation matrix that 
converts the modified system to the preferred standard 
singular perturbation form (PSSPF), as illustrated in 
the circuit example is 
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where rI  is a unit matrix whose dimension is that of 

rX  and iI  is a unit matrix whose dimension is that of 

iX , Omara (2000). 

 
It should be noted that one does not have to 

formulate the original system equations to be able to 
formulate the modified system and transform it to the 
PSSPF. To obtain the transformation matrix given in 
Eq. (25) one needs to know idJ , iS , and dS . The 

matrix diJ  that relates the flow variables of the 

dependent and independent energy-storage elements 
can be obtained readily from the original system bond 
graph, and iS  and dS  are inertia matrices that are 

part of the original system model. It can be shown that 
the transformation matrix defined above is always non-
singular, Omara (2000).  It can be used to transform 
the modified system to the standard singular 
perturbation form readily without the need for 
experience with a transformation procedure.  
Consequently, the transformed modified system can 
benefit from several tools that are available for 
systems in the standard singular perturbation form. 
 
 
 
 

CONCLUSIONS 
This paper showed that a bond graph model with 
derivative causality can be converted to a standard 
singularly perturbed form by the use of an appropriate 
transformation matrix. The transformation procedure 
was illustrated, although the choice of values for key 
parameter was not motivated in any systematic way. 
Those details will be the subject of additional reporting 
in subsequent work. 
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Figure 1. Summary of the modification algorithm under investigation. 
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Figure 2.  Electrical circuit diagram and bond graph models. 
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 (a) (b) 

Figure 3.  Circuit diagram and bond graph for the modified model of Figure 2. 

 

 

 

 

   

 

 

 

Figure 4.  A bond graph model for the fast sub-system as ε  tends to zero. 
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