SHEET METALWORKING

1. Cutting Operation

2. Bending Operation

3. Drawing

4. Other Sheet-metal Forming

5. Dies and Presses

6. Sheet-metal Operation

7. Bending of Tube Stock

Introduction

- Cutting and forming thin sheets of metal usually performed as cold working
- Sheet metal = 0.4 (1/64) to 6 mm (1/4in) thick
- Plate stock > 6 mm thick
- Advantage High strength, good dimensional accuracy, good surface finish, economical mass production (low cost).
- Cutting, bending, drawing

Sheet Metalworking Terminology

- "Punch-and-die"
 - Tooling to perform cutting, bending, and drawing
- "Stamping press"
 - Machine tool that performs most sheet metal operations
- "Stampings"
 - Sheet metal products

Sheet-metal Characteristics

- Elongation the capability of the sheet metal to stretch without necking and failure.
- Yield-point elongation
 - Lüeder's bands on Low-carbon steels and Al-Mg alloys. Lüder's bands can be eliminated by cold-rolling the thickness by 0.5-1.5%.

- Anisotropy
 - Crystallographic and mechanical fibering anisotropy
- Grain Size effect on mechanical properties
- Residual Stress, Springback and Wrinkling
- Testing method
 - Cupping test
 - Forming Limit Diagram

1. Cutting Operation

- Cutting operation
 - Plastic deformation
 - Penetration (1/3 thickness)
 - Fracture
- **Shearing** using a machine called power shear or square shear.
- Blanking shearing a closed outline
 (desired part called blank)
- Punching sheared part is slag (or scrap) and remaining stock is a desired part

part

Analysis

- Clearance 4-8% but sometime 1% of thickness
 - Too small fracture does not occur requiring more force.
 - Too large Get pinched and cause an excessive burr
- Clearance: c=a*t
 - <u>Metal group</u> <u>a</u>
 - 1100S and 5052S aluminum alloys, all tempers 0.045
 - 2024ST and 6061ST aluminum alloys;
 brass, soft cold rolled steel, soft stainless steel 0.060
 - Cold rolled steel, half hard; stainless steel, half hard and full hard
 0.075

Die, blank and punch size

For a round blank,

Blank punch diameter= D_b -2c Blank die diameter = D_b

For a round hole,

Hole punch diameter= D_h Hole die diameter = D_h +2c

Angular clearance of 0.25° to 1.5°

Cutting forces: F=S*t*L=0.7*TS*t*Lwhere S= Shear strengtht=thicknessL=length of cutting edgeAngular clearancerSrS

Other Cutting Operations

Cutoff and Parting

• Slotting, Perforating and Notching

Shaving

• Trimming, Shaving and Fine Blanking

Trimming

2. Bending Operations

V-bending

• Edge Bending

Other Bending Operation

- Flanging
- Hemming
- Seaming
- Curling
- Channel,
- U-bending Air bending, Offset bending, Corrugating and Tube forming

3. Drawing

 Basic drawing operation – a cup-shape part

Detail Steps of Drawing

1. Initial Contact

4. Friction & Compression

3. Straightening

2. Bending

Analysis of Drawing

- Measure of Drawing Drawing ratio: $DR = \frac{D_b}{D_p}$ feasible if DR < 2– Reduction: $r = \frac{D_b D_p}{D_p}$ feasible if r < 0.5
 - Crude measures of the severity of a deep
- drawing operation Drawing Forces: $F = \pi D_p t \left(TS\right) \left(\frac{D_b}{D_p} 0.7\right)$ Max at 1/3 length
- Holding Force: $F_h = 0.015Y\pi \left[D_b^2 \left(D_p + 2.2t + 2R_d \right)^2 \right]$

Other Drawing Operation

- Redrawing
- Drawing without a Blankholder
- Not cylindrical cups
- Defects
 - Wrinkling in the flange
 - Wrinkling in the wall
 - Tearing
 - Earing Anistropy in sheet metal
 - Surface scratch

(e) Surface Scratches

Forming-Limit Diagram

- A grid pattern of circles, typically 2.5 to 5mm in diameter, produced by electrochemical or photoprinting.
- After drawing, the circles are observed for failure.
- The major strain is on the major direction and magnitude of strain

4. Other Sheet-Metal Operations

- With Metal Tooling
 - Ironing
 - Coining and Embossing
 - Lancing
- Using hydrostatic pressure

 Guerin Process Rubber pad
 - Hydroforming Hydraulic fluid

5. Dies and Presses

- Stamping Die
 - Punch
 - Die
 - Stripper
- Types
 - Simple
 - Compound
 - Progressive
- Press
 - Hydraulic
 - Mechanical

