Providing Source Privacy in Mobile Ad Hoc Networks

Jian Ren Yun Li Tongtong Li

Abstract

Communication privacy is becoming an essential security requirement for mission critical communications and communication infrastructure protection. This is especially true for mobile ad hoc networks (MANETS) due to mobility of the communication nodes and the nature of wireless communications. Existing research in privacy-preserving communications can largely be divided into two categories: cryptosystem-based techniques and broadcasting-based techniques. The cryptosystem-based techniques include mix-based systems and secure multiparty computation-based systems, originating from mixnet and DC-net respectively. All mix-based approaches require a trusted third party to provide the mix and are not quite feasible in MANET. However, DC-net based approaches suffer from transmission collision problem that cannot be easily resolved practically. Broadcasting based schemes provide communication privacy by mixing the real messages with dummy packets so that it is infeasible for the adversaries to identify the real packets and track the message source. However, the transmission of dummy messages not only increases the energy consumption significantly, but also increases the network collisions and decreases the packet delivery ratio. In this paper, we first propose a novel unconditionally secure source anonymous message authentication scheme (SAMAS) that enables messages to be released without relying on any trusted third parties. While providing source privacy, the proposed scheme can also provide message content authenticity. We then propose a novel communication protocol for MANET that can ensure communication privacy of both communication parties and their end-to-end routing. The proposed protocol can be used for critical infrastructure protection and secure file sharing. The security analysis demonstrates that the proposed protocol is secure against various attacks. The theoretical analysis and simulation show that the proposed scheme is efficient and can ensure high message delivery ratio.

Index Terms

Communication anonymity, unconditional security, source privacy, recipient privacy, location privacy, content authenticity, wireless ad hoc network

1. Introduction

Wireless ad hoc networks are increasingly being used for military communications and dissemination of critical information. While end-to-end encryption can protect the communication content from adversarial access and manipulation, it does not conceal their location and the routing information. Without privacy protection, adversaries can easily learn the identities of the communication parties and the relevant information that two users are communicating. Adversaries can also easily overhear all the messages, passively eavesdrop on communications and perform traffic analysis, routing monitoring and denial-of-service attacks.

For mission critical applications, communication privacy is no longer a feature or a service, but an essential security requirement. As an example, in tactical military communication networks, an abrupt change in traffic pattern or volume may indicate some forthcoming activities. The exposure of such information could be extremely dangerous in that adversaries can easily identify critical network nodes and then launch direct denial-of-service attacks on them. Communication privacy is also an indispensable security requirement for applications such as e-voting, e-cash and so on.

Even for our daily life, lacking of anonymity can result in privacy violation of the regular citizen. For example, the adversaries can track your on-line orders, the web sites that you access, the doctors that you visit and many more.

In the past two decades, originated largely from Chaum’s mixnet [1] and DC-net [2], a number of privacy-preserving communication protocols have been proposed, including for example, onion routing [3], K-anonymous message transmission [4], Web MIXes [5], Mixminion [6], Mixing email [7], Mixmaster Protocol [8], Crowds [9] and Buses seat allocation [10], to name a few. The mixnet family protocols use a
set of “mix” servers that mix the received packets to make the communication sources (including the sender and the recipient) ambiguous. They rely on the statistical properties of background traffic that is also referred to as the cover traffic to achieve the desired source privacy. The DC-net family protocols [2], [4], [11], [12] on the other hand, utilize secure multiparty computation techniques. They provide provable source privacy without relying on trusted third parties. However, to broadcast a message, each party of the group that the message sender hides, called the set of ambiguity (SoA), needs to choose a random position. Even if all parties are honest, there are no effective non-interactive means that can enable players to select distinct message positions. This means that multiple parties will transmit messages in the same slot. This is called the transmission collision problem. There is no existing practical solution to solve this problem [12].

As the computing, communicating, and cryptographic techniques progress rapidly, increasing emphasis has been placed on developing new efficient and secure anonymous communication schemes and network protocols without relying on trusted third parties and free of collision.

In this paper, we first propose a novel unconditionally secure source anonymous message authentication scheme (SAMAS) scheme that enables messages to be released without relying on any trusted third parties. While providing source privacy, the proposed scheme can also provide message content authenticity. We then propose a novel communication protocol for MANET that can ensure communication privacy of the two communication parties and their end-to-end communications.

In the proposed protocol, the participants are referred as the nodes and are organized into multiple MANETs. The nodes are further classified into normal nodes and super nodes. A normal node is a network node that can only communicate with the nodes in the local MANET. A super node can be a normal node that can also provide message forwarding services to the other MANETs. It can also be a special node dedicated to providing message forwarding services to the other MANETs. Each MANET should have many normal nodes and multiple super nodes. The proposed network protocol can be used for critical information distribution, infrastructure protection and secure file sharing. The security analysis demonstrates that the proposed protocol is secure against various attacks. The theoretical analysis and simulation show that the proposed scheme is efficient and can ensure high message delivery ratio.

The rest of this paper is organized as follows. In Section 2, the terminology, assumptions and the previous related works are briefly reviewed. The proposed unconditionally secure source anonymous message authentication scheme (SAMAS) and the security analysis are described in Section 3. In Section 4, we propose an anonymous communication protocol in detail along with security analysis and simulation results in Section V. Finally, Section 6 concludes this paper.

2. Terminology and Preliminary

In this section, we will briefly describe the terminology defined in previous research. Then we will introduce some cryptographic tools that will be used in this paper. Finally, we will present a brief overview of the related works in this area.

2.1. Terminology

Privacy is sometimes referred as anonymity. Communication anonymity in information management has been discussed in a number of previous works [1], [2], [9], [13]–[15]. It generally refers to the state of being not identifiable within a set of subjects. This set is called the set of ambiguity (SoA). Three types of anonymity were defined in [13]: sender anonymity, recipient anonymity and relationship anonymity. Sender anonymity means that a particular message is not linkable to any sender and no message if linkable to a particular sender. Recipient anonymity similarly means that a message cannot be linked to any recipient and that no message is linkable to a recipient. Relationship anonymity means that the sender and the recipient are unlinkable. In other words, sender and recipient cannot be identified as communicating with each other, though it may be clear they are participating in some communications. Relationship anonymity is a weaker property than each of sender anonymity and recipient anonymity. The above anonymities are also referred to as the full anonymities, since they guarantee that an adversary cannot infer anything about the sender, the recipient, or the communication relationship from a transmitted message.

We will start with the definition of unconditionally secure source anonymous message authentication scheme (SAMAS).

Definition 1 (SAMAS). An SDAMAS consists of the following two algorithms:

- **generate** \((m, y_1, y_2, \cdots, y_n)\): Given a message \(m\) and the public keys \(y_1, y_2, \cdots, y_n\) of the set of ambiguity (SoA) \(S = \{A_1, A_2, \cdots, A_n\}\), the actual message sender \(A_t, 1 \leq t \leq n\), produces an
anonymous message $S(m)$ using her own private key x.

- verify $S(m)$: Given a message m and an anonymous message $S(m)$, which includes the public keys of all members in the SoA, a verifier can determine whether $S(m)$ is generated by a member in the SoA.

The security requirements for SAMAS include:

- Sender ambiguity: The probability that a verifier successfully determines the real sender of the anonymous message is exactly $1/n$, where n is the total number of SoA.
- Unforgeability: An anonymous message scheme is unforgeable if no adversary, given the public keys of all members of the SoA and the anonymous messages m_1, m_2, \ldots, m_l adaptively chosen by the adversary, can produce in polynomial time a new valid anonymous message with non-negligible probability.

In this paper, the user ID and user public key will be used interchangeably without making any distinguish.

2.2. Modified ElGamal Signature Scheme (MES)

Definition 2 (MES). The modified ElGamal signature scheme [16] consists of the following three algorithms:

- **Key generation algorithm:** Let p be a large prime, g be a generator of \mathbb{Z}_p^*. Both p and g are made public. For a random private key $x \in \mathbb{Z}_p^*$, the public key y is computed from $y = g^x \mod p$.

- **Signature algorithm:** The MES can also have many variants [17], [18]. For the purpose of efficiency, we will describe the variant, called optimal scheme. To sign a message m, one chooses a random $k \in \mathbb{Z}_p^*$, then computes the exponentiation $r = g^k \mod p$ and solves s from

$$s = rxh(m, r) + k \mod (p - 1),$$

where h is a one-way hash function. The signature of message m is defined as the pair (r, s).

- **Verification algorithm:** The verifer checks whether the signature equation $g^s = ry^{rh(m, r)} \mod p$. If the equality holds true, then the verifier accepts the signature and rejects otherwise.

2.3. Previous Work

The existing anonymous communication protocols are largely stemmed from either mixnet [1] or DC-net [2]. A mixnet provides anonymity via packet re-shuffling through (at least one trusted) “mix”. In a mixnet, a sender encrypts an outgoing message and the ID of recipient using the public key of the mix. The mix accumulates a batch of encrypted messages, decrypts and reorders these messages, and forwards them to the recipients. An eavesdropper cannot link a decrypted output message with any particular (encrypted) input message. The mixnet thus protects the secrecy of users’ communication relationships. Recently, Möller presented a secure public-key encryption algorithm for mixnet [19]. This algorithm has been adopted by Mixminion [6]. However, since mixnet-like protocols rely on the statistical properties of background traffic, they cannot provide provable anonymity.

DC-net [2], [15] is an anonymous multiparty computation amongst a set of participants, some pairs of which share secret keys. DC-net provides perfect (information theoretic) sender anonymity without requiring trusted servers. In a DC-net, users send encrypted broadcasts to the entire group, thus achieving receiver anonymity. However, all members of the group are made aware of when a message is sent, so DC-net does not have the same level of sender-receiver anonymity. Also, in DC-net, only one user can send at a time, so it takes additional bandwidth to handle collisions and contention. Lastly, a DC-net participant fixes its anonymity vs. bandwidth trade off when joining the system, and there are no provisions to rescale that trade off when others join the system.

Crowds [9] extends the idea of anonymizer and is designed for anonymous web browsing. However, Crowds only provides sender anonymity. It does not hide the receivers and the packet content from the nodes en route. Hordes [20] builds on the Crowds. It uses multicast services and provides only sender anonymity. The k-anonymous communication protocol introduced in [21] can provide both sender and recipient anonymity, however, the initialization and key chain distribution are quite complex. The communication overhead is also high.

Recently, message sender anonymity based on ring signatures was introduced [22]. This approach can enable message sender to generate source anonymous message signature with contents authenticity assurance, while hiding the real identity of the message sender. The major idea is that the message sender (say Alice) randomly selects n ring members as the SoA on her own without awareness of these members. To generate a ring signature, for each member in the ring other than the actual sender (Alice), Alice randomly selects an input and computes the one-way output using message signature forgery. For the trapdoor one-way function corresponding to the actual sender Alice, she needs to solve the “message” that can “glue” the
ring together, and then signs this “message” using her knowledge of the trap-door information. The original scheme has very limited flexibility and the complexity of the scheme is quite high. Moreover, the original paper only focuses on the cryptographic algorithm, the relevant network issues were totally left unaddressed.

In this paper, we first propose an unconditionally secure and efficient source anonymous message authentication scheme based on the modified EIGamal signature scheme. This is because the original EIGamal signature scheme is existentially forgeable with a generic message attack [23], [24]. While the modified EIGamal signature (MES) scheme is secure against no-message attack and adaptive chosen-message attack in the random oracle model [25].

2.4. Threat Model and Assumptions

We assume the participating MANET nodes voluntarily cooperate with each other to provide an anonymizing service. All nodes are potential message originators of anonymous communications. The adversaries can collaborate to passively monitor and eavesdrop every MANET traffic. In addition, they may compromise any node in the target network to become an internal adversary, which could be the internal perpetrators. In this paper, we assume that passive adversaries can only compromise a fraction of the nodes. We also assume that the adversaries are computationally bounded so that inverting and reading of encrypted messages are infeasible. Otherwise, it is believed that there is no workable cryptographic solution.

An agent of the adversary at a compromised node observes and collects all the information in the message. The sender has no information about the number or identity of nodes being compromised. The adversary collects all the information from the agents on the compromised nodes, and attempts to derive the true identity of the sender.

3. Unconditionally Secure Source Anonymous Message Authentication Scheme (SAMAS)

In this section, we propose an unconditionally secure and efficient source anonymous message authentication scheme (SAMAS). The main idea is that for each message \(m \) to be released, the message sender, or the sending node, generates a source anonymous message authentication for the message \(m \). The generation is based on the MES scheme. Unlike ring signatures, which requires to compute a forgery signature for each member in the SoA separately. In our scheme, the entire SAMAS generation requires only three steps, which links all non-senders and the message sender to the SAMAS alike. In addition, our design enables the SAMAS to be verified through a single equation without individually verifying the signatures.

3.1. The Proposed SAMAS Scheme

Suppose that the message sender (say Alice) wishes to transmit a message \(m \) anonymously from her network node to any other node. The SoA includes \(n \) members, \(A_1, A_2, \ldots, A_n \), e.g., \(S = \{ A_1, A_2, \ldots, A_n \} \), where the actual message sender Alice is \(A_t \), for some value \(t \), \(1 \leq t \leq n \).

Let \(p \) be a large prime number and \(g \) be a primitive element of \(\mathbb{Z}_p^* \). Then \(g \) is also a generator of \(\mathbb{Z}_p^* \). That is \(\mathbb{Z}_p^* = \langle g \rangle \). Both \(p \) and \(g \) are made public and shared by all members in \(S \). Each \(A_i \in S \) has a public key \(y_i = g^{x_i} \mod p \), where \(x_i \) is a randomly selected private key from \(\mathbb{Z}_{p-1}^* \). In this paper, we will not distinguish between the node \(A_i \) and its public key \(y_i \). Therefore, we also have \(S = \{ y_1, y_2, \ldots, y_n \} \).

Suppose \(m \) is a message to be transmitted. The private key of the message sender Alice is \(x_t, 1 \leq t \leq n \). To generate an efficient SAMAS for message \(m \), Alice performs the following steps:

1) Select a random and pairwise different \(k_i \) for each \(1 \leq i \leq n, i \neq t \) and compute \(r_i = g^{k_i} \mod p \).

2) Choose a random \(k \in \mathbb{Z}_p^* \) and compute \(r_t = g^k \prod_{i \neq t} y_i^{-h_i} \mod p \) such that \(r_t \neq 1 \) and \(r_t \neq r_i \) for any \(i \neq t \), where \(h_i = h(m, r_i) \).

3) Compute \(s = k + \sum_{i \neq t} k_i + x_tr_th_i \mod (p - 1) \).

The SAMAS of the message \(m \) is defined as
\[
S(m) = (m, S, r_1, \ldots, r_n, s),
\]
where \(g^s = r_1 \cdots r_n y_1^{-h_1} \cdots y_n^{-h_n} \mod p \), and \(h_i = h(m, r_i) \).

3.2. Verification of SAMAS

A verifier can verify an alleged SAMAS \((m, S, r_1, \ldots, r_n, s)\) for message \(m \) by verifying whether the following equation
\[
g^s = r_1 \cdots r_n y_1^{-h_1} \cdots y_n^{-h_n} \mod p
\]
holds. If equation (3) holds true, the verifier accepts
the SAMAS as a valid for message \(m \). Otherwise the
verifier rejects the SAMAS.

In fact, if the SAMAS has been correctly generated,
then we have
\[
\begin{align*}
rl \cdots rnyr & \\
1 h 1 & \\
\cdots & \\
v ; & \\
\mod & p \\
gk & \\
\cdots & \\
gknyrlhl & \\
\cdots & \\
\mod & p \\
g;21.. k; (gk & \\
\cdots & \\
y;ihi & \\
\mod & p \\
i#t i#t & \\
\mod & p \\
g8 & \\
\modp.
\end{align*}
\]

Therefore, the verifier should always accept the
SAMAS if it is correctly generated without being
modified.

Remark 1. As a trade-off between computation and
transmission, the SAMAS can also be defined as
\(S(m) = (m, S, r_1, \cdots , r_n, h_1, \cdots , h_n, s) \). In case \(S \)
is also clear, it can be eliminated from the SAMAS.

3.3. Security Analysis

In this subsection, we will prove that the proposed
SAMAS scheme is unconditionally anonymous and
provably unforgeable against adaptive chosen-message
attack.

3.3.1. Anonymity. In order to prove that the proposed
SAMAS is unconditionally anonymous, we have to
prove that (i) for anybody other than the members of \(S \),
the probability to successfully identify the real sender
is \(1/n \), and (ii) anybody from \(S \) can generate SAMAS.

Theorem 1. The proposed source anonymous message
authentication scheme (SAMAS) can provide unconditional
message sender anonymity.

3.3.2. Unforgeability. The design of the proposed
SAMAS relies on ElGamal signature schemes. Signature
schemes can achieve different levels of security.
Security against existential forgery under adaptive-
chosen message attack is the maximum level of security.

In this section, we will prove that the proposed
SAMAS is secure against existential forgery under
adaptive-chosen message attacks in the random oracle
model [25]. The security of our result is based on the
well-known discrete logarithms problem (DLP), which
assumes that the computation of discrete logarithm in
\(\mathbb{Z}_p \) for large \(p \) is computationally infeasible. In other
words, no efficient algorithms are known for non-
quantum computers.

We will introduce two lemmas first. Lemma 1, or
the Splitting Lemma, is a well-known probabilistic
lemma from reference [25]. The basic idea of the
Splitting Lemma is that when a subset \(Z \) is “large”
in a product space \(X \times Y \), it will have many “large”
sections. Lemma 2 is a slight modification of the
Forking Lemma presented in [25]. The proof of this
theorem is mainly probability theory related. We will
skip the proof of these two lemmas here.

Lemma 1 (The Splitting Lemma). Let \(Z \subset X \times Y \)
such that \(\Pr[(x, y) \in Z] \geq \varepsilon \). For any \(\alpha < \varepsilon \), define
\(W = \{(x, y) \in X \times Y | \Pr_y[(x, y') \in Z] \geq \varepsilon - \alpha \} \),
and \(\bar{W} = (X \times Y) \setminus W \), then the following statements
hold:
1) \(\Pr[W] \geq \alpha \).
2) \(\forall (x, y) \in W, \Pr_{y' \in Y}[(x, y') \in Z] \geq \varepsilon - \alpha \).
3) \(\Pr[W|Z] \geq \alpha / \varepsilon \).

Lemma 2 (The Forking Lemma). Let \(A \) be a
Probabilistic Polynomial Time (PPT) Turing machine.
Given only the public data as input, if \(A \) can
find, with non-negligible probability, a valid SAMAS
\((m, S, r_1, \cdots , r_n, h_1, \cdots , h_n, s) \) within a bounded
polynomial time \(T \), then with non-negligible probabil-
ity, a replay of this machine which has control over
\(A \) and a different oracle, outputs another valid SAMAS
\((m, S, r_1, \cdots , r_n, h'_1, \cdots , h'_n, s) \), such that \(h_i = h'_i \),
for all \(1 \leq i \leq n, i \neq j \) for some fixed \(j \).

Theorem 2. The proposed SAMAS is secure against
adaptive chosen-message attack in the random oracle
model.

Due to page limitation, the proof of this theorem is
omitted here.

4. The Proposed Privacy-Preserving Com-
munication Protocol

4.1. Network Model

Keeping confidential who sends which messages, in
a world where any physical transmission can be mon-
tored and traced to its origin, seems impossible. To
solve this problem, in this paper, we consider networks
with multiple MANETs. That is the participating nodes
are divided into a set of small subgroups. We classify
the network nodes into two categories, normal nodes
and super nodes. A normal node is a network node that
may not be able to communicate direct with the nodes
in other MANETs. A super node can be either a normal
node that can also provide message forward services to other MANET nodes. It can also be a special node dedicated to providing message forward services to other MANET nodes. For energy optimization, the normal nodes can take turn to be the super nodes.

Prior to network deployment, there should be an administrator. The administrator is responsible for the selection of security parameters and a group-wise master key $s_G \in \mathbb{Z}_p^*$. The group master key should be well safeguarded from unauthorized access and never be disclosed to the ordinary group members. The administrator then chooses a collision-resistant cryptographic hash function h, mapping arbitrary inputs to fixed-length outputs on \mathbb{Z}_p, e.g., SHA-1 [27].

The administrator assigns each super node a sufficiently large set of collision-free pseudonyms that can be used to substitute the real IDs in communications to defend against passive attacks. If a super node uses one pseudonym continuously for some time, it will not help to defend against possible attacks since the pseudonym can be analyzed in the same way as its real ID. To solve this problem, each node should use dynamic pseudonyms instead. This requires each super node to sign up with the administrator, who will assign each super node a list of random and collision-resistant pseudonyms:

$$\mathcal{N}_A = \{\text{id}_A^1, \ldots, \text{id}_A^n\}.$$

In addition, each super node will also be assigned a corresponding secret set: $\mathcal{S}_A = \{g^{e_{ch}(\text{id}_A^1)}, \ldots, g^{e_{ch}(\text{id}_A^n)}\}$.

4.2. Anonymous Local MANET Communications

To realize anonymous network-layer communications, obviously there should be no explicit information (such as the message sender and recipient addresses) in the message content. All of the information related to addresses, including the destination MANET where the recipient resides, should be embedded into the anonymizing message payload.

Prior to network deployment, the administrator needs to select a set of security parameters for the entire system, including a large prime p, and a generator g of \mathbb{Z}_p^*. The network nodes A_1, A_2, \ldots, A_n and the corresponding public keys y_1, y_2, \ldots, y_n of the n participating network nodes, where $x_i \in \mathbb{Z}_p$, is a randomly selected private key of node A_i, and y_i is computed from $y_i = g^{x_i} \mod p$.

A normal node only communicates to other nodes in the same MANET. The communication between two normal nodes in different MANETs has to be forwarded through the super nodes in the respected local MANETs. Each message contains a nonce (N), a message flag (mF), a recipient flag (rF) and a secret key. The nonce is a random number that is used only once to prevent message replay attack. The recipient flag enables the recipient to know whether he is the targeted receiver or the forwarding node. The secret key is used to encrypt the message payload using symmetric encryption algorithm.

More specifically, for a node A_i to transmit a message m anonymously to a node A_j in the same MANET, through the nodes A_{i+1}, \ldots, A_{j-1}, where $j > i + 1$, node A_i generates a new message $M(i,j)$ defined in the equation (4),

$$M(i,j) = g^{e_{ch}(\text{id}_A^i)} \cdot g^{e_{ch}(\text{id}_A^j)} \cdot mF \cdot rF,$$

where for $l = i + 1, \ldots, j$, N_l is a nonce, mF_l is a message flag, rF_l is a recipient flag, sk_l is the secret key used for one time message encryption, and $||$ stands for message concatenation.

When the node A_{i+1} receives the message packet, the node decrypts the first block of the received message using its private key corresponding to pk_{i+1}. After that, the node will get the recipient flag and message flag with the instruction for the subsequent actions.

The amount of traffic flow that a node creates as the initiator is concealed in the traffic that it forwards since the overall traffic that it receives is the same as the traffic that it forwards. In addition to the balanced traffic, the message is encrypted with the private key that only the recipient can recover. While the intermediate nodes can only view the instruction of the message allowed. The sender’s message is indistinguishable by other nodes. The sender and the recipient are thus hidden amongst the other nodes. *It is infeasible for the adversary to correlate messages using traffic analysis and timing analysis due to message encryption.* Therefore, perfect obscure of its own messages can be assured. Detailed security analysis will be presented later on.

In the proposed protocol, a node’s joining and leaving in the MANET is straightforward. When a node wishes to join a MANET, it only needs a copy of the public keys of the nodes in the local MANET where it would like to join. A node can leave the MANET without doing anything.

Remark 2. When the message is delivered to the recipient’s local MANET, if the super node is close enough to the recipient node, then the super node can simply broadcast the message. In this case, the message format in equation (4) can be adjusted accordingly.
\begin{align*}
M(i, j) &= pk_{i+1}(N_{i+1}, mF_{i+1}, rF_{i+1}, sk_{i+1})|sk_{i+1}(M(i + 1, j)) \\
M(i + 1, j) &= pk_{i+2}(N_{i+2}, mF_{i+2}, rF_{i+2}, sk_{i+2})|sk_{i+2}(M(i + 2, j)) \\
&\vdots \\
M(j - 1, j) &= pk_j(N_j, mF_j, rF_j, sk_j)|sk_j(S(m)).
\end{align*}

4.3. Anonymous Communications between Two Arbitrary Super Nodes

In the previous subsection, we present the mechanism that allows two arbitrary nodes to communicate anonymously within the same MANET. This includes communications between two super nodes in the same MANET. For any two arbitrary super nodes in different MANETs to communicate anonymously, we will first introduce the concept of anonymous authentication, or secret handshake by Balfanz et al. [28]. Anonymous authentication allows two nodes in the same group to authenticate each other secretly in the sense that each party reveals its group membership to the other party only if the other party is also a group member. Non-members are not able to recognize group members. Secret handshake has been applied in anonymous routing in mobile ad hoc networks [29].

The scheme consists of a set of super nodes, an administrator who creates groups and enrolls super nodes in groups. For this purpose, the administrator will assign each super node \(A \) a set of pseudonyms \(id_1^A, \ldots, id_T^A \), where \(T \) is a large security parameter. In addition, the administrator also calculates a corresponding secret set \(\{g^{s_G h(id_1^A)}, \ldots, g^{s_G h(id_T^A)} \} \) for super node \(A \), where \(s_G \) is the group’s secret and \(h \) is a hash function. The pseudonyms will be dynamically selected and used to substitute the real IDs for each communications. This means that two super nodes \(A \) and \(B \) can know each other’s group membership only if they belong to the same group.

When the super node \(A \) wants to authenticate to the super node \(B \), the following secret handshake can be conducted:

1) \(A \to B \): Super node \(A \) randomly selects an unused pseudonym \(id_t^A \) and a random nonce \(N_1 \), then sends \(id_t^A, N_1 \) to super node \(B \).
2) \(B \to A \): Super node \(B \) randomly selects an unused pseudonym \(id_t^B \) and a random nonce \(N_2 \), then sends \(id_t^B, N_2, V_0 = h(K_{BA}||id_t^A||id_t^B||N_1||N_2||0) \) to super node \(A \), where \(K_{BA} = g^{s_G h(id_t^A) - h(id_t^B)} \mod p \).
3) \(A \to B \): Super node \(A \) sends \(V_1 = h(K_{AB}||id_t^A||id_t^B||N_1||N_2||1) \) to super node \(B \),

where \(K_{AB} = g^{s_G h(id_t^A) - h(id_t^B)} \mod p \).

Since \(K_{BA} = K_{AB} \), \(A \) can verify \(V_0 \) by checking whether \(V_0 = h(K_{AB}||id_t^A||id_t^B||N_1||N_2||0) \). If the verification succeeds, then \(A \) knows that \(B \) is an authentic peer. Similarly, \(B \) can verify \(A \) by checking whether \(V_1 = h(K_{BA}||id_t^A||id_t^B||N_1||N_2||1) \). If the verification succeeds, then \(B \) knows that \(A \) is also an authentic peer. However, in this authentication process, neither super node \(A \), nor super node \(B \) can get the real identity of the other node. In other words, the real identities of super node \(A \) and super node \(B \) remain anonymous after the authentication process.

4.4. Anonymous Communication between Two Arbitrary Normal Nodes

As mentioned before, there should be no explicit exposure about the addresses of the message sender and recipient. To transmit a message, the sender first randomly selects a local super node and transmits the message to the super node according to the mechanism described before. On receiving the message, the local super node first determines the destination MANET ID by checking the message recipient flag \(rF \), either 0 or 1. If it is 0, then the recipient and the super node are in the same MANET. The message can be forwarded in the recipient node using the previously described mechanism. If \(rF \) is 1, then the recipient is in a different MANET. The super node forwards the message to a super node in the destination MANET as described in the previous subsection. Finally, when the super node in the recipient’s local MANET receives the message, the communication again becomes local MANET communications. The message can now be transmitted in the same way that the sender and the recipient are in the same MANET.

While providing message recipient anonymity, the message can also be encrypted so that only the message recipient can decrypt the message. The proposed anonymous communication is quite general and can be used in a variety of situations for communication anonymity in MANET, including anonymous file sharing.
4.5. Security Analysis

In this subsection, we will analyze anonymity, impersonation attack and replay attack of the proposed anonymous communication protocol. However, due to page limitation, we will only present our major results without providing proof here. The proof will be provided in the full paper.

4.5.1. Anonymity. We will first prove that the proposed communication protocol can provide both message sender and the recipient anonymity in the local MANET communications.

Theorem 3. It is computationally infeasible for an adversary to identify the message sender and recipient in the local MANET. Therefore, the proposed anonymous communication protocol provides both sender and recipient anonymity in the local MANET.

For any two normal nodes in different MANETs to communicate anonymously, the communication can be broken into three segments: the communication between the sender and a local super node in the message sender’s local MANET, the communication between two super nodes in the corresponding MANETs, and the communication between the recipient super node and the recipient. Theorem 3 has assured the communication anonymity between a super node and a normal node in the local MANETs. Therefore, we only need to ensure anonymity between two super nodes in different MANETs in order to achieve full anonymity between the sender and recipient.

We already described before that each super node is being assigned a large set of pseudonyms. A dynamically selected pseudonym will be used for each communication. The pseudonyms do not carry the user information implicitly. Therefore, the adversary cannot get any information of the super nodes from the network. This result can be summarized into the following theorem.

Theorem 4. The proposed communication protocol can provide both message sender and recipient anonymity between any two super nodes.

Corollary 1. The proposed anonymous communication protocol can provide full anonymity for any sender and recipient in the MANETs.

4.5.2. Impersonation Attacks. For an adversary elected to perform impersonation attack to a normal node, he needs to be able to conduct forgery attack. We already proved in Theorem 2 that this is infeasible. Therefore, we only need to consider whether it is feasible for an adversary to forge a super node.

For an adversary to impersonate as a super node, he needs to be able to authenticate himself with a super node \(A \). This requires the adversary \(A \) to compute \(g^{s_G h(id^A)} \mod p \), where \(id^A \) is the identity of the adversary and \(id^A_i \) is the \(i \)th pseudonym of the super node \(A \). However, since the adversary does not know the master secret \(s_G \), he is unable to compute \(g^{s_G h(id^A)} \mod p \) and impersonate as a super node. Therefore, we have the following theorem.

Theorem 5. It is computationally infeasible for a PPT adversary \(A \) to impersonate as a super node.

Like all other network communication protocols, in our proposed protocol, an adversary may choose to drop some of the messages. However, if the immediate predecessor and the successor nodes are honest and willing to cooperate, then the messages being dropped, and the substitution of the valid messages with the dummy messages can be effectively tracked using the provided message flags.

An adversary that is elected as a super node may refuse to forward messages across the MANETs and thus block the anonymous communications between the sender and the receiver. This attack can be hard to detect if the sender does not have the capability to monitor all network traffic. However, the sender can randomly select the super nodes for each data transmission. If the nonce is properly generated, when a packet is lost, the recipient should be able to know.

4.5.3. Message Replay Attacks. The message replay attack occurs when an adversary can intercept the communication packet, correlate the message to the corresponding sender and recipient, and retransmit it. We have the following theorem.

Theorem 6. It is computationally infeasible for an adversary to successfully modify/reply an (honest) node’s message.

5. Performance Analysis and Simulation Results

In this section, we will provide simulation results of our proposed protocol on energy consumption, communication delay and message delivery ratio. For energy consumption, we provide simulations for both the normal nodes and the super nodes. For wireless communications, due to collision and packet drop, it is very challenging to assure high messages delivered ratio. However, our simulation results demonstrate
that the proposed protocol can achieve high message delivery ratio.

Our simulation was performed using NS2 on Linux system. In the simulation, the target area is a square field of size 2000 × 2000 meters. There are 64 rings located in this area. The number of the nodes on each ring, i.e., the ring length, is set to be from 7 to 16 in our simulation. The message generation interval is set to be four different values: 60 seconds, 90 seconds, 120 seconds and 150 seconds in our simulation for comparison. The messages transmitted in the network are 512 bytes long.

6. Conclusion

In this paper, we first propose a novel and efficient source anonymous message authentication scheme (SAMAS) that can be applied to any messages. While ensuring message sender privacy, SAMAS can also provide message content authenticity. To provide provable communication privacy without suffering from transmission collusion problem, we then propose a novel privacy-preserving communication protocol for MANETs that can provide both message sender and recipient privacy protection. Security analysis shows that the proposed protocol is secure against various attacks. Our performance analysis and simulation results both show that the proposed protocol is efficient and practical. It can be applied for secure routing protection and file sharing.

References

