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Abstract
The traveling-wave tube (TWT), also known as the traveling-wave amplifier (TWA) or traveling-wave
tube amplifier (TWTA), is a widely used amplifier in satellite communications and radar. An
electromagnetic signal is inputted on one end of the device and is amplified over a distance until
it is extracted downstream at the output. The physics behind this spatial amplification of an
electromagnetic wave is predicated on the interaction of a linearDC electron beamwith the
surrounding circuit structure. Pierce, known as the ‘father of communications satellites,’was the first
to formulate the theory for this beam-circuit interaction, the basis of which has since been used to
model other vacuum electronic devices such as free-electron lasers, gyrotrons, and Smith-Purcell
radiators, just to name a few. In this paper, the traditional Pierce theorywillfirst be briefly reviewed;
the classic Pierce theorywill then be extended in several directions: harmonic generation and the effect
of high beam current on both the beammode and circuitmode aswell as ‘discrete effects’, giving a
brief tutorial of recent theories of TWTs.

Introduction

Throughout the history of commercial and defense applications involving electromagnetics, there has always
been a high demand formicrowave andmillimeter wave amplifiers that offer both high power output andwide
bandwidth.One candidate thatmay fulfill these stringent requirements is the traveling-wave tube (TWT), also
known as the traveling-wave amplifier (TWA) or traveling-wave tube amplifier (TWTA). This device is widely
used in satellite communications and radar applications.

It turns out that a viablemethod of amplifying a given electromagnetic wave is by passing this signal through
a periodic structure and co-propagating it with a linearDC electron beam. To reduce complexities, this beam-
circuit interaction takes place in vacuum. In such a set-up, the travelingwave gains energy at the expense of the
kinetic energy of the electron beam. This continuous interaction and subsequent amplification of the
electromagnetic wave happens over a distance (the length of the interaction region of the TWT) until the
amplifiedwave is extracted at the output.

Before the inventionof theTWT, the klystron amplifier (1935)wasoneof thefirstmicrowave amplifiers used
[1–4]. This device thoughhad several limitations.Themostnotable one is that theklystronhadnarrowbandwidth, as
amplification is restricted to the resonant frequencies of the klystron cavities. The idea then cameabout to couple the
individual cavities of amulti-cavity klystron to a common transmission line so that theremaybe a continuous in-
phase interactionbetweenbeamandcircuit [3, 4]. This eventually led to thedevelopment of the traveling-wave tube
amplifier. Figure 1 shows the evolutionof the klystron to the traveling-wave tube.

RudolphKompfner of England, interestingly an architect by profession, was the first to propose the idea of a
traveling-wave tube.He andNils Lindenblad of theUnited States used ametallic helix as the circuit structure for
propagating the signal in phase with the centered pencil electron beam in vacuumand are creditedwith being
thefirst to create the TWTas it is known today [5, 6]. Prior to this, Haeff proposed a similar idea but had the
electron beamon the outside of the circuit, leading to poorer efficiency [7]. Kompfner’s invention of the TWT
then aroused the intense interest of JohnRPierce who then laid the foundation of the TWT theory andwas later
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known as the ‘father of communications satellites’ [8]. A schematic diagramof amodernTWT is shown in
figure 2.

As can be seen infigure 2, an actual TWT is a complex device, consisting of components (left: cathode,
electron gun, etc) that create and form the electron beam, the beam-circuit interaction region (middle: helix,
electron beam, etc), and components (right: collector) that collect the ‘spent’ beam. Each of these topics in and of
themselves constitute a library of study. In this paper, the focuswill be restricted to the physics in the beam-
circuit interaction regionwithin the helix (figure 2). In particular, the standard beam-circuitmode coupling
theory of Pierce will be examined. Using the Pierce theory as a basis, wewill then extend it to describe effects
originally neglected by Pierce: harmonic generation and the effects of high beam current on the circuit as well as
connecting the continuouswave picture of Pierce to a discrete circuit formulation.

To begin, itmust be emphasized that the operation of a TWT, or virtually any beam-drivenmicrowave
source, is predicated on the interaction of an electron beam in vacuumwith an in-phase, co-propagating
electromagnetic wave on a circuit structure. As such, it is instructive to analyze each of these two components:
beam and circuit separately and then describe their interaction, as was also done by Pierce [10]. Thismethod of
analysis andmode coupling is not restricted toTWTs, rather, the techniques presented here are quite general
and applicable to all beam-circuit interactions between charged particles and electromagnetic radiation.

The electron beam

As can be seen infigure 2, the electron beam is formed outside of the beam-circuit interaction region. Electrons
are boiled off from a thermionic cathode (thermionic emission) or emitted fromamaterial using strong electric
fields (field emission). In either scenario, a voltage is externally applied to the cathode and this is essentially the
kinetic energy of the beam entering the interaction region.Wewill denote the kinetic energy of this beamby
voltageVb, corresponding to aDCbeamvelocity v0. Invoking conservation of energy in the non-relativistic
regime,

Figure 1. Schematic diagram showing the evolution of amulti-cavity klystron (a) to a traveling-wave tube amplifier (c). (b) shows the
multi-cavity klystronwith its cavities coupled to a common transmission line.
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For simplicity, it is assumed that there are no temperature effects on the beam so that the beam is ‘cold’ or
mono-energetic (introducing temperature effects will be slightlymore complicated butwill essentially introduce
a spread in electron velocities centered around amean value).We further assume that theDCbeammotion is
one-dimensional, i.e., we implicitly assume that there is an infinite axialmagnetic field confining the beam. In
reality, this is provided by an external solenoid or periodic permanentmagnets.

The current density of the beam is then defined as: r=J v,where ρ is the charge (electronwith charge –e and
massme) density of the beam. This current density is related to the beam current, which is externally adjustable,
by r= =I JS v S,0 0 0 where S is the cross-section of the beam. Thus,

( )r =
I

v S
. 20

0

0

The two externally adjustable parameters of the beam: theDCbeamvoltageVb and theDCbeamcurrent I0
control the unperturbed electron beamvelocity v0 and the electron charge density ρ0, respectively. In the absence
of any perturbation, the electron beam travels through vacuum in the axial directionwith these unperturbed
properties.

An input signal of frequencyωwould induce a density perturbation on the beam, ρ1, whose characteristic
propagation constant on the beam is /b w= v .e 0 That is, thewave-like density perturbation on the beam is
carried along the beamwith the beam’s unperturbed velocity v0. The simple relation, w b= v ,0 is often known as
the beammode, whereβ is thewavenumber or propagation constant (usually designated as k in the plasma
physics literature). For a fixedω (andDCbeamvelocity v0), b b= ,e the ‘electronic’wavenumber defined above.
This beammode is the dispersion relation for a one-dimensional linear electron beamwith drift velocity v0,
relating the frequency of amode of propagation to the corresponding propagation constant. Furthermore, a
velocity perturbation v1, a current perturbation I1, and an electric field (or electric potential) perturbation E1
would also be introduced to the beamby the signal.With this understanding, and using a simplemodel of the
beamas a non-neutral plasmawith the fluidmodel, the governing equations for the velocity and density
perturbations on the beam can bewritten down, relating these quantities to the perturbed electricfield and beam
current:
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Figure 2. Schematic diagramof a traveling-wave tube amplifier. There aremany components to a TWTA. In this paper, wewill
concentrate only on themiddle section, the helix, of the above figure: the beam-circuit interaction region. The slow-wave circuit
shown here is a helix (with support rods). Image from [9]. This diagramof helix TWThas been obtained by the author(s) from the
Wikipedia website, where it is stated to have been released into the public domain. It is includedwithin this article on that basis.
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turbedDCpart (subscript ‘0’) and a linearwave-like ACperturbation (subscript ‘1’) due to the signal at
frequencyω3. Substituting this linear expansion into equations (1′) and (2′) and taking advantage of the fact that
the unperturbed quantities are constant in space and time, one can derive the ‘linearized’ force law and
continuity equation for the beam electrons respectively:
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remembering that the current density is the product of the charge densityρ and the velocity v.Here, the axial electric
fieldE1 is a superposition of a component due to the electromagnetic signal (circuitwave)EC and a component due
to the space charge of the beamESC. The space-charge termwillmodify the beammode, but accuratemodeling of
this term remains elusive.We shall return to this point later on (see section ‘BeyondPierce’). The governing
equations, as they are now, are not closed (3 variables:{ }rv E, , with 2 equations). Theremust be at least onemore
independent equation: this comes in the formof the so-called slow-wave circuit equation that describes how the
electromagneticwave reacts to the electronbeam.This is described in the next section.

The electromagnetic circuit

In vacuum, an electromagnetic signal, a transverse electric andmagnetic (TEM)wave, propagates at the speed of
light, c. However, for there to be appreciable gain for the input signal, the condition of synchronism between the
wave and electrons in the beammust be satisfied. That is, »v v ,ph0 where vph is the component of the phase
velocity of thewave that co-propagates with the beam. This synchronism condition is required for the beam’s
kinetic energy to be effectively transferred to thewave energy of the electromagnetic signal. Since the speed of the
electrons cannot exceed c, onemust slow down the phase velocity of thewave in the direction of beam
propagation so that this condition of synchronism is achieved. This is realized through the use of a slow-wave
structure (SWS). A good SWS is designed so that the signal has the axial projection of its phase velocity about
equal to the beamvelocity over awide range of frequencies for broad-band amplification. Ametallic helix wire
has such a property and thus is one reasonwhy it is widely used in the industry andwhywewill analyze it here.

There are of course other SWSdesigns for different purposes. A listing anddescriptionof someof these SWS
designs canbe found in [11]. Traditionally speaking, all of the structures aremetallic, butmuch effort has, in recent
years, beenplaced in studyingmetamaterial SWS’s [12, 13]. These have very different dispersion characteristics than
theirmetallic counterparts leading to different gainproperties.However, their beam-circuit interactionmay still be
capturedby themode-coupling theory of Pierce (in the small-signal regime); the physics andmathematics of the
beamand circuit coupling remains the same.Different beamconfigurations (e.g. pencil beamversus sheet beam
versus annular beam)will also play a role in the gain characteristics of the tube (see [11a] for a comparisonbetween
pencil and annular beams and [11b] for a discussion comparing sheet beams, an ‘unwrap’of annular beams, to
pencil beams; [14] talks about the plasma frequency reduction factor for different beamconfigurations, a topicwe
will comeback to soon). Still to this date though, the helix SWScoupledwith apencil electronbeamremains the ‘go-
to’ forhighpowermicrowave amplificationbecause of itswide bandwidth and ease of construction.

The reasonwhy a helix TWTmay offer a wide bandwidth is qualitatively illustrated infigure 3.
Figure 3(a) shows a very thinmetallicwire over aperfectly conductingplane.This idealized systemadmits aTEM

wave that propagates along thewire at the speedof light, regardless of the frequency.Moreover, since theRFelectric
andRFmagneticfields of thisTEMmodedecay like 1/r from thewire, for a thinwire (rbeing thedistance away from
wire), the electromagnetic power carried along this thinwirewill thenbe concentrated in the immediate vicinity of
the thinwire. It is then easy tounderstand thefigure shown infigure 3(b): a thinhelix inside a conducting cylindrical
waveguide is able to transport electromagnetic energy in the vicinity of thewire at the light speed along thehelix, for a
verywide rangeof frequencies, i.e.,wide bandwidth.Thephase speedof thisTEMmode along the z-axis is greatly
reduced from c if the helix is tightlywound. Fromfigure 3(b), the incremental distance (ds) along thehelix of

diameterd andpitchp is ( )( ) ( )( )q= + = + = +q pds d dz dz dz1 1 .d d d
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TEMwavepropagating along thehelix, thephase speedof this local TEMwaveprojected along the z-axis is, =dz

dt
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Note that vph is independent of frequency in this approximation.Thus, the

3
What happens if we keepmore terms in the expansion? See the section, ‘Beyond Pierce’ below.
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synchronismcondition for beam-circuit interactions, »v v ,ph0 maybemaintainedover awide frequencyband.
Since this phase velocity is independentof the frequencyof the injected signalω,multiple octavebandwidths for the
helixTWTare a reality. This fact promptedour investigationof harmonic generation.

Becausewe are essentially dealingwith the propagation of electromagnetic waves in somemedia, it should be
expected that the governing equation for the electric field on the circuit will be the Telegrapher’s Equations and
hence theWave Equation (orHelmholtz Equationwith awavenumber along the direction of beampropagation,

/b wº vph ph)with somemodification due to the presence of the beam. This is indeed the case:

( )b+ G = G
d E

dz
E j KJ S 3C

C ph

2

2 0
2

0
2

1

where EC is the circuit electric field,Γ0 is the effective propagation constant of this circuit wave (=βphwith an
imaginary part to account for attenuation in the circuit), andK is known as the interaction impedance
(essentially a pure geometrical quantity that is a proportionality constant between the voltage and current of the
‘cold’no beam system). Assuming time and spatial harmonic fields, equation (3)may bewritten as:

( )b

b
=

G

G -
~
E

j K
J S a, 3C

ph0
2

0
2 2 1

which gives the circuit electricfield
~
EC excited by the beam’sACcurrent J1 at frequencyω.Note that if there is no

electronbeam,  =J 0,1 therewill be a non-zero circuit electricfield
~
EC only if b = G ,0 which is the vacuumcircuit

modedispersion relation (compare this to the beammodedispersion relation considered above), and this circuit
electricfield

~
EC is then simply the vacuummode solution. In otherwords, if b = G ,0 anyfiniteACcurrent on the

beamwill yield an infinite response on the circuit electricfield
~
E ,C awell-known fact for synchronous excitation, as

clearly shown in equation (3a). It should benoted that this analysis of the circuit, followingPierce [1–4, 10], deals
onlywith the fundamental passband and its interactionwith the beam.Because of this, Pierce’s theory is also used
for the interactionbetween a single space harmonic of the circuit and the fundamentalmodeof the beam to assess
the strength of interaction at that space harmonic. In general though, there are an infinity of passbands and space
harmonics of the circuitmode and the beammode, aswewill soon see.

To illustrate what the differentmodes of propagation look like for a TWT, a sample Brillouin or cold-tube
dispersion diagram (ω versusβ plot, obtained from b = G ,0 the expression forwhich is given in [15]) is shown in
figure 4 for the ‘tape’helix (amodel of the helix withfinite width but infinitesimal thickness in the radial
direction). In this example, no cold-tube circuit loss is assumed ( ( )G =Im 0,0 there is no attenuation in the

Figure 3. (a)Depiction of the TEMfields of a thinwire over a perfectly conductingmetal plate. (b)The formation of a helix TWT from
‘wrapping’ the set-up in (a).
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circuit). This tape helix has a period p and hasmultiple passbands (two shown infigure 4 in blue). In between
these passbands are stopbands where no signal can be supported by the circuit. One should note the periodic
nature of each passband corresponding to the space harmonics n (starting with n=0 in themiddle andmoving
outwards; the segments with positive slope correspond to the positive space harmonics and the segments with
negative slope correspond to the negative space harmonics). The propagation constant,βn, of the nth spatial
harmonic is:

( )b b
p

= + =   ¼
n

p
n

2
, 0, 1, 2, , 4n 0

β0 (or justβ in the literature) is called the fundamental, andβn (n≠ 0) is called the nth space harmonic.
The beammode w b= v0 (as discussed before) is also shown infigure 4 in red. As can be seen, the

synchronism condition ( »v vph0 ) between the beammode and the circuitmode is satisfied for awide range of
frequencies. This is what gives the tape helix its characteristic wide bandwidth.

Note that the point of operation for a TWT iswhere the beammode (red) intersects the circuitmode (blue)
on the fundamental branch; as discussed before, this is where synchronismbetween beam and circuit is the
strongest. However, astute observers offigure 4will note that the beammode intersects the circuitmode atmore
than one point, on the other branches of which there are an infinity of them (not shownhere). These ‘residual’
modes are important andwill be discussed later alongwith themirror problemof the intersection of the circuit
modewith the infinity of beammodes besides the fundamental (c.f. equation (4)). For now,we just want to point
out that the type of intersection between circuit and beammatters: for amplification (generally what we desire
for a TWT), the circuitmode has a positive slope. If the beammodewere to intersect the part of the circuitmode
with a negative slope (e.g. the n=−1 branch), backwardwave oscillations will occur as the group velocity of the
circuit wave is in the opposing direction to the beammotion [16]. At the crossing between the forward and
backward circuitmode branches, the ‘band edge’where there is zero group velocity and the twowaves are tightly
coupled, an instability known as the ‘absolute instability’ can occur [17–19]. To be specific, this possible
‘absolute instability’ is the ‘π-point absolute instability’ (as it occurs for the phase advance of b p=p ), which is
different from the ‘absolute instability’ that can occur from the beam interactionwith the backwardwave. In
either case, near the ‘band edge’ or not, the ‘absolute instability’ is the result of the beam interactingwith a
dispersivemediumwith internally provided feedback leading to oscillations in the tube [18]. Oscillations in a
TWToccurring fromdeliberately exciting a backwardwave or from the ‘absolute instability’ (or even from
impedancemismatches at the ends of the circuit) are beyond the scope of this paper.We only note that they are
dangerous to TWToperation.

What we have allured to but have neglected to discuss thus far is the space-charge electric field ESC coming
from the beam,with good reason. Space-charge calculations in general are notoriously difficult, and there is no
generalmodel that can capture this internal self-force of the beam. It turns out, see the section ‘Beyond Pierce’,
that onemodel of space-charge effects is intimately tied to the higher-order passbands of the circuit and the

Figure 4.Dispersion diagram for a tape helix showing several circuitmodes (b = G ,0 blue) and the beammode (b = w ,
v0

red). Also

included in the Figure is the light line (b = w ,
c
black, dashed).
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higher-order beammodes. This higher-order interactionwas not initially captured by Pierce as his analysis was
concernedwith the interaction of the fundamental passband and beammode only. It should be noted though
that he did hypothesize the role of higher-order passbands of the circuit on space charge; for now,wewill group
space-charge effects under the term ‘QC’ or ‘Q’, following Pierce’s original notation. Thus, accessing space-
charge effects in TWTs boils down tofinding an expression for ‘Q’, known as Pierce’s AC space-charge
parameter.

TheBeam-Circuit Interaction andPierce’s theory ofmode-coupling

Now that we have described the beam and circuit separately, howdo they interact in such away to produce
amplification of the injected signal?When the beam enters the beam-circuit interaction region and feels the
circuit wave, the electrons in the beamwill respond to the sinusoidal nature of the electricfield of the signal.
Consequently, one can imagine that some electronswill be accelerated by the accelerating portion of thewave
and some electronswill be decelerated by the decelerating portion of thewave. This leads to the formation of
electron bunches in the electron beam. These bunches in turn cause the electric field in the circuit to increase by
inducingmore current in the circuit; electronmotion inducing currents in external circuits can be attributed to
the famous Shockley-RamoTheorem [20]. The resulting amplitude increase in the electric field in the circuit
causesmore bunching in the beam. The physicalmechanism is succinctly illustrated inGilmour’s book [1, 2].

From awavemechanics picture, a pair of space-charge waves on the electron beam are created from the
beam interacting with the circuit wave. These space-charge waves on the beam are analogous to longitudinal
pressure waves in air consisting of compressions and rarefactions. In this case, we have the fast and slow space-
chargewaves that co-propagate on the electron beamwith the circuit wave. The energy difference from the
slowing-down of the electrons in the beam to the slow space-charge wave phase velocity is given to the circuit,
causing amplification of the circuit wave. This beam-circuit interaction has proven to be effective: the growth of
the input signal, at least in the small-signal regime, is exponential with distance along the tube [1, 2]. TWTpower
gain of 60 dB (1million times) can be realized [21].

Eventually, asmore bunching occurs, the space-charge forces of the beamwill cause the electron bunches in
the beam to de-bunch. Furthermore, other effects such as the slowing downof the beam as awhole due to the
loss of energy to the circuit will limit TWTgain because the synchronism condition ( »v vph0 ) is no longer
satisfied [1, 2, 4]. Phenomena such as saturation, wave-trapping of electrons, etc. constitute full non-linear
operation of the TWT. These advanced topics are beyond the scope of this text. The linear or small-signal theory
discussed here is important as it essentially feeds into the non-linear theory (the formulation of non-linear
theory is predicated on the concepts introduced in the linear theory) and is stated to be able to accurately
describe∼85%of the tube length [1, 2, 4]. Historically speaking, the linear theorywas also thefirst
comprehensive theory developed to describe the innerworkings of the beam-circuit interaction. Because of this,
wewill focusmainly on the linear theory and its quasi-linear extensionwhenwe consider harmonic generation.

As stated before, the classical theory of beam-structure interactions in a TWTwas developed by Pierce [10],
whose treatment also provided the foundations for the understanding and design of awide range of
contemporary sources such as free-electron lasers [4, 22–24], Smith-Purcell radiators [4, 23–26], gyrotron
amplifiers [4, 26–30], metamaterials TWTs [12, 13, 31], andNonLinear Transmission Line (NLTL) based
sources [32].Wewill present the standard Pierce theory and further develop it to indicate other novel effects not
previously considered by Pierce. Pierce described the energy transfermechanism in terms of the interaction
between the space-charge waves on the electron beam and the electromagneticmode supported by the
electromagnetic circuit. Amplification of a signal of frequencyω is described by the complexwavenumberβ that
is a solution of what is known as the Pierce dispersion relation, which, in itsmost basic form [1, 3, 4, 10, 13,
22–24, 26–30], is a third-degree polynomial forβ(ω). This dispersion relation describes the coupling between
the beammode and the circuitmode [33, 34]. It has been used in the validation of non-linear, large-signal
numerical codes in the small-signal regime.

An interesting side note is that unlikemost topics, such as plasma physics and electromagnetic wave theory,
herewe consider the propagation constant as a function of the frequency. That is, one is generally given a
frequency (the frequency of the input signal to be amplified) and is taskedwith finding the corresponding
propagation constant, which is in general complex. The imaginary part corresponds to either the growth
(amplification) or decay (attenuation) of thewave in the system.

We are now in a position to self-consistently solve the governing equations for the beam (equations (1), (2))
and circuit (equation (3)) to yield solutions describing the evolution of both, as a coupled system.With some
manipulation, the three equations can be combined to yield:
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which is known as Pierce’s 4-wave dispersion relation. It is called as such because the solution of this relatively
simple fourth-order polynomial for the propagation constantβ given the frequency of the input signalω yields
four roots, with each root corresponding to a permittedmode of propagation orwave. The equation itself has a
satisfying interpretation: the first square bracket on the LHS represents the beammode (2 forward propagating
space-charge waves), the second bracket represents the cold-tube circuitmode (1 forward and 1 backward
propagating circuit waves), and the RHS represents the coupling of the two. The quantity ºC KI

V
3

4 b

0 on the RHS

of equation (5) (also appearing in the beammode on the LHS) is known as Pierce’s gain parameter or also as
Pierce’s coupling constant. This dimensionless parameter is called as such because it gives ameasure of the gain
of the TWTwhile also giving ameasure of the degree of coupling between the beam and circuit.

To simplifymatters (this was back in the daywhen solving quartic polynomials was a chore!), a common
approximation is to assume thatC is small and to neglect the backward circuit wave, as it is primarily the forward
waves that contribute to the gain of a TWTdownstream.Doing so and using the notation of Pierce, the so-called
3-wave dispersion relation reads:
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For comparison purposes (c.f. equation (5’) below), Pierce’s 3-wave dispersion relation forβ reads:

[( ) ][ ] ( )b b b b b b- - - = -QC C a4 . 6e e ph e
2 2 3 3 3

Onewould solve equation (6) for the incremental propagation constant δ (or equation (6a) tofind the real
physical parameterβ) knowing the detune parameter b, circuit loss parameter d, gain parameterC, and space-
charge parameterQ. Collectively, the dimensionless parameters {C,Q, b, d} are known as the Pierce parameters
and they completely characterize a givenTWT set-up. These parameters are ubiquitous in the tube literature and
industry; even themore complete large-signal analysis uses these parameters as input. The values of these
parameters with the exception of the notorious space-charge parameterQmay be determined apriori from just
knowing the basic properties of the beamand cold circuit structure. Typical numerical values are:

( )b b b~ ~ ~ O 1 ,e ph ( )~ -- -C O 10 10 ,3 1 ( )~ -Q O 1 10 , and ( )~d O 1 .
It should be noted that reflection from the ends andwaves near the band edges cannot be accounted for by

Pierce’s 3-wave theory. A classical look into Pierce’s 4-wave theory and its reduction to the 3-wave theory is
provided by Birdsall and Brewer [35]. The importance of the 4-wave description, and the effects of reflection on
the TWT stabilitymay be found in [36–38].

Beyond pierce

The abovewas a tour-de-force through electron beamdynamics and electromagnetic wave theory culminating
in a simple yet powerful description of beam-circuitmode coupling and interaction in a TWT.Onemust
remember that this type of analysis was done back in the early tomid-20th century.Many advancements in
terms ofmodeling andmathematics and the advent of scientific supercomputing have taken analyses of such
devices to newheights. Consequently,more complex and accurate descriptions on the inner workings of a TWT
exist. Nevertheless, there is still a subtle charm to a simple theory. Not only can it give a ‘back-of-the-envelope’
assessment of a given problembut it can provide great physical insights into the nature of such interactions and
processes. In this vein, wewill now attempt to relax some of the assumptions of Pierce and extend his theory in a
simplemanner and draw further insights into the beam-circuit interaction. The topics covered herewill be
harmonic generation and space charge in TWTs aswell as ‘discrete cavity’ effects, relating TWTanalysis to
klystron analysis. A brief synopsis of thefirst two topics are provided in the following paragraphs.

The classical Pierce theorywas formulated for a single (fundamental) frequency, that of the input signal.
However, in a TWTwith an octave bandwidth or greater, in particular thewidely used helix TWT, the second
harmonic of the input signalmay also bewithin the amplification band and thusmay also be generated and
amplified, with no input at this second harmonic frequency. An extension to the Pierce formulation that
incorporates the generation of harmonics will be presented here. It is shown that the second harmonic arises
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mostly from anewly discovered dynamic synchronous interaction instead of by the kinematic orbital crowding
mechanism that is themost dominant harmonic generationmechanism in othermicrowave devices. The
methodology provided here, which is a natural extension of Pierce’s original theory,may be applicable not only
to TWTs but to other high-powermicrowave sources.

In beam-circuit interactions, the space-charge effect of the beam is important at high beam currents. In
Pierce’s TWT theory, as stated before, this space-charge effect ismodelled by the parameter which he calledQ in
the beammode. A reliable determination ofQ remains elusive for a realistic TWT. Previously,Wong et al [39]
constructed thefirst exact small-signal theory for the beam-circuit interaction for the tape helix TWT, from
whichQmay be unambiguously determined. In the process of doing so, it was discovered that the circuitmode
in Pierce’s theorymust also bemodified at high beam current, an aspect overlooked in Pierce’s original analysis.
This circuitmodemodification is quantified by an entirely newparameter called q, introduced for the first time
in TWT theory. For the example using a realistic tape helix TWT,wefind that the effect of q is equivalent to a
modification of the circuit phase velocity by asmuch as two percent, which is a very significant effect. A brief
summary of qwill be provided here.

Harmonic generation inTWTs

The subject of harmonic generation in a TWThas traditionally been studied in the non-linear, large-signal
regime.Wewill not delve into large-signal theory here as it is beyond the scope of this text. The theory itself is
more complete as it can not only capture non-linear phenomena such as saturation, wave-trapping of beam
electrons, etc. but can also recover the linear, small-signal regime.However, it ismuchmore complicated than
the relatively simple linear theory presented here thus far and simple insights, whichwe stress here, cannot be
easily drawn.Wewill note here that large-signal TWT theory and also the study of harmonics of the input signal
can be traced back to the classical paper byNordsieck [40], who also provided thefirst analysis of TWT
efficiency. Referencesmay bemade to Tien et al, Rowe, Giarola, andDionne [41]whose subsequentworks relied
heavily onNordsieck’s initial theory.

Taking a step back, it is well-known in klystrons that the dominant cause of harmonics of the input signal to
be generated is due to linearized orbitalmotion from an input signal leading to orbital crowding, which leads to
harmonic generation kinematically [3, 42] (see figure 5 below). In such scenarios, the extreme case of charge
overtakingmay also occur and contribute to harmonic generation. It was not until recently that such a theory on
harmonic content in the beam current of a TWTwas developed byDong et al [43] in the small-signal regime. In
thatwork, the linearized electron orbitsmight lead to a second harmonic AC current as high as 25%of theDC
beamcurrent, and this was favorably compared to the large-signal TWTcodeCHRISTINE [44].

A little after Dong et al’s paper, another source of harmonic content in a TWTwas discovered: weak non-
linearities in the electron orbits. It turns out, with respect to theRF power output, that this source of harmonic
generation ismuchmore important as it possesses the property of synchronism between the beam and circuit in
both space and time, the underpinning concept behind the operation of TWTs. The effect of orbital crowding
described in the preceding paragraph is negligible in comparison [45].

Figure 5.An (exaggerated) illustration of harmonic generation due to orbital crowding. Crowding in the linear orbitsmay lead to
harmonic current generation, as shown in klystron theory [3] andTWT theory [43].
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Themain idea behind this alternative view on harmonic generation in TWTs stems from carrying out
higher-order expansions of the governing equations for the beam [recall: Pierce’s small-signal analysis is a linear
theory; this is the answer to the above question posed in Footnote 1]. Theseminor corrections on the quantities
of the beam corrects the linear quantities of Pierce [46] but also turn out to be the harmonics; basically, we regard
the quantities of interest: the electric field (potential), beamdensity and velocity (current) to be represented by a
Fourier series. This interpretation then is a quasi-linear theory.

The electromagnetic signal causes the electrons in the beam to bunch. Tofirst order, these bunches are at the
frequency of the signal itself, leading to Pierce’s linear theory. The orbits of the beam electrons though are better
represented at higher orders and thus containmore frequencies of the input signal. In response, the circuit picks
up each of these frequencies individually (Maxwell’s Equations are linear). The circuit then not only supports an
amplifying signal at the fundamental (input) frequency but also a spectrumof harmonics of the original signal,
all being spatially amplified. This of course can only happen if the spectrumof frequencies is within the
bandwidth of the TWT: any frequency outside of the characteristic bandwidthwill not be supported by the
structure. The ubiquitous helix structure is one such circuit structure that can have octave bandwidth, as
evidenced by figure 4 above.

Put another way, if we inspect the equation for the beam, equation (1′), and continue the expansion beyond
order 1 (Pierce), wewillfind, for example for n=2, the non-linear convective derivative in the force law, ¶

¶
v ,v

z1
1

where = w b-v v e j t j z
1 10

0 0 is the linearized electron fluid velocity at the fundamental frequency, whose

wavenumber b » w
v0

0

0
where v0 is theDCbeam velocity. This convective derivative, ¶

¶
v ,v

z1
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"force" proportional to w b-v e j t j z
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2 2 20 0 (analogous to the ‘ponderomotive force’ in the latter’s derivation [47]).
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b
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b

w
b
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2 0
0

0

0

0
the condition for synchronism in a TWT. This "force"may then

synchronously excite a second harmonic wave, both in time and space, whichmakes it amuchmore powerful
contributor to second harmonic generation. TheACharmonic current due to orbital crowding, described
initially, does not possess this property of synchronization in both time and space, and is therefore amuch
weaker contributor in the generation of RF power at the second harmonic. However, this previous theory is able
to account for the extreme case of charge overtaking, while the quasi-linear theory here cannot. Solving the
governing equations in their differential form, c.f. equations (1′), (2′), and (3), also allows one to introduce non-
uniformquantities in the parameters thatmay be due to, for example, circuit fabrication errors. This was
extensively examined in [48].

Space-charge effects in TWTS

Let us now go back to the notorious problemof space-charge effects, orfinding a closed form expression forQ in
the Pierce picture.Many theories have been proposed that attempt to give a general formulation for calculating
Q for a general beam and circuit structure. A treatise of the subtlety of this problem is given by Lau andChernin
[49], who ultimately advance the idea thatQ is due to the interaction of the beamwith the higher-order circuit
modes (passbands higher than the fundamental). This interpretation ofQ originating from residual interactions
between beam and circuit, the ‘remainder,’was actually also proposed by Pierce [10], who quickly abandoned
such an interpretation [49], adhering instead towhat the standard Pierce theory is now: the interaction between
the fundamental circuit and beammodes.

Physically speaking, the calculation of the space-charge parameter boils down to calculating the ‘reduced’
plasma frequencyωq of the beam. Like a plasma, the beam,which can be considered to be a non-neutral plasma,
has a natural frequency called the electron beamplasma frequency, which is the frequency of the space-charge
waves in an unboundedmedium.However, in reality, the beam is bounded in the sense that it has a definite
shape and is enclosed by thefinite circuit structure. Thus, the plasma frequency of the beam is ‘reduced’. In this
view, the task is to calculate the reduction factor to the plasma frequency that accounts for the circuit structure
(including the SWS, taking into account, for example, the ‘field leakage’ in the opened sections of a helix). It
turns out that this calculation is intimately tied to the higher-order circuitmodesmentioned in the preceding
paragraph. Beforewe delve deeper into themystery of space charge, it is instructive tofirst understand the
prior art.

Themost widely used approximation of the space-charge parameterQC is prescribed by Branch andMihran
[14]. In the particular case of a thin tape helix TWTwith a pencil electron beam, Branch andMihran assume that
the helix is replacedwith a perfectly conductingmetallic cylinder of the same radius. They then calculate the

plasma frequency reduction factor
( )/

= =
w

w b+
F ,

T

1

1

q

p e
2 where the radial propagation constantT is given

explicitly in terms of Bessel functions by solvingMaxwell’s equations in this simplified geometry. An improved
model for the helix structuremakes use of what is known as a sheath helix, inwhich current is allowed to travel
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on the circuit in a helical direction [44]. But a cylinder or a sheath helix are still just approximations to the true
helix structure containing geometrical complexities like the openings. Furthermore, while there aremore
elaboratemodels [44, 50] on the AC space-charge effects in a helix TWT, none give the procedure of evaluating
QC. Furthermore still, these previouslymentionedmodels are external,meaning that the determination of the
space-charge parameter was done by considering a simplified version of the problem and then adding the results
in ad hoc.We seek though tofind a self-consistentmodel that takes into account the full problem (as opposed to
a simplified geometry for example).

A study using the pedagogicalmodel of a dielectric TWT that consists of a planar dielectric slab and sheet
electron beamwas done by Simon et al [51]. In thatmodel, where an exact ‘hot tube (including the beam)’
dispersion relationmay be readily derived, the idea of the higher-order circuitmodes yieldingQwas established
conclusively. In addition, that paper showed how to accurately evaluate the Pierce parameters once a closed
analytic formwas found. Thismodel however is deficient in that there is no periodic slow-wave structure in this
dielectric TWT (the dielectric slows down thewave), so higher harmonics in the beammode are excluded.

If, however, wemay find an exact dispersion relation for the circuit structure including all of the geometric
complexities and the beamdynamics for a realistic TWT, then possibly we stand a chance at determining an
expression forQ. As in [49] and [51], wemay cast the derived analytic dispersion relation into the formof Pierce
(equations (5) or (6)) and extract an exact expression for the Pierce parameters. In [15], a formally exact
treatment of the tape helix TWTwithout the electron beam (the ‘cold-tube’ dispersion relation)was presented
byChernin et al Later, in [52], this analysis was expanded on by the inclusion of the electron beam, giving a
formally exact ‘hot-tube’ dispersion relation.However, because of the complexity of the analytical dispersion
relation, it was unfeasible to rewrite it in a Pierce-like form. The alternative thenwas to numerically solve the
dispersion relation and ‘backtrack’ tofindwhat the Pierce parameters ought to be. In the process of doing so, it
was found that it was necessary to introduce a new parameter, termed q, in order for the equations to be
satisfied [39].

This newparameter q turns out tomodify the circuitmode inmuch the sameway that the original space-
charge parameterQ that wewere looking formodifies the beammode, shownhere for the 3-wave dispersion
relation:

[( ) ][( ) ] ( )b b b b b b b- - - - = - ¢QC qC C4 4 , 5e e ph ph e
2 2 3 3 3 3

Because of this, the interpretation of qhas been attributed to the effects of space charge of the beamon the
circuitmode, i.e. beam loading of the circuit. This view is supported by the fact that q increases with beam
current [39]. From a dispersion diagramperspective,much like howQ arises from the interaction of the
fundamental beammodewith the ‘remainder’ of the circuitmodes apart from the fundamental circuitmode, q
arises from the interaction of the circuitmodewith the beammodes of order higher than the fundamental,
completing the symmetry. Because the dielectric TWTdiscussed above doesNOT contain any periodic
components thatmake up the slow-wave structure, the newparameter q=0 in thismodel as there are no spatial
harmonics of the beam [39].

To demonstrate the effects of this q term, a plot of the roots of equation (6a) using the standard definition of
C and ubiquitousmodels ofQ (Branch andMihran and sheath helix [14, 44]) are given infigure 6 below along
with the roots of the exact hot-tube dispersion relation for a tape helix. The three roots represent the resultant
threewaves from the beam-circuit interaction in the system: a neutral root, a decaying (complexwith negative
imaginary part) root, and an amplifying (complexwith positive imaginary part) root.We, of course, care about
the amplifying part as it represents the linear gain of the TWT. The other twowaves however are also important
as they constitute what is known as the launching loss of the TWT (where the remainder of the initial power of
the signal is channeled to). Note that adding the fourth root (from solving the original 4-wave equation (5))
representing the backward propagatingwavewill change the results. Qualitatively, the three (main) roots will
remain the same, and the fourth root will be a neutral root with a negative propagation constant.

As can be seen infigure 6, there are differences in the solution and hence the predicted gain of a helix TWT
depending on themodels used. From the numerical solution to the exact hot-tube dispersion relation (red in
figure 6), one canfindwhat the Pierce parameters, namelyC andQ here, ought to be. These are plotted as a
function of frequency below infigure 7 alongwith the parameters’ respectivemodels/usual definitions. The new
necessary parameter q is also plotted.We see that if q=0, the values of the traditional Pierce parameters take on
unrealistic values, necessitating this new parameter tofit the prediction of the exact dispersion relation to Pierce
theory.

One assumption of thework in [39] is that there is no cold-tube circuit loss (i.e. Im( )G = 00 ). There is
ongoingwork to extend this q-theory to consistently include the effects of attenuation [53]. Furthermore, how
will the neglected backward-propagating fourthwave affect q, or the rest of the Pierce parameters for that
matter? Another open question, but one under active investigation, is the analytical formof q (the casting of the
exact dispersion relation into the Pierce form). This is currently beingworked on, but no official literature has
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been published yet. As a side note, a caveat of this q-theory is that even the traditionally defined Pierce parameter
C is changed, due to the presence of the beam. That is, it can no longer be determined apriori. Even using the
cold-tube dispersion diagram, likefigure 4, proves to be a zeroth-order picture, as nownot only is the beam
mode changed due to space charge but the circuitmode is also perturbed. This highlights just how circular the
beam-circuit interaction problem is,much like plasma physics. Thus,much remains to be done.

Discrete cavity analysis of TWTs

While the formulation thus far presented has centered around the groundwork laid by Pierce and therefore has
concentrated on treating the beam-circuit interaction as a continuum, it is also important to consider ‘discrete
cavity’ effects, relating back to the klystron-TWTpicture presented in figure 1. After all, the beam-circuit
interaction is not always purely continuous in a real system and having discrete effects allows formore freedom
on the part of themicrowave engineer to account for various effects, as will be briefly discussed below, not
amenable to standard Pierce theory. This also allows us to tie the TWT to othermicrowave structures such as the
klystron [54] and themagnetron [28], where there is not a continuous interaction.

Figure 6.Plot of the three roots (propagation constantβ) as determined from: Pierce theorywithQmodeled by Branch andMihran
(gray, dashed) [14], Pierce theorywithQmodeled by the sheath helixmodel as used byCHRISTENE [44] (blue, dashed), and the exact
dispersion relation (red, solid) as a function of input signal frequency. Image adapted from [39].
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Aswe have shown, Pierce theory reduces the complex geometry of the slowwave circuit to individual
travelingwaves thatmust then interact with a driving beam. In high frequency tubes [55], as well as potential
designs with relatively small numbers of cavities, the detailed adjustment of an individual cavity, either due to
manufacturing errors, or for attempts to control oscillation and reflections,might be necessary. This can be
challenging for Pierce theory, wherewe have implicitly used awave analysis. Oneway to handle this is to simply
allow the phase velocitymismatch, the gain parameter, and the cold-circuit loss to vary spatially in
equations (6)–(9) [48]. Alternatively, another potential avenue of theoretical development comes from treating
the individual cavities as discrete circuit elements with explicit coupling between the cavities. This allows
individual cavities to be tuned, both in frequency and in shunt impedance, to engineer the dispersion between
the beamand the electromagnetic structure, giving additional degrees of freedom to the tube designer. In terms
of Pierce theory, however, the individual cavities and their coupling results in a set of normalmodes. These
normalmodes havewell-defined phase and group velocities due to the explicit nature of the coupling, just as in
standard Pierce theory, but allow for non-uniform cavities to be used. Naturally, the transition fromdiscrete
normalmodes to awave formulation is well understood, as the number of cavities tends to large (infinite) values.

It should be noted that the discrete theory of TWTs has a long history. As a consequence,many
developments have beenmade to account for various effects and ultimately advance the theory. Somemore

Figure 7.Plot of the Pierce parametersC andQ and newparameter q as a function of frequency of the input signal. The parameters as
predicted by the exact theory (red, where ¹q 0) are compared to their traditional definitions:C is evaluated by averaging over the
cross-section of the beam (orange) andQ is determined fromBranch andMihran (gray) [14] and the sheath helixmodel (blue) as used
in CHRISTINE [44].When =q 0, unrealistic values of the parameters are obtained (yellow). Image adapted from [39].
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recent examples of this are listed in [56]. There is current, on-going theoretical, simulation, and experimental
work in better understanding the transition from a discrete number of cavities to an infinite continuum in a
tube, from the effects that afinite number of cavities introduces to the continuouswave interaction picture of
Pierce. New tube designs with a lownumber of cavities have been set up for this purpose of determining the
limits of the Pierce theory and the transition point to the discrete cavity regime.Here, wewill lay out the basics of
the theoretical formulation.

For illustration purposes, we can start by considering a travelingwave structure with just four cavities. After
this pedagogical introduction, wewill apply themethod to a real TWT.We assume a cavity can bemodeled as a
circuit with bulk parameters that can bewell described as a harmonic oscillator. This circuit then develops a
voltage due to electron beam current, source signals, and coupling between the cavities. If we define the
harmonic oscillator operator L as

⎧⎨⎩
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where (A,B,C,D) represent the cavity voltages,Z represents the cavity impedance, S is a general input source, c is
the coupling between the cavities, and I(x) represents the electron beam current at a given cavities’ location. This
current naturally has the impact of the previous cavities, so needs to represent a history of the current interaction
with the upstream cavities. Here, we only study the cold tube properties, sowe set these currents to zero, and set
the source term to zero. Furthermore, take the usual actions of normalizing the resonant frequency of the
isolated cavities to onewithout loss of generality, assuming sinusoidal solutions, and setting the quality factor to
infinity, equation (11) can then be recast intomatrix form,
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This equation has a number of nice features—first, it is tri-diagonal, which allows considerable linear algebra
tools to be used. Second, all of the cavity details can be included in thematrixM. Thus, equation (12) gives us the
homogenous solution to our slowwave structure. Sources can be added to the right hand side of equation (12) as
we go forward.

Here, however, wewill continue to focus on the eigenvalues of this system. These eigenvalues give the
resonant frequencies of the system and the eigenvectors are the characteristicmodes. Analytically, we can exploit
the fact that tri-diagonal systems have a recursion relationship for the determinant. Furthermore, we use the fact
that we have only four cavities and thus have a quartic equation, which is actual bi-quadratic. Alternatively, we
can useOctave’s symbolic package to solve for the roots of the system, or numerically solve for them. Because the
resulting equations are polynomial in nature, the numerical solutionwithOctave is quite tedious, even for four
cavities. Once a given root is found, the equations need to be deflated by hand forOctave’s numerical solver to
find the next root [57]. Despite this challenge, analytic, symbolic and numerical all gave the same resonant
frequencies for our four cavity system:
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wherewe note, for clarity, that ‘c’ is the coupling between adjacent cavities.
We can then use equation (13) to solve for the eigenvectors of the system. The plot of these is shown in

figure 8. Initially, these eigenvectors were difficult to interpret, but noting that these are normalmodes, the shape
of thesefieldsmakesmore sense. To do this, we need tofix the boundary conditions outside of the cavity
structure—a typical choice is to set the fields to zero, whichwould be consistent with a TWT slowwave structure
inside a cutoff waveguide.With these conditions, the normalmodes become the typical phase advance per cavity
if one assumes an additional ‘virtual cavity’with amplitude of zero on either side of the slowwave structure. This
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is shown infigure 9. Comparing figures 8 and 9, we see that the orange points in the plot, representing the cavity
field amplitude, are following a given sinusoidal pattern, albeit with a difference in phase for two of the
eigenvectors between theOctave result and our normalmodel analysis. Thesemodes can be directly tied to the
phase advance per cavity, which is given bymπ/4, wherem is an integer.With this insight, it is possible to plot
the dispersion relationship for ourmodel with frequency versus phase advance (ormode number) as shown in
figure 10.

It is worth noting that figure 10 has the typical characteristics of dispersion relationships thatwe expect from
relatively short slowwave structures. The correct phase advance andmode shape have been found. Additionally,
variation in the number of cavities and/or the cavity coupling allows the relative ‘flatness’ of the curve near theπ
mode to be observed, consistent with experimental and frequency domain analysis of TWT structures. Finally, it
is a positive sign that we have tested the computational tools that are necessary to handle realistic numbers of
cavities for a non-trivial if small, example, and verified these tools against analytic results.

Figure 8.Eigenvectors for the four cavity system roots given in equation (13) fromOctave. This plotsmode amplitude versus cavity
number. Thus, the horizontal axis gives the axial location of thefield.

Figure 9.Analytic normalmode analysis of the 4 cavity eigenvectors.
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Next, we extend the coupled-cavity circuitmodel to simulate a realistic TWT [e.g. using the parameters from
[55]], as opposed to the four-cavity proof-of-principle. The effort proceeds by building a tridiagonalmatrix with
the harmonic oscillator operator on the diagonal and the coupling termon the bands. For our exercise here, we
assume no ohmic loss and symmetric coupling between the cavities. In this case, we have a Toeplitzmatrix, and
there are recursion relations for the eigenvalues. This allows us to compute the dispersion relationship from the
normalmodes. Because the harmonic oscillator operation has two roots, there are two harmonic oscillator
modes for the dispersion relation. The dispersion relation is shown infigure 11. This result is in excellent
agreementwithHFSS results published in the literature [55].

The next passband is found in a similarmanner, with the resonant frequency of an individual cavity changed
to 12.5GHz and the coupling reduced to c=0.03. The physical reason for the reduction in the cavity coupling
for the second passband is the higher frequency allows the electromagnetic waves to be concentratedmore
tightly to the structure. It is alsoworth noting that both passbands have significantlymore coupling than the
klystron cases previously examined. This is simply the nature of the travelingwave tube structure. The second
passband is shown infigure 12.

Comparing the coupled circuitmodel andHFSS does unveil an interesting feature. Simply taking one
harmonic oscillatormode (or ‘branch cut’ as it is referred to infigure 12) of the normalmode structure yields the
orange curve in figure 12. This is clearly different than that seen in theHFSS calculation.However, switching to
the other harmonic oscillatormode allows us tofind the correct dispersion relationship for bothmodes in the
second passband. The jumpbetween harmonic oscillatormodes is not clear, and furtherwork needs to be done

Figure 10.Dispersion relation for our four cavity circuitmodel. Cavity coupling c=0.4.

Figure 11.Dispersion relation for a 20 cavity sinewaveguide TWTconstructed from a coupled cavity approach. Individual cavities
have a resonant frequency of 8GHz and the dimensionless coupling between the cavities is c=0.19.
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to understandwhy this additional step is necessary to reproduce the second passband. That said, we believe this
kink is physical, and structures like these are often found in band edges of TWTs. Additionally, theHFSS
calculations were run on a unit cell, and it is not clear if thatmakes it easier to choose between the harmonic
oscillatormodes [58].

We have demonstrated that a coupled circuitmodel can reproduce the electromagnetic structure of a full
TWT, and that this allows one to add spatial non-uniformity to the slowwave circuit. Additional work thatwe
have done shows that as the number of cavities becomes large, the normalmode analysis naturally transitions to
awave description. This provides an explicit link between standard Pierce theory (wave) and ameans to
incorporatefinite length effects, internal reflections,manufacturing errors, and individual cavity differences
into a Pierce style analysis.

Concluding remarks

In conclusion, we have just glossed over themode-coupling theory of Pierce in describing the beam-circuit
interaction of a TWT.Wehave talked qualitatively and quantitatively about the linearDC electron beam and the
electromagnetic signal on the surrounding structure constituting the circuit, separately, and then howboth
interact to produce the desired amplification of the signal. Even though Pierce’s classical theory is a linear (so-
called ‘small-signal’) theory, it is still powerful andwidely used. The key to its endurance is its simplicity aswell as
tradition, as it was the first comprehensive theory to describe the innerworkings of a TWT. Its simplicity allows
for relatively fast ‘back-of-the-envelope’ calculations and insights into the underlyingmechanisms of beam-
circuit interaction. Here, we stress whatwe believe are the core ideas of Pierce’s theory: synchronous interaction
between and coupling of the beamand circuit producing amplification of the input signal.

In keepingwith this, we attempt to provide several natural extensions to the Pierce theory to describe
phenomena not previously considered in the small-signal regime. These include harmonic generation (from
dynamical synchronous interaction between the beam and circuit in an octave bandwidth tube) and beam-
loading on the circuit (stressing the symmetry between beam and circuit and their coupling). Additionally, we
have discussed the links between normalmode analysis associatedwith coupling individual cavities and its
relationship to Pierce theory.

It should be stressed that this paper is by nomeans a comprehensive overview of TWTs. This paper ismuch
too immature to tackle such a subject.Wewish to introduce the reader to theworld of TWTs and beam-circuit
interactions via the classical theory of Pierce and try to extend the core ideas behind the theory to tacklemore
modern topics: harmonic generation, space-charge effects, and discrete cavity effects. There are stillmany topics

Figure 12. Second passband for the sinewaveguide TWTwith individual cavity frequency of 12.5GHz and cavity coupling of
c=0.03.
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to explore. The reader is encouraged to look through the references (which is by nomeans extensive), especially
[59] on the history of the TWT in telecommunication. Louisell’s textbook [60] provides excellent,more in-
depth discussions onmany of the topics addressed here, especially space-charge waves (c.f. Chapters 2 and 3).
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