Ultrafast and nanoscale diodes

Peng Zhang† and Y. Y. Lau†

†Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109-2104, USA

(Received 29 June 2016; revised 25 September 2016; accepted 26 September 2016)

Charge carrier transport across interfaces of dissimilar materials (including vacuum) is the essence of all electronic devices. Ultrafast charge transport across a nanometre length scale is of fundamental importance in the miniaturization of vacuum and plasma electronics. With the combination of recent advances in electronics, photonics and nanotechnology, these miniature devices may integrate with solid-state platforms, achieving superior performance. This paper reviews recent modelling efforts on quantum tunnelling, ultrafast electron emission and transport, and electrical contact resistance. Unsolved problems and challenges in these areas are addressed.

Key words: plasma devices, strongly coupled plasmas

1. Introduction

Diodes, or more generally charge transport phenomena, are central to high power microwave sources, vacuum microelectronics, electron and ion sources, and high current drivers used in high-energy density physics experiments. One of the great challenges in these areas is the miniaturization of vacuum and plasma electronic devices. With the combination of recent advances in electronics, photonics and nanotechnology, these miniature devices may integrate with solid-state platforms, thus forming highly compact systems with high power handling capability. Applications in ultrafast electron sources, accelerators, and radiation sources, ranging from millimetre wave to X-rays are envisioned (Booske 2008; Barletta et al. 2010; Booske et al. 2011; Peralta et al. 2013; England et al. 2014; Hommelhoff & Kling 2014; Armstrong 2015).

Since the pioneering work of Spindt (Spindt 1968; Spindt et al. 1976) on the fabrication of cathodes using microfabrication technologies, extensive efforts have been made to scale down vacuum electronic devices to the microscale or even nanoscale. Recently, nanoscale vacuum gap has been used as the conducting channel in nanoelectronics (Srisonphan, Jung & Kim 2012; Stoner & Glass 2012; Han & Meyyappan 2014; Wu et al. 2016). Because of ballistic transport, vacuum is intrinsically a better carrier transport medium compared to a solid, in which the carriers suffer from optical and acoustic phonon scattering, resulting in local heating and degradation in both signal quality and the device itself. The vacuum-solid-state
integrated nanodevices thus combine the advantages of ballistic transport through vacuum with the scalability, low cost and reliability of conventional silicon transistor technology.

This paper highlights some recent modelling efforts in the development of ultrafast and nanoscale diodes, including quantum tunnelling current, ultrafast electron emission, and issues in current crowding and contact resistance. Unsolved problems and challenges in these areas are addressed.

2. Quantum tunnelling current

Tunnelling effects in nanoscale metal-insulator (including vacuum)-metal (MIM) junctions were studied extensively by Simmons in the 1960s (Simmons 1963a, b). Simmons’ formulas were derived by considering only the emission process from the electrodes, where the effects of image charge are considered, but the electron space charge potential and the electron exchange-correlation potential inside the insulator thin films are generally ignored. An excellent review on the tunnelling current in MIM structures is given in Kao (2004). The effects of space charge in a vacuum nanogap have subsequently been studied theoretically (Lau et al. 1991; Ang, Kwan & Lau 2003; Ang & Zhang 2007) and experimentally (Bhattacharjee, Vartak & Mukherjee 2008; Bhattacharjee & Chowdhury 2009).

Recently, a general scaling law for the quantum tunnelling current in nano- and sub-nanoscale MIM diodes has been developed by self-consistently solving the coupled Schrödinger and Poisson equations (Zhang 2015). It includes the effects of space charge and exchange-correlation potential, as well as current emission from the anode. As shown in figure 1, the self-consistent model recovers various scaling laws in limiting cases: Simmons’s formula (Simmons 1963a) in the direct tunnelling regime, the Fowler–Nordheim law (Fowler & Nordheim 1928) in the field emission regime, and the quantum Child–Langmuir law (Lau et al. 1991; Ang et al. 2003) in the space charge limited (SCL) regime. Note that in the SCL regime, the self-consistent current approaches the quantum version of the Child–Langmuir law, which exceeds the classical Child–Langmuir law (Child 1911; Langmuir 1913) because of quantum tunnelling. Smooth transition between various regimes has been demonstrated.

The proposed model may be applied to broad areas involving tunnelling junctions, for example, quantum plasmonics (Esteban et al. 2012; Savage et al. 2012), transition voltage spectroscopy (Trouwborst et al. 2011; Băldea 2012; Sootherwes et al. 2014), molecular electronics (Băldea & Köppel 2012; Tan et al. 2014), and resistive switching (Ziegler, Harnack & Kohlstedt 2014).

Further studies on quantum tunnelling current may include: (i) examination of the Wentzel–Kramers–Brillouin–Jeffreys (WKBJ) approximation and the free electron gas model assumed for the electrodes against exact first principle calculations (Zhang, Lu & Pantelides 2006; Yaghoobi, Walus & Nojeh 2009); (ii) the effects of electrode geometry (Luginsland, Lau & Gilgenbach 1996; Lau 2001; Luginsland et al. 2002; Rokhlenko & Lebowitz 2003; Shiffler et al. 2005; Jensen 2010; Tang et al. 2012; Fairchild et al. 2015; Harris et al. 2015; Jensen et al. 2015); (iii) comparison of the classical image charge potential with that of quantum theory (Newns 1969; Koh & Ang 2008; Myöhänen et al. 2012); (iv) the nature of the ion lattice of the electrodes (Spindt et al. 1976); (v) dissimilar electrode materials (Simmons 1963b); (vi) possible charge trapping inside the insulator film (Rose 1955; Kao 2004); (vii) ac bias and time/frequency dependence (Valfells et al. 2002; Feng & Verboncoeur 2005, 2006, 2008; Pedersen, Manolescu and Valfells 2010; Caflisch & Rosin 2012;...
Ultrafast and nanoscale diodes

Figure 1. Self-consistent model for the quantum tunnelling current in a one-dimensional planar nanoscale Au-vacuum-Au diode (Zhang 2015). The gap distance is $D = 1$ nm, gap voltage is V_g and the normalized current density $\gamma = J / J_{CL}$ is in terms of the Child–Langmuir law J_{CL}. The J-V (current density–voltage) curve is compared with scaling laws in various limits: Simmons formula (Simmons 1963a), Fowler–Nordheim (FN) law (Fowler & Nordheim 1928), Child–Langmuir (CL) law (Child 1911; Langmuir 1913) and quantum CL law (Lau et al. 1991; Ang et al. 2003).

Cocker et al. 2013; Griswold, Fisch & Wurtele 2012; Rokhlenko 2015; Liu et al. 2015a,b; Griswold & Fisch 2016); and (viii) comparison of theory and modelling with experiments (Spindt et al. 1976; Das & Jagadeesh 1981; Teague 1986; Cahay et al. 1987; Bhattacharjee et al. 2008; Bhattacharjee & Chowdhury 2009; Bormann et al. 2010; Cocker et al. 2013; Tan et al. 2014). These studies are important to vacuum nanoelectronics, including gated vacuum nanodevices (Han, Oh & Meyyappan 2012), transition voltage spectroscopy in vacuum diodes (Bâldea 2014) and non-equilibrium vacuum tunnelling junctions (Maksymovych 2013).

3. Ultrafast electron emission

Laser-driven ultrafast electron emission offers the possibility of manipulation and control of coherent electron dynamics in ultrashort spatio-temporal scales (Hommelhoff & Kling 2014). Production of ultrashort electron bunches provides the enabling technology for four-dimensional (4-D) time-resolved electron microscopy (Tao et al. 2012; Portman et al. 2013). It is also important to free electron lasers, laser acceleration of relativistic electrons, and ultrafast electron diffraction (Hommelhoff, Kealhofer & Kasevich 2006; Ropers et al. 2007). Perturbative theory to model laser-driven ultrafast electron emission was usually done with the strong field approximation (Bormann et al. 2010). Existing Floquet models for electron emission include only a laser wave field with zero direct current (dc) bias (Yalunin, Gulde & Ropers 2011).
Figure 2. Time-dependent total emission current density \(w(x, t) \) normalized to the time-averaged emission current density \(<w> \), as a function of time \(t \) and space \(x \), for laser electric field \(F_1 = 1 \text{ V nm}^{-1} \) under three dc fields \(F_0 = 1, 5, 10 \text{ V nm}^{-1} \) (Zhang & Lau 2016). Time is normalized to the laser period \(2\pi/\omega \), and space is normalized to a length scale \(\sqrt{\hbar^2/2mW} \), where \(\omega \) is the laser frequency, \(m \) is the electron rest mass and \(W \) is the metal work function. We assumed the metal is gold, with \(W = 5.1 \text{ eV} \), Fermi level \(E_F = 5.53 \text{ eV} \) and laser wavelength \(\lambda = 800 \text{ nm} \). The vacuum–metal interface is located at \(x = 0 \).

We constructed an analytic solution for the highly nonlinear electron emission from a metal surface that is exposed to both a dc biased electric field and a single frequency laser electric field (Zhang & Lau 2016). By solving the time-dependent Schrödinger equation exactly, our theory is valid for arbitrary laser frequency and metal properties (work function and Fermi level). Various emission mechanisms, including multiphoton absorption or emission, optical or dc field emission, single-photon induced over-barrier emission, and various combinations of these, are all included in a single formulation. The time-dependent emission current reveals that intense current modulation may be possible even with a low intensity laser, by only increasing the applied dc bias, as shown in figure 2. A slowly varying envelope approximation has extended the results to pulsed excitation (Zhang & Lau 2016).

Future studies on ultrafast electron emission may include emission delay and scattered electron contributions, charge redistribution and thermalization (Pant & Ang 2013), field enhancement (Feng & Verboncoeur 2005, 2006, 2008; Miller, Lau & Booske 2007; Feng, Verboncoeur & Lin 2008; Jensen et al. 2008; Tang, Shiffer & Cartwright 2011) and space charge effects (Griswold, Fisch & Wurtele 2010; Pedersen et al. 2010; Cafisch & Rosin 2012; Griswold et al. 2012; Ilkov et al. 2015; Rokhlenko 2015; Liu et al. 2015a,b; Griswold & Fisch 2016), all under ultrafast conditions. It is important to link ultrafast strong-field laser physics in atoms and gaseous media to that in nanoclusters, solid-state surfaces and nanostructures (Corkum et al. 1988; Corkum 1993; Corkum, Burnett & Ivanov 1994; Rundquist et al. 1998; Corkum & Krausz 2007; Fan et al. 2015; Chen et al. 2016; Tao et al. 2016). These studies would offer unprecedented scientific advances in attosecond science (Corkum & Krausz 2007; Hommelhoff & Kling 2014; Tao et al. 2016).
4. Current crowding and contact resistance

Contact resistance and current crowding are very important to plasma and vacuum electronics, such as wire array z-pinches (Gomez et al. 2008; Zier et al. 2008), field emitters (Shiffler et al. 2005; Park et al. 2006; Vlahos, Booske & Morgan 2007) and high power microwave devices (Booske 2008; Benford, Swegle & Schamiloglu 2015). In these systems, poor electrical contact prevents efficient power coupling to the load, produces unwanted plasma and even damages the electrodes. Contact resistance is also extremely important in wafer evaluation (Carbonero, Morin & Cabon 1995), thin film resistors (Hall 1968) and metal-oxide–vacuum junctions (Latham 1995). It is critical to semiconductor material and device characterization (Berger 1972; Schroder 1998). Contact resistance is one of the major limiting factors to devices made of exceptional materials, such as carbon nanotubes (CNTs), graphene and diamond (Li, Thostenson & Chou 2007; Grotjohn et al. 2014; Nouchi & Tanigaki 2014).

The fundamental model of electrical contact, Holm’s a-spot theory (Holm 1967; Schroder 1998; Timsit 1999; Chin, Barber & Hu 2006), is generalized to include the effects of dissimilar materials and higher dimensions (Gomez et al. 2009; Lau & Tang 2009; Zhang & Lau 2010; Zhang 2012). By using Fourier series analysis, we derived new, simple analytical scaling laws for the total resistance for arbitrary values of dimensions and resistivities, for both Cartesian and cylindrical geometries (Zhang & Lau 2010). The models are extended to thin film contacts for two basic configurations: the horizontal type (figure 3a) (Zhang, Lau & Gilgenbach 2011; Zhang, Lau & Timsit 2012; Zhang, Hung & Lau 2013; Zhang & Lau 2014) and the vertical type (figure 3b) (Zhang & Lau 2013). Current crowding is systematically studied by calculating the current flow patterns (Zhang, Lau & Gilgenbach 2015a). The exact field solution accounts for both interface resistance and spreading resistance. It was recently applied to study current crowding and constriction resistance in electrically pumped nanolasers, where the effects of sidewall tilt were analysed (Zhang et al. 2016).

When electrical contacts are formed in micro- or nanoscale, the electron mean free path l may exceed the contact size a, so that electrons transport ballistically through the contact constriction (Sharvin 1965; Landauer 1996; Zhang & Hung 2014). If the system size is further reduced to be of the order of the Fermi wavelength, wave
character features would be pronounced, where the quantization of ballistic electron transport through a constriction represents conduction as transmission. There are existing models of electrical contacts in ballistic (Sharvin 1965; Büttiker 1988; Datta & Anantram 1992; Landauer 1996) and quantum regimes (Mortensen et al. 1999; Datta 2005; Grosse et al. 2011; Solomon 2011; Xia et al. 2011). However, the transition between the classical, ballistic and quantum regimes remains unclear, and it requires further investigation. The underlying physics in these regimes is critical to the design and performance of the multitude of new devices that are expected to be developed in the near future.

5. Concluding remarks

Ultrafast and nanoscale diodes are essential components in the miniaturization of plasma and vacuum electronics, as recognized in a recent white paper for the US Department of Energy (Zhang et al. 2015b). Here, we review recent modelling efforts on three aspects of nanoscale diodes, quantum tunnelling, ultrafast electron emission and electrical contact. Unsolved problems and challenges in these areas are addressed.

The research outlined above is pushing the traditional boundary of plasma science and engineering, into neighbouring fields of nanoelectronics, ultrafast physics and material science. The applications of these research are immense, including single-molecule sensing, transition voltage spectroscopy, molecule electronics, resistive switching, CNT-, graphene- and diamond-based electronics, novel high brightness electron sources, ultrafast electron microscopes, variable stoichiometry photoemissive materials for detectors and sources, and novel compact particle accelerators.

Acknowledgements

This work was supported by AFOSR grant no. FA9550-14-1-0309. P.Z. was also supported by AFOSR through a subcontract from the University of Michigan.

REFERENCES

P. Zhang and Y. Y. Lau

Nanotechnology 19 (23), 235402.

TANG, W., SHIFFLER, D. & CARTWRIGHT, K. L. 2011 Analysis of electric field screening by the proximity of two knife-edge field emitters. *J. Appl. Phys.* **110** (3), 34905.

Ultrafast and nanoscale diodes

