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Abstract—Rule-based automated cinematography has proven
to be a very effective means of speeding up the filmmaking
process and reducing costs by incorporating the rules of many
camera shots into the optimization process. However, it is
observed that many well-known directors developed their style of
lens language and sometimes even violate the conventional rules.
It is a very challenging task to exploit these directors’ versatile
styles into the automatic cinematography framework due to two
main reasons: (i) it is not trivial to translate these styles into
a library of rules; (ii) the data can be collected from existing
films are very limited and the accuracy is insufficient for learning
purposes. In this paper, we propose a novel unified Reinforcement
learning-based Text to Animation (RT2A) framework that can
apply reinforcement learning to automatic cinematography. In
RT2A, the decisions by the director on the camera settings are
recorded and can be utilized for the future auto cinematography
agent training process. A well-designed reward functionality has
been proposed that guides the algorithm to find the best policy
and mimic the human director’s decision-making process for the
camera selection of each scene. The experimental results show
that the proposed RT2A can effectively imitate the directors’
usage of lens language patterns. Compared to the reference
algorithm, RT2A can achieve a gain of up to 50% in camera
placement acceptance rate and 80% in imitating the rhythm of
camera switching.

I. INTRODUCTION

Cinematography, the art of choosing camera shot types

and angles in capturing the motion pictures, is an effective

way to demonstrate its artistic charm in the film industry,

and applying cinematography to content creation requires lots

of training and knowledge. In the computer age, it becomes

natural to explore the possibility of making robot directors

and entrusting them with this challenging task, which is

also known as automatic cinematography. Some successful

efforts, such as [1], [2], have shown that this goal can be

partially achieved by translating the rules from the standard

cinematography guidelines into a number of cost functions and

applying them during an optimization process. Such aesthetic

rules-based robot directors can provide valuable references for

an entry-level artist without much film experience. In [3] the

aesthetic model is further extended to a hybrid model that

considers the fidelity of the output video by comparing it

with the textual content in the original script. It is reported

in [4] that mere use of these rules for expression in the

film is far from satisfactory. In the practical film industry,

the human directors are experts in twisting these standard

rules in cinematography and developing their own unique lens

language to express human creativity and imagination [5].

Therefore, although creating robot directors based on common

lens language and summarized rules is an interesting idea, it is

practically very difficult to meet the expectation of film artists.

As a relevant exploration effort, [6] used a neural network

to extract lens language from the existing film and imitated the

human director’s behavior in filmmaking. However, this effort

suffered from an inevitable problem, that is the experimental

data is inaccurate and incomplete because the data were

estimated from two-dimensional frames with information loss

in another dimension. Therefore, such an approach can only

be applied in limited scenarios and is unable to comprehen-

sively imitate the director’s lens language. Another work [7]

demonstrated that such a behavioral imitation problem with

a limited amount of training data can be achievable by rein-

forcement learning (RL) techniques [8] with reward generated

from human feedback. In order to develop a robot director

that can truly learn human lens language and use them in

various scenarios, it needs not only the precise data collection

during cinematography but also the capacity to continuously

improve the model based on external feedback. By using the

current auto cinematography algorithms [3], [9], [10], it is

possible to build a framework for directors to use so that their

chosen camera settings can be recorded as training data for

reinforcement learning algorithms to learn the lens language

models.

This observation inspired us to extend our previous work [3]

to the direction of using reinforcement learning because all

the needed data for cinematography usage can be collected

during the film production process without extra effort with our

framework. We reused the structure of the filmmaking frame

T2A proposed in [3], but used a reinforcement learning module

for auto cinematography to replace the camera optimization

process in T2A, thus the new framework is called RT2A.

A director’s feedback module is incorporated to correct the

camera placements, and such feedback is valuable for the

camera agent to learn and imitate the lens language of the
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target human director. In practical scenarios, the director’s

feedback can come from stored training data that is collected

from real human directors during their routine filmmaking

work using our tool [3]. With sufficient data and feedback, the

RT2A can effectively learn to support such a robot director that

has the potential to become the embodiment of a real director

and produce animation with a similar lens language. To the

best of our knowledge, this is the first work in the world that

applies reinforcement learning to auto cinematography that can

effectively imitate the human director’s usage of lens language.

The rest of the paper is organized as follows: Section II

overviews the related work in computational cinematography;

Section III demonstrates the overall framework of RT2A, the

problem formulation, and the solution; Section IV discusses

the experimental results and the last section draws the conclu-

sion about the work.

II. RELATED WORK

The quality of lens language is a crucial factor that de-

termines the quality of the final film. It requires acumen of

artistic sense as well as great knowledge of cinematography

when using shots going beyond the basic rules. Luring by the

wish to use auto cinematography techniques to reduce the film

production cost, there are a considerable amount of studies

in this area, and they can be roughly categorized into two

directions.

The first direction is the cinematography guideline rule-

based approach. By defining multiple constraints according to

various rules and formulating them into the corresponding loss

functions, the optimal shot setup for the current situation can

be calculated by minimizing the total loss. Different aesthetic

constraints can be applied under separate scenarios, such as

dialogue scene [11], cooking [12], and outdoor activities [13].

However, as discussed in [4], it is difficult to judge whether the

use of lens language is sufficient under only aesthetic models.

In [3], the fidelity model was introduced, which took the

original script content into consideration in the optimization

process to make sure that the generated video is fully aligned

with the script. The advantage of the rule-based approach is

that the results are perfectly consistent with the pre-defined

constraints, thus guaranteeing that no rule-breaking will occur;

however, it also severely limits the freedom and creativity of

the artist.

The second direction is to learn the behavior model of these

cameras directly from the existing movies [6]. The advantage

of this approach is that it is a data-driven methodology instead

of a rule-driven solution, therefore there is no need to create

rules or constraints to guide the algorithm. By using reinforce-

ment learning, such as deep Q-learning (DQN) [14], Trust

Region Methods (TRPO), or policy optimization (PPO) [15],

the solution can be found by providing sufficient training

data. In literature, there are works in the field of drone

photography controlling [7], [16], however, no work can be

found in the literature using reinforcement learning in the auto

cinematography for filmmaking, a possible reason is that to get

sufficient precise data from existing movies like in the work

of [6] is a non-trivial task.

III. FRAMEWORK DESIGN

The filmmaking process is demonstrated in the Fig.1 which

contains four major modules, namely, Action List Genera-
tion, Stage Performance, Auto Cinematography, and Video
Generation, and two additional modules (in orange color) to

support the reinforcement learning workflow. The Action List
Generation takes the textual script as input, analyzes with NLP

techniques [17], and then generates the corresponding action

list, which is a chronological list of action objects at and can

be considered as a special format to represent the content of the

original script. Each at contains the necessary information for

the virtual characters to make the corresponding performance

pt in the Stage Performance. The entire script’s story can

be performed in the Stage Performance with a sequence of

pt that follows the order in the action list. At this phase,

all the characters appearing in the scene are bound with

multiple cameras that can be distinguished by the unique

index. The frames captured by cameras also become a part

of the pt. The Observation Extractor takes the pt to generate

the corresponding observation ot (details can be found in the

section III.A) that is defined in the auto cinematography RL

environment for the camera agent to calculate the current

selected camera cit (where i is the index of the camera). In case

the initial training data is insufficient, the acceptance rate of

cit computed by the camera agent in the Auto Cinematography
would be low, thus manual adjustment of cit by the director is

required to assure video quality. The modification process is

accomplished in Director Adjustment. The revised cit is then

annotated as the ground truth camera gct and added together

with ot into the training data. The pt and gct can be used by

Video Generation to generate the current output video frame.

With the growth of the number of desirable videos generated

with this RT2A framework, the training data grows as well.

With sufficient training data, Auto Cinematography will be

able to properly train the camera agent and update its policy

with the RL algorithm, thus the workload required for directors

to adjust the camera placement would be significantly reduced.

In Fig.1, The camera agent training process of the auto

cinematography module has been shown with red lines. An

observation generator uses the training data to generate the

single observation, ot, at times t. The RT2A camera agent

takes ot as input to obtain the corresponding selected camera,

cit. The reward function calculates the reward, rt, by compar-

ing the cit and the gct. The rt is then used to update the RT2A

camera agent policy and parameters by the RL algorithm.

A. Proposed Auto Cinematography

In the auto cinematography environment, the observation

space contains all the information needed by the RT2A camera

agent to select the optimal camera setting based on the current

policy. The following aspects are included in the observation

space.

Character Visibility Character visibility is determined

by two factors: (i) the size of the character in the frame

compared to the total frame size. (ii) the weights for various

groups of characters and camera combinations during the

calculation because multiple cameras are bound to different
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Fig. 1: Overview of our RT2A animation production framework

characters, which reflects the extent to which obstacles obscure

the characters from the current camera view.

Camera Configuration When switching cameras, the

configuration of the previous camera may also have an impact

on the selection of the next camera, such as the shot-reverse

shot commonly used in the dialogue scene. In such cases, the

configuration of the previous camera will be included in the

observations.

Left to Right Order (LRO) LRO is used to show the

positional relationship of multiple characters in the shot frame,

and the inclusion of this data has a very significant impact on

the 180-degree rule, which is one of the most significant rules

in cinematography. It is important to be aware that LROs at t
taken by different cameras may not be the same.

Action Type Some character actions, such as “idle”, do not

affect the shot selection, while others may have a preference

for shot selection. For example, the facial action of “anger”

is more inclined to be expressed by a close shot. In our

experiments, we divide the movements into categories of

facial, upper limb, lower limb, whole body, and standby.

Action Start Time and Duration The start time of every

character’s action is crucial, and generally, the transition of the

shot ci is at the beginning of a certain action. On the other

hand, the length of the action is also very crucial. In many

cases, the action with a long performance time (e.g., more

than 10 seconds) requires a combination of different shots to

take it.

Dialogue Start Time and Duration The character’s

talking action in the dialogue scene is very special. During

long conversations, the camera angle is switched between the

interlocutors, and often an over-the-shoulder shot is used in

such a scenario.

In our auto cinematography environment, the only action in

the action space is camera index selection. There are various

default cameras to shoot the characters from different distances

and angles. The default cameras cover most of the basic

camera settings in the cinematography guideline and each

camera has been given a unique index for the agent to select it.

the default camera setting can be described with 3 parameters:

1) d(c): distance between the camera and the shooting

character, which may include extreme close shot (ECU),

close shot (CU), median shot (MS), full body shot (FS)

and long shot (LS). By quantifying these distances to

numeric representation from 0 to 4, we are able to

calculate the differences between them.

2) h(c): pan (horizontal) angle: form 0◦ to 360◦.
3) p(c): pitch of the camera: form 15◦ to −15◦.
Determining a meaningful reward function is very crucial

for the RL algorithm. The reward function is construed only

base on attributes of cit and gct, where we need to consider the

distinction between their settings in detail. The more similar

the camera settings the higher the rt.
The reward function for distance is defined as:

rdt =

{
1 if d(cit) = d(gct)

1− |d(cit)−d(gct)|
4 otherwise.

(1)

Similarly the reward function for pan and pitch of the

camera are defined as:

rht =

{
1 if h(cit) = h(gct)

1− |h(cit)−h(gct)|
30 otherwise.

(2)

rpt =

{
1 if p(cit) = p(gct)

1− |p(cit)−p(gct)|
180 otherwise.

(3)

When difference between the agent selected camera and the

ground truth is less then a predefined threshold, δ, an extra

reward is added to further boost the learning process. The

larger the δ, the larger the deviation between cit and gct that

can be tolerated.

rδt =

{
1 if

|d(cit)−d(gct)|
4 +

|h(cit)−h(gct)|
30 +

|p(cit)−p(gct)|
180 <δ

0 otherwise.
(4)

The overall reward function is defined as the sum of all the

previous rewards.

rt = rdt + rht + rpt + rδt . (5)

B. Reinforcement Learning Algorithm

An agent starts with observation o0 and selects the next

camera index according to the strategy, policy π(o), that agent
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uses in pursuit of goals which in most cases is to maximize

the reward, R.

The R for an episode with T steps is defined as:

R =
T∑
0

γt−1rt t = 0, 1, · · · , T , (6)

where rt is immediate rewards at t and γ is a discount factor

that defines the importance of rt versus future rewards, where

typically 0 ≤ γ ≤ 1. The higher the γ value the more

important the future rewards.

The aim of the RL algorithm is to find the optimal π∗ which

can maximize R.

π∗ = argmaxE(R|π). (7)

This process is accomplished by iteratively updating the

parameter of the policy, πθ, according to the loss function

L(�) that measures the error between the reward estimation

calculated by the current policy, πcurrent, and the previous

policy, πold. There are several methods to address the problem

raised in Eq. 7, and we use PPO, a variant of an Advantage

Actor-Critic (A2C) [18], which combines policy-based and

value-based RL algorithms together. The actor neural network

model takes state (or observation) and outputs the action

according to the π(), and the critic neural network model

maps each state to its corresponding quality of value the state

(i.e., the expected future cumulative discounted return). The

advantage Â (or discounted return) is used to indicate how

good a camera selection is compared to the average camera

selection for a specific observation. The Â at time t is defined

as following:

Â =− V (ot)

+ rt + γrt+1 + · · ·+ γT−t+1rT−1 + γT−tV (ot),
(8)

where the V is the learned state-value function and rtt is the

parameter changing ratio between the πcurrent and πold at step

t.

During the training process, PPO needs to update the

parameters of both actor and critic neural networks by back-

propagation according to two different loss function. Every

update for π is designed to maximize the overall return

(i.e. max[Et(rttÂ)]). However, changing the πθ needs to be

avoided in a single update. Thus, the Lactor is defined as:

Lactor(θ) = min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât). (9)

The clip(�) modifies the surrogate objective by clipping the

probability ratio, which removes the incentive for moving rt
outside of the interval [1 − ε, 1 + ε]. Regardless of the value

of the positive feedback gained according to cit, the PPO will

only update the policy based on this result within this limited

range. Thus, it is able to incrementally update πθ with an

appropriate value. However, the penalty based on the negative

reward has no limitation.

The critic loss function Lcritic is defined as:

Lcritic =
1

2
Â2. (10)

IV. EXPERIMENTAL RESULTS

In this section, the experiment set up and the performance

details of our purposed RL auto cinematography method are

demonstrated. We develop the auto cinematography environ-

ment and implement the RT2A camera agent using OpenAI

Gym [19]. It took around 38 hours to finish the whole training

process based on the NVIDIA GTX 2080 TI GPU. To evaluate

the advantage of our proposed RL auto cinematography model,

we compare RT2A with the reference methods: Aesthetic-

based [10], and Aesthetic + Fidelity-Based [3]. The perfor-

mance is evaluated from two aspects: (i) we compare the

camera placement generated by the RT2A camera agent and

by the reference algorithms; (ii) we compare the visual quality

of videos produced by RT2A and reference algorithms.

Difference in Camera placement In the environment of

the experiment, the cameras generated by different methods

are sampled every second. By comparing the physical distance

between the camera placement of the algorithm with the

ground truth (placement manually by directors), and defin-

ing several acceptance thresholds (that is, the placement is

accepted if the physical distance is less than the threshold),

the performance of the algorithms can be measured by the

percentage of the cameras being accepted, which is called

acceptance rate. The calculation of the physical distance is

based on the equations 1, 2, and 3. As the results are shown

in Fig. 3, the proposed algorithm constantly outperforms the

reference algorithm, and the gain in acceptance rate is up to

around 50%. The visual comparison of the generated frames

from various algorithms as shown in Fig. 2 also indicates

that the proposed algorithm has a much higher similarity to

the camera selected by directors than the reference methods.

This evidence proves that the RT2A can effectively imitate the

behaviors of the director’s camera usage model after training.

Number of shot A complete shot is a continuous view

through a single camera without interruption. The number of

shots (i.e., average shot duration) used in a single scene is

also an important indicator to reflect the shooting style of the

director. Table. I shows the number of shots of our proposed

auto cinematography approach compared to the reference

methods in a number of different scenes selected from the

test data set. The results indicate that the number of shots

used in each of the test scenes by our proposed method is

much closer to the ground truth than the reference methods.

Visual results also support the conclusion when the frames

generated from the aesthetic model [10] are compared to

the frames generated from RT2A. It is important to realize

that although it may be possible for the rule-based approach

like the aesthetic model algorithm to mimic the director by

setting a number of rules to optimize when compared to the

proposed RT2A algorithm, the challenges in adjusting the

weights for various parameters and cost functions are much

more complicated. In the following text, we will demonstrate

how the reference model can achieve similar visual results by

adding the corresponding cost functions or adjusting weights,

hence it convincingly proved the advantages of the proposed

RT2A algorithm using a data-driven methodology, instead of

manually crafting many rules.
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Fig. 2: Sample frames for the a scene maintaining chronological order from left to right. As shown, our approach better imitates

the lens language used by the animators.

Fig. 3: Camera placement acceptance rate with different ac-

ceptance threshold

Particular shot selection As demonstrated in [20], “ the
single long shot showing initial spatial relations became one
portion of the scene, usually coming at the beginning. Its
function then became specifically to establish a whole space
which was then cut into segments or juxtaposed with long shots
of other spaces.”, long shots as the establishing shots are used

to set a particular tone and mood for what the audience is

about to see. As shown in Fig. 4, compared to the reference

approach, RT2A camera agent learns this lens language better

and uses the establishing shot at the beginning of the scene.

It is possible if the reference algorithm desires to achieve

a similar outcome, that is, a new cost function determining

whether the t represents the first few frames needs to be

included in the optimization framework, and the characters

captured by the LS shot will be required to occupy the least

TABLE I: The difference in the number of shot of our

proposed and reference methods compared with the director’s

selected camera placement. The results show the number of

shots (also the differences in percentage compared with the

selected shot by director) used by different approaches in a

single scene.

Script Aesthetic Aesthetic + Fidelity RT2A Director

1 32 (33%) 35 (46%) 27 (13%) 24
2 50 (150%) 43 (115%) 28 (40%) 20
3 45 (95%) 40 (74%) 31 (40%) 23
4 37 (146%) 39 (160%) 21 (35%) 15
5 15 (150%) 13 (116%) 8 (33%) 6

space in the frame compared to other shot types, which means

that the weight of character visibility in cost function needs

to be minimized.

Fig. 4: Captured establishing shot frames from the camera

generated by aesthetic model (left) and the camera generated

by RT2A (right)

The Over the Shoulder Shot is widely used in the dialogue

for the audience to understand the relationship between the

characters and to convey a dramatic tension to the view-

ers [21]. It is sometimes necessary to use it to assemble the
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reverse shot in a dialogue scene. As shown in the Fig. 5,

RT2A camera agent learns this lens language successfully

and uses Over the Shoulder Shot in dialogue scenarios. If

the reference model wants to achieve a similar result, a new

cost function needs to be added to determine whether there

is enough duration for the current “speak” action to switch

between shots. In addition, the weight of the camera placement

used to take the over-the-shoulder shot needs to be modified

during the optimization process, to lose the requirement of

capturing actions from the back of the character.

Fig. 5: Captured dialogue frames from the camera generated

by aesthetic model (left) and the camera generated by RT2A

(right)

Fig. 6: Captured single action frames from the camera gen-

erated by aesthetic model (left) and the camera generated by

RT2A (right)

Sometimes actions of particular characters need to be shot

from a close distance and appropriate angle for the audience

to better understand the content. As shown in the Fig. 6, the

frames captured by the reference model selected camera do not

properly illustrate the actions of “inspect the item” very well.

In order to let the aesthetic model achieve a similar result,

it is required to manually modify the weights of different

camera configurations for some particular actions according

to the interpretation of the story.

V. CONCLUSIONS AND FUTURE WORKS

The creativity and imagination demonstrated by the use of

lens language in filmmaking requires tremendous professional

knowledge and talent. It would benefit entry-level artist if the

automatic cinematography algorithm can learn from the pro-

fessional directors and thus mimic the camera languages used

in successful films. However, a major obstacle to is that there is

insufficient accurate training data in this area. In this paper, we

presented RT2A framework, which produces accurate data for

training the auto cinematography system with the support of

directors. By learning the lens language from these directors,

RT2A is able to select the right distance and camera angle for

the automatic cinematography process. In the future, we will

explore the possibility of personalizing auto cinematography

by connecting the audiences viewing preferences with the

filmmaking styles selection. In this way, the future films can

be made in various styles and the audiences can get the one

that fit into his/her personal taste most.
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