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Abstract—For animated film-making, automatic cinematogra-
phy is an effective approach for junior filmmakers to speed up
the process. The virtual camera placement in the 3D environ-
ment can be automatically conducted by auto-cinematography
algorithms. In the literature, the algorithms proposed were
mainly optimized from aesthetic point of view, thus the scene
captured by virtual cameras may not effectively represent the
intention of the script sometimes. In this paper, a new model
that incorporates the fidelity and aesthetic models in a unified
framework was proposed, so that the visual presentation of the
input script and the compliance of the generated video with given
cinematography specifications can be jointly considered during
the optimization process. In this way, the problem of virtual
camera placement is translated into an optimization problem
that can be solved through dynamic programming that optimizes
the computational efficiency. Experimental results shows that
the proposed algorithm has quality improvement up to 35%
compared to the earlier methodology and the content of the video
is easier to understand. More video examples can be reviewed
https://youtu.be/0PUdV6OeMac.

I. INTRODUCTION

With the latest developments in AI technology, a significant

amount of the animation production process can be automat-

ically taken care of by computer program. In near future,

general people may gain capability to create films on their

own by simply writing their stories into a script and then rely

on the software to do the rest [1]. In this process, transforming

the cinematography stage into an automatic process, also

known as Auto Cinematography, is very attractive because

the automation process does not require much corresponding

film-making knowledge and is able to dramatically reduce

the production time for camera placement in the 3D virtual

environment.

In [2], [3], cinematic rules or conventions were used as

constraints to select virtual cameras during the auto cine-

matography process. In [4], the additional information about

the director’s guidance for each shot was given and used in

the auto cinematography optimization process, and in [5], the

camera usage and behaviors were learned from the existing

films to enhance the camera selection process. A common

assumption that these works have made is that the aesthetic

aspects of cinematography can be utilized for the camera

selection and optimization, however, how to assure that the

scenes captured reflect the intention of the script has not

been seriously considered. Given the fact that sometimes even

a slight mismatch between script and outcome video may

confuse viewers, it is worth putting the script in a more

significant position during the auto cinematography process.

In this paper, we argue that bridging script and scene,

and connecting visual and text, may significantly improve

the capacity for auto cinematography. Therefore, in addition

to the existing aesthetic model described in the literature,

a new quality assessment model, called the fidelity model,

is proposed for the cinematography optimization process to

determine whether the same content is expressed by two

different media, video and script, is fully aligned. Therefore,

the proposed methodology aims to achieve the following two

goals: (i) the output animation maintains reasonable fidelity of

the script, and (ii) the outcome video film follows cinematic

rules with cinematographic aesthetics.

To estimate the proposed method, an animation production

framework, named Text2Animation (T2A), was developed

to implement the fidelity model by incorporating the latest

video understanding advances [6]. By combining the aesthetics

model with the fidelity requirements into a unified compu-

tational framework, the original automatic cinematography

problem can be mapped into an optimization problem that

seeks to select the best options of camera placements and

achieve the aesthetic quality expectations and the consistency

of content. The optimization problem can be formulated in a

way that dynamic programming can be utilized to achieve an

efficient solution.

To the best of our knowledge, T2A is the first framework

in the literature that introduces the fidelity distortion factor in

the optimization process of auto cinematography from a new

perspective.

The rest of the paper is organized as follows: Section II

overviews the related work to this study, such as computational

cinematography, video editing, and video understanding. Sec-

tion III shows the framework, the problem formulation, and the

dynamic programming solution of T2A. Section IV discusses

impact of possible error in video understanding to the whole

framework and the experimental results, and we conclude in

268

2022 IEEE 5th International Conference on Multimedia Information Processing and Retrieval (MIPR)

2770-4319/22/$31.00 ©2022 IEEE
DOI 10.1109/MIPR54900.2022.00055

20
22

 IE
EE

 5
th

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 M

ul
tim

ed
ia

 In
fo

rm
at

io
n 

Pr
oc

es
sin

g 
an

d 
Re

tr
ie

va
l (

M
IP

R)
 |

 9
78

-1
-6

65
4-

95
48

-6
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
M

IP
R5

49
00

.2
02

2.
00

05
5

Authorized licensed use limited to: Michigan State University. Downloaded on September 04,2023 at 22:17:52 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1: Existing Framework for Auto Cinematography

Section V.

II. RELATED WORK

The camera configuration and placement are crucial to the

shooting phase of the movie production process. The views

captured by the camera directly affect the quality of the

production. The automatic camera placement process follows

the following two approaches: first, select the best camera

options using the cinematography guidelines as constraints.

Here different cinematography rules can be applied to the film-

editing under various scenarios, such as dialogue scenes [7]

and cooking [8]. The advantage of these methods is that

the generated video is more closely aligned to the aesthetic

standards of the desirable cinematography guidelines. Second,

learn cameras’ behaviors from the existing movies [5], [9],

[10]. The advantage of these methods is that the optimal

camera solution can be matched by the existing successful

camera settings based on the state of the characters and the

scene. The challenge is that the learned results cannot be

directly applied to general scenes.

With the issues and challenges mentioned in [11], almost

all computational cinematography works, according to our

knowledge, optimize the camera path from the cinematog-

raphy guideline perspective. However, in filming practices,

the guideline is not always been treated as the golden rule

and most of the great films break these rules. Inspired by

the recent works [12], we propose an evaluation measurement

called fidelity distortion, that can objectively assess the quality

of the resulting video. The fidelity stands for the consistency

of the video and original script content, which has been

ignored in both optimizations mentioned above. The fidelity

model helps the T2A maintain consistency by using the video

caption and action recognition model [6], [13] as an objective

viewer, and evaluates the video content to see whether it has

successfully visualized the corresponding actions in the action

list. In the latest research advances, video caption [14], [15]

and video scene recognition [16] are able to describe more

and more details for a specific video. Although none of these

technologies are perfect at the moment, we believe that as

we continue to refine them, our proposed fidelity model will

eventually be able to achieve all its goals.

III. FRAMEWORK DESIGN

In a typical auto-cinematography system, the whole process

from the input script to the output video contains the follow-

ing steps, namely, action list generation, stage performance,

camera optimization, and video generation. The action list

generation module analyzes the original animation script to

obtain the corresponding characters’ chronological action list

{ai|i = 1, 2, · · · , N}, where ai is the ith action object in

the scene, and N is the total number of action objects. It is

important to realize that multiple characters might perform

simultaneously (e.g., two persons are fighting with each other,

or a mom is hugging her daughter). Thus an action object

may contain multiple characters in the same scene. In the

stage performance step, the input {ai} is transformed into the

corresponding stage performance data {pt|t = 0, 1, · · · , T},
where pt is the character stage performance at time t and

T is the total performance time determined by the action

list. Specifically, for each ai, the corresponding performance

can be denoted as {ptai
, pt+1ai

, · · · , pt+lai
}, where lai

is

the action duration of ai. There are multiple virtual cameras

available in the 3D scene that can record all the views for every

character from various angles. In the camera optimization

step, all the available views are considered to calculate the

optimized camera {ct} for each time t. The video generation

step assembles all the video frames captured by camera {ct}
at time t and outputs the final video.

Fig. 2: The updated camera optimization model in

Text2Animation (only reflects the camera optimization module

shown in Fig. 1)

In this work, we make a bold assumption that a mathemati-

cal model can be found to approximate the fidelity relationship

between a video and its associated script (i.e., ai). In other

words, with any action ai and any selected camera atai
, the

fidelity between the action and the video generated from this

camera at time t can be obtained from this approximation

model. In Fig. 2, the camera optimization module has been

updated in our proposed framework with three new modules,

namely, aesthetic model, fidelity model, and optimization. The

task of the aesthetic model is to provide a quality evaluation

from an aesthetic point of view for each admissible virtual

camera at time t to the optimization engine, the task of

the fidelity model is to provide fidelity evaluation for each

admissible virtual camera at time t to the optimization engine,

and the optimization engine considers all inputs and makes the

optimal choice for the camera selection.
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A. Aesthetic Model

In this section, we discuss the aesthetic evaluation model,

which emphasizes the distortion caused by camera planning

and measured by the cinematography guidelines.

Character Visibility: This cost evaluates the character

visibility in the ct and it is determined by two factors: (1)

rk, the size of the character k in the frame to total the frame

size. (2) I(ct, k), the different weight to different characters

and camera combinations during the calculation. Thus the cost

function for character visibility V (ct) can be represented as:

V (ct) =
∑

character k=0→K−1

I(ct, k) · rk. (1)

Character Action: It describes whether the character has

at (action at t) or not. The cost function can be represented

as:

A(ct) =

{
0 ct bounded character k has action at time t

1 otherwise.
(2)

Camera Configuration: The camera configuration distor-

tion depends on the action type that can be derived from the

action object ãt of time t. We use the φC() function to describe

this distortion calculation process [2]. Thus the cost function

of camera configuration can be represented as:

C(ct) = φC(pci , dci , ãt), (3)

where p is camera position, and d is shooting direction.

Screen Continuity: It is the summary of each single

character position change in the frame. The cost function is

defined as follows:

S(ct, ct−1)=

K∑
char k=0

v(k, ct) · φS(p(k, ct)− p(k, ct−1)),

(4)

where p(k, ti) and p(k, ti+1) represent the kth position in

the frame captured by ct and ct+1, while v(k, ct) determines

whether character k is visible in the view of ct or not.

Moving Continuity: It represents if an ongoing action

changes of the direction of a character before or after the view

change. The moving continuity cost quantifies the penalty in

this aspect as follows:

M(ct, ct−1)=
K∑

char k=0

v(k, ct)φM (m(k, ct)−m(k, ct−1)),

(5)

where m(k, ct) is the motion direction vector of the character

in frame captured by ct. φM () is penalty function and it

increases as these diverge from each other.

Shot Duration: We allow the average shot duration u to

be set for each scene to control the shot duration distribution

or use the default value. The φU () is an non-linear penalty

function with 0 at x = u. Let p be the longest allowable shot

duration which is defined as the penalty of the frames in the

range [t− q, · · · , t] for cameras changing, and we have:

U(u, ct, ct−1, · · · , ct−q) = φU (u, ct, ct−1, · · · , ct−q). (6)

By adding all the factors mentioned above together, the total

aesthetic distortion Da can be calculated by the following

equation:

Da =
T∑

t=0

[ω0 · V (ct) + ω1 · C(ct, ãt)

+ω2 ·A(ct) + ω3 · S(ct, ct−1) + ω4 ·M(ct, ct−1)]

+
T∑

t=q

(1− ω0 − ω1 − ω2 − ω3 − ω4)·

U(u, ct, ct−1, · · · , ct−q),

(7)

where ω0, ω1, ω2, ω3, ω4 are the weights for each distortion

component within a range of 0 to 1.

B. Fidelity Model
The fidelity model is the essential element of T2A, which

assures that the generated video matches the video input

script. In an ideal case, there is a human-like agent that

has comprehension intelligence similar to humans. However,

even the current state-of-the-art model is still far from being

widely utilized due to the low performance and accuracy. To

address this challenge, an approximation method as shown

in Fig. 3, is considered to compare each action generated

from the action list module. Therefore, the original text-video

matching problem is approximated and converted into a text-

text matching problem with the assumption that the video

action recognition engine can achieve a reasonable quality.

Fig. 3: Using a video action recognition engine to convert a

video clip into a text, and then compare the similarity between

two actions in text format.

Let us denote by mj the jth camera of the admissible

camera set, a′i the word or phrase that describes the action

obtained from the video action recognition engine (which is

able to recognize the video generated from input action ai),
di the similarity between the textual description of ai and a′i,
then di can be measured by:

di =

⎧⎨
⎩0

G(ai)·G(a′i)
‖G(ai)‖×‖G(a′i)‖ ≤ ThG

1 otherwise
(8)

where ThG is the threshold to admit that ai and a′i refer to

the same action, and function G is the Glove word embedding

model of [17]. In this way, the fidelity level of a generated

video and its corresponding input script can be approximated

by the average of all the action similarities obtained as:

Fj =
1

N

N∑
i=1

di,j . (9)
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It is important to emphasize that the equation above is

just an approximation of the real fidelity level, as noise may

have been introduced during the whole process by the video

action recognition engine and the textual similarity comparison

mechanism. The human-involved simulation observed accu-

racy (accept rate) is 87.3% in our experiment by comparing

the outcome calculated by equation (9) and human subjective

judgment with a pre-defined threshold for acceptance.
The full (or partial) occlusion of characters dominant the

performance of the action recognition. Hence it is intuitive

to investigate whether the degree of occlusion of characters

according to all admissible camera parameters is correlated to

the di,j obtained in equation (8). Let us denote by oi,j the

occlusion percentage of all characters involved in ai shot by

camera mj , where J is the total number of admissible cameras.

Then the average occlusion Oj can be calculated by:

Oj =
1

N

N∑
i=1

oi,j . (10)

As shown in Fig. 4, there is a high correlation between F0

and O0 (i.e., the fidelity and occlusion level measured by the

0th camera of the admissible cameras), and their relationship

can be approximated by a linear function.

Fig. 4: The plot of pairs of (O0, F0) in dots for the 0th default

camera and the linear function F0 = αO0 + β to fit the dots

Let us denote by Df the fidelity distortion; then Df can be

modelled and represented by a function of the selected camera

at each time t, as the object occlusion level is determined once

the camera is specified at a certain timestamp. Therefore, Df

can be calculated by:

Df =
1

T

T∑
t=0

[αO(ct) + β], (11)

where O(ct) is the occlusion measurement function for all

subjects and objects for the selected camera ct at time t, α
and β are the parameters that can be derived by fitting the

(Oj , Fj) pairs by a linear function.

C. Joint Optimization
We can optimize both aesthetic and fidelity aspects by using

a weighting factor λ between [0, 1] to bridge both models, the

total distortion can be represented as follows:

D = (1− λ)Da + λ ·Df . (12)

When λ is set to a value close to 1.0, the fidelity distortion

is more important, otherwise for λ close to 0, the aesthetic

distortion becomes dominant.

Our goal is to find the optimal solution {c∗t } such that

{c∗t } = argminct
D∗. To implement the algorithm for solving

the optimization problem, we define zk = ck and a cost

function Dk(zk−q, · · · , zk), which represents the minimum

total distortion up to and including the kth frame, given that

zk−q, · · · , zk are decision vectors for the (k − q)th to kth

frames. Therefore DT (zT−q, · · · , zT ) represents the minimum

total distortion for all frames, and thus

min
z

D(z) = min
zT−q,··· ,zT

DT (zT−q, · · · , zT ) (13)

The key observation for deriving an efficient algorithm is

the fact that given q + 1 decision vectors zk−q−1, · · · , zk−1

for the (k− q−1)st to (k−1)st frames, and the cost function

Dk−1(zk−q−1, · · · , zk−1), the selection of the next decision

vector zk is independent of the selection of the previous

decision vectors z1, z2, · · · , zk−q−2. This means that the cost

function can be expressed recursively as

Dk(zk−q, · · · , zk)
= min

zk−q−1,··· ,zk−1

{Dk−1(zk−q−1, · · · , zk−1)

+
λ

T
[αO(ck) + β] + (1− λ){[ω0 · V (ck)

+ ω1 · C(ck) + ω2 ·A(ck)
+ ω3 · S(ck, ck−1) + ω4 ·M(ck, ck−1)]

+ (1− λ)(1− ω0 − ω1 − ω2 − ω3 − ω4)·
U(u, ck, ck−1, · · · , ck−q)}}.

(14)

The recursive representation of the cost function above makes

the future step of the optimization process independent from

its past step, which is the foundation of dynamic programming.

The problem can be converted into a graph theory problem of

finding the shortest path in a directed cyclic graph (DAG). The

computational complexity of the algorithm is O(T × |Z|q+1)
(where |Z| is the cardinality of Z), which depends directly on

the value of q. For most cases, q is a small number, so the

algorithm is much more efficient than an exhaustive search

algorithm with exponential computational complexity.

IV. EXPERIMENTAL RESULTS

In this section, the details of the simulation fidelity model

are demonstrated, and the proposed framework is evaluated by

comparing the proposed camera optimization framework with

the state-of-the-art solution without fidelity model.

The video action recognition engine is built following

the work of sequence to sequence neural network for video

caption [18] with additional attention layer; it is first trained

and tested with the MSR-VTT public data set [19] and then

trained using our own data set for 2000 epochs. The Adam

optimizer [20] is utilized with a batch size of 128, and the

learning rate starts with 0.0004 and gets decreased every 200

epochs by multiplying it by the decay factor of 0.8. It takes

around 8 hours to finish the whole training process based on

the NVIDIA GTX 2080 TI GPU.
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Fig. 5: Sample frames for the whole action maintaining chronological order from left to right. The optimization using the

fidelity model obtains the camera settings (bottom), representing the entire action in the frame.

A. Value of Fidelity Model

To evaluate the value of the fidelity model, we compared

the proposed framework with an existing auto-cinematography

solution [4] which uses an aesthetic model in the optimization.

The experiments indicate that the proposed solution achieved

better performance for the various scenarios as shown in the

following:

Entire action: In animation, the character’s action can

take seconds to complete thus may cross dozens of frames.

As shown in Fig. 5, the video frames generated without the

fidelity model (as shown in the top row) were compared with

the ones with the fidelity model (as shown in the bottom row),

and the sample frames for the whole action were demonstrated

in chronological order from left to right. It is very clear that

the bottom row can represent a good abstraction of the entire

movement of characters’ actions while the top row cannot

because there is a referee built in the system to keep the video

frames easy to understand.

Full-body: In animation, some of the character movements

need the virtual camera to be able to capture the whole body

of the character to provide a better viewing experience. Fig. 6

shows one of the examples, we can see that the action “push”

of the character is better captured by the full body camera.

Fig. 6: Captured “push” action scene from the script: Lead the

witch finder inside, the optimization was done only for Da

(left), the optimization was done based on Da +Df (right)

Single-character: The use of a single character shot is

also very important in animation. For example, to express the

emotion of anger, a single close-up of the character’s face is

better to convey this emotion to the audience (as shown in

Fig. 7)

Fig. 7: Captured “angry” emotion scene from the script: Lead

the witch finder inside, the optimization was done only for Da

(left), the optimization was done based on Da +Df (right)

Fig. 8: Captured dialogue scene from the script: interrupt the

conversation, the optimization was done only for Da (left),

the optimization was done based on Da +Df (right)

Multi-character: Multi-characters interaction in animation

is very common. Take dialogue scenes as an example, for the

audience to understand the relationship between the characters,

it is sometimes necessary (as shown in Fig. 8) for both sides

of the dialogue to appear in the frame at the same time.

To better demonstrate the performance of various models,

three example videos of comparison results can be found in

video starting from 02:33 https://youtu.be/MMTJbmWL3gs

(Fidelity Model Comparison) to experience the differences

between the animation videos with and without the fidelity

model in the joint optimization.

B. Ablation Studies

For ablation studies,the influence of distortion weight co-

efficients (λ) and main parameters (V,C, S, U ) on the opti-
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Fig. 9: Aesthetic component impact on

the optimization results (λ = 0.1)

Fig. 10: Aesthetic component impact on

the optimization results (λ = 0.5)

Fig. 11: Aesthetic component impact on

the optimization results (λ = 0.9)

mization results are compared separately for the optimization

process.
In Figs. 9, 10, 11, the optimized curves are compared with

others with one selected component that is intentionally not

optimized, and the setting of λ= 0.1, 0.5, and 0.9 are compared

to demonstrate the impact of fidelity. It can be observed that

the overall impact of the unoptimized component in λ=0.9 is

smaller than that of λ=0.1, which is understandable because

the former case emphasizes the fidelity factor much more

than the aesthetic factor. The figures indicate that camera

configuration has a very strong impact on the performance

of the system with a gain of 25-32%, shot duration ranks the

second with the gain of 16-35%, and visibility has the least

impact.

V. CONCLUSIONS

3D Animation typically requires a professional team, suf-

ficient funding and resources, knowledge of cinematography

and film editing, and much more. Thus this field is, in general,

not accessible to non-professional. In this paper, we presented

T2A to reduce the animation production barrier for non-

professional users. T2A used an automatic cinematography

optimization method that can choose cameras and their as-

sociated settings based on a joint fidelity and aesthetic model,

in which the comprehensiveness of visual presentation of the

input script and the compliance of generated video with given

cinematography specifications are mapped into a mathematical

representation. Although the experimental results indicate both

the time consumption and quality advantage of the proposed

framework, we believe further investigations on the fidelity and

aesthetic modeling are needed to make the solution generally

applicable to a broader scope of film-making tasks.
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