Scalable Load Balancing Strategies for Parallel A* Algorithms

Shantanu Dutt and Nihar R. Mahapatra
Department of Electrical Engineering, University of Minnesota, Minneapolis, MN 55455

Abstract

In this paper, we develop load balancing strategies for scalable high-performance parallel A* algorithms suitable for distributed-memory machines. In parallel A* search, inefficiencies such as processor starvation and search of nonessential spaces (search spaces not explored by the sequential algorithm) grow with the number of processors P used, thus restricting its scalability. To alleviate this effect, we propose a novel parallel startup phase and an efficient dynamic load balancing strategy called the quality equalizing (QE) strategy. Our new parallel startup scheme executes optimally in $\Theta(\log P)$ time and, in addition, achieves good initial load balance. The QE strategy possesses certain unique quantitative and qualitative load balancing properties that enable it to significantly reduce starvation and nonessential work. Consequently, we obtain a highly scalable parallel A* algorithm with an almost-linear speedup. The startup and load balancing schemes were employed in parallel A* algorithms to solve the Traveling Salesman Problem on an nCUBE2 hypercube multicomputer. The QE strategy yields average speedup improvements of about 20-185% and 15-120% at low and intermediate work densities (the ratio of the problem size to P), respectively, over three well-known load balancing methods—the round-robin (RR), the random communication (RC) and the neighborhood averaging (NA) strategies. The average speedup observed on 1024 processors is about 985, representing a very high efficiency of 0.96. Finally, we analyze and empirically evaluate the scalability of parallel A* algorithms in terms of the isoeficiency metric. Our analysis gives (1) a $\Theta(P. \log P)$ lower bound on the isoeficiency function of any parallel A* algorithm, and (2) a general expression for the upper bound on the isoeficiency function of our parallel A* algorithm using the QE strategy on any topology—for the hypercube and 2-D mesh architectures the upper bounds on the isoeficiency function are found to be $\Theta(P. \log^2 P)$ and $\Theta(P. \sqrt{P})$, respectively. Experimental results validate our analysis, and also show that parallel A* search using the QE load balancing strategy has better scalability than when using the RR, RC or NA strategies.

1This research was funded in part by a Grant-in-Aid from the University of Minnesota and in part by NSF grant MIP-9210049. Sandia National Labs provided access to their 1024-processor nCUBE2 parallel computer.
1 Introduction

The A* algorithm [20] is a well known generalized branch-and-bound search procedure, widely used in the solution of many computationally demanding combinatorial optimization problems (COPs) [4, 22]. Its operation, as detailed later, can be viewed essentially as a best-first search of a state-space graph. Parallelization of branch-and-bound methods provides an effective means to meet the computational needs of many practical search problems [3, 7].

The aim of our work is to develop scalable high-performance parallel A* algorithms for solving COPs on distributed-memory machines. However, parallelization of A* introduces a number of inefficiencies. (1) First, the time required initially to split the whole search space among all P processors, i.e., the startup phase time, can be a significant fraction of the total execution time at low work densities (the ratio of the problem size to P). Therefore the startup phase needs to be executed efficiently. Also, it is desirable to have a good initial load balance to reduce idling at the beginning of parallel A*. (2) In search algorithms such as A*, the amount of work corresponding to different search subspaces is very difficult to estimate and can vary widely. Hence some form of dynamic, quantitative load balancing is crucial to reducing the idling that would otherwise occur. (3) Finally, processors performing best-first search of their local subspaces in parallel A* may search spaces that a sequential A* algorithm will not explore. This can lead to substantial “nonessential” work. To address this problem, it is imperative to perform dynamic qualitative load balancing so that at all times different processors search spaces that are comparably promising.

In addition to the above inefficiencies, duplicated work among processors can occur when the search space is a graph. This problem can be tackled by using efficient duplicate pruning techniques [8, 16, 17]. However, since the focus of this paper is on load balancing strategies, we will restrict our attention to tree search spaces so that performance comparison of parallel A* algorithms employing different load balancing methods reflects the effectiveness of these algorithms in achieving load balance (rather than their efficacy in pruning duplicates). The same load balancing methods can be applied with equal effectiveness, in conjunction with any duplicate pruning techniques, to graph-search problems [16] as explained briefly in Section 3.

While a number of innovative parallel A* methods have been proposed in past work, they have not adequately addressed the inefficiencies of slow startup and load imbalance. In previous work, a $\Theta(P)$-time sequential startup phase in which a single processor generates the P starting nodes needed for parallel search by all processors was used [12]. Also, no explicit attempts were made to
obtain a good initial load balance in prior startup schemes. A number of dynamic load balancing methods for parallel A* have also been previously proposed [1, 2, 9, 10, 11, 12, 14, 19, 21, 23]. We critically analyze the effectiveness of some representative methods in Section 4 and point out their drawbacks.

In this paper, we propose a parallel A* algorithm with significantly better speedup and scalability than previous algorithms. Our algorithm incorporates (1) a $\Theta(\log P)$-time optimal parallel startup scheme that achieves good initial load balance, and (2) an efficient dynamic load balancing method called the quality equalizing (QE) strategy in which processors utilize load information at neighboring processors to effect quantitative and qualitative load balance. The type of load information and the manner in which it is used give the QE strategy certain unique properties that enable it to effectively minimize starvation and nonessential work. We also derive good lower and upper bounds on the isoefficiency function of our parallel A* algorithm for an arbitrary topology. A preliminary version of the work reported here appears in [6].

In Section 2, we first describe the A* algorithm and then its application to the Traveling Salesman Problem (TSP), which is the test problem used to determine the efficacy of our parallelization techniques. In Section 3, we briefly discuss our approach to the parallelization of A*. In the following section, we critically analyze the effectiveness of past approaches to achieving quantitative and qualitative load balance. In the next two sections we describe in detail the various techniques used in our parallel algorithms. Section 5 contains a description and analysis of our parallel startup scheme. Next in Section 6, we present the QE load balancing strategy. In Section 7 we analyze the scalability of our parallel A* algorithm. In the following section, we analyze the empirical performance of our schemes and compare them to the performance of previous parallel A* methods. Conclusions are in Section 9.

2 The A* Algorithm and its Application to TSP

First we briefly describe the sequential A* algorithm [20] and then its application to TSP. Given a COP \mathcal{P}, A* is used to find a least-cost solution to \mathcal{P}. Its operation can be viewed as a best-first search through a tree T of subproblems in which the original problem \mathcal{P} occurs at the root. The children of a given subproblem are those obtained from it by breaking it up into smaller problems (branching). This branching is such that the optimal solution to an internal subproblem node u is the least expensive among the optimal solutions to the child subproblem nodes of u. The leaves of
represents solutions to \(P \). To guide its best-first search, \(A^* \) estimates the “cost” of each generated node. The cost estimate \(f' \) of a node \(u \) is the sum of the path cost \(g \) from root to \(u \), and a heuristic cost \(h' \) that is a lower bound on the cost of the best path from \(u \) to any solution node. Thus \(f' \) represents a lower bound on the cost of the best solution node reachable from \(u \). The object of the search is to find a leaf node of minimum cost.

A list of nodes called OPEN is utilized to store all nodes that have been generated but not yet expanded (not had their children generated). Initially, OPEN contains just the root node. At each iteration, \(A^* \) picks a node from OPEN with the minimum \(f' \) value called best node, generates its children and computes their cost estimates. Next, it adds each generated child to the OPEN list and discards best node\(^2\). This process is repeated until best node happens to be a solution node, which is then returned as an optimal solution. We will refer to this algorithm as SEQ-A*.

We now define a few terms used in the remainder of the paper. At any time during the operation of SEQ-A*, the \(f' \) value of the current best solution node is denoted by best soln. Only nodes with \(f' \) values less than the current value of best soln are stored in OPEN. Such nodes are called active nodes, since these are the only nodes that can lead to an optimal solution, and active_len represents the number of such nodes at any time. All other nodes are inactive and are discarded. All nodes expanded by SEQ-A* are called essential nodes, and these include all nodes with cost less than or equal to the optimal solution cost\(^3\); all other nodes are nonessential. Thus an active node may not necessarily be essential in which case it will become inactive at some point. An essential node will be active until it is expanded.

In our implementations we have used an improved A* algorithm [15]. In SEQ-A*, when a node is expanded (meaning that it is an essential node), all its children are generated irrespective of their costs. Since all of the generated children might not be essential nodes, ideally one should form only essential children in order to minimize the time for insertion of nodes in OPEN and also to reduce the memory requirement. We use a partial expansion scheme that achieves this ideal behavior. In this scheme, when a node in OPEN is expanded, only its best ungenerated child is selected for generation. Hence we will refer to this improved A* algorithm as SEL_SEQ-A*. Here, instead of the \(h' \) field, a node \(u \) in OPEN uses an \(h'' \) field that has a value defined as follows:

\[
 u.h'' = u.h', \text{ if } u \text{ has not undergone any expansion, else (1)}
\]

\(^2\)When searching state-space graphs, best node is stored in another list called CLOSED after it has been expanded. Also, every generated node is checked for a possible duplicate in OPEN and CLOSED. If a duplicate is found, the generated node is pruned and any cost improvement propagated to the duplicate node and its descendents.

\(^3\)To be precise, some nodes with cost equal to the optimal solution cost may not be expanded by SEQ-A*.

3
\[u.h'' = \min((v.g - u.g + v.h') \text{ over all children } v \text{ of } u \text{ remaining to be generated}) \]

When a node \(u \) is expanded for the first time, the \(h' \) costs of its children are computed and stored. No child node of \(u \) is formed at this time, but the \(h'' \) cost of \(u \) is updated according to Eq. \(2^4 \). Subsequent expansions of \(u \) result in the formation of the child with the least \(f' \) cost among all children yet to be formed, and also in the modification of \(u.h'' \) in accordance with Eq. \(2 \). Furthermore, now the \textit{best-node} picked for expansion in each iteration is the node with the minimum \textit{modified cost estimate} \(f'' = g + h'' \). This ensures that no nonessential nodes are generated, thus leading to a faster and more memory-efficient \(A^* \) algorithm. As a result of partial expansion, at any time during the execution of SEL_SEQ_A*, a non-solution node in \(OPEN \) might either be \textit{unexpanded} or \textit{partially expanded} (i.e., had only some children generated, but not all). All other nodes that were generated have been \textit{completely expanded} (i.e., have had all their children generated) and are discarded. Note that a solution node by definition is completely expanded.

We now outline our application of \(A^* \) to TSP which is posed as follows. Given a set \(0, 1, \ldots, N - 1 \) of cities and the associated intercity distances, find the shortest tour that visits every city exactly once and returns to the start city. We have formulated TSP as a tree-search problem, in which the state of a node is defined by a 1-tuple [ordered list of cities visited]. Initially, only \textit{root} with \(\text{root.state} = [(0)] \), exists. An expansion of a node \(u \in T \) yields a child \(v \) for each city that remains to be visited in \(u \). This way a TSP tour is constructed by visiting an additional unvisited city, from the present city, in each expansion. In most of our experiments, we have used the following simple heuristic function. The cost \(h' \) of a node is equal to the average of two sums \(S_i \) and \(S_o \); \(S_i \) is the sum of the costs of the least expensive incoming edge incident on each unvisited city and the start city from the set of unvisited cities and the present city, and \(S_o \) is the sum of the costs of the least expensive outgoing edge from each unvisited city and the present city to the set of unvisited cities and the start city. Since the focus of this paper is on the design and evaluation of general load balancing strategies for parallel \(A^* \) algorithms that can be applied to any COP, we have employed a tree-search formulation and a simple heuristic function for this purpose (as opposed to a graph-search formulation \([16]\) and a tighter heuristic function \([18]\) that are possible for TSP). In Section 6.2, we show that while a different heuristic function can affect the cost-wise distribution of nodes in \(OPEN \), it will not have any impact on the load balancing capabilities of the \textit{QE strategy}. Performance results in Section 8, where we test the efficacy of our schemes
using the above heuristic as well as the much stronger LMSK heuristic [13], further corroborate
this assertion.

3 Parallelization of A*

Here we describe the generic high-level approach we have used to parallelize A* on distributed-
memory machines. Each processor executes an almost independent SEL_SEQ-A* on its own OPEN
list. The starting nodes required for a processor's sequential algorithm are generated and allocated
in a startup phase. Processors broadcast any improvements in best_soln, which is maintained
consistent across all processors. Apart from solution broadcasts, processors interact to redistribute
work for better processor utilization and to detect termination of the algorithm. Such algorithms
can be characterized as parallel local A* (PLA*) algorithms.

We now introduce a few terms used in the sequel. The OPEN list of processor i is denoted
OPEN$_i$, the set of its neighbors as neighbors(i), and its neighborhood is defined as
neighbors(i) \cup {i}. For any set S of processors, let OPEN$_S$ denote the union of the OPEN lists of these processors.
For a node $u \in$ OPEN$_S$, define $\text{pos}_S(u)$ to be the position of node u in the list of nodes in OPEN$_S$
arranged by non-decreasing f''-cost. Let node$_{i,m}$ denote the node at position m in OPEN$_i$. Define
$\text{rank}_S(u) = \min(\text{pos}_S(v))$ over all nodes $v \in$ OPEN$_S$ that have the same f''-cost as node u. For
any node $u \in$ OPEN$_i$, we will refer to $\text{rank}_{\{i\}}(u)$ as node u's local rank, $\text{rank}_{\text{neighbors}(i) \cup \{i\}}(u)$ as
its neighborhood rank, and $\text{rank}_{\{0,1,...,P-1\}}(u)$ as its global rank. Thus in Fig. 2(a), for instance, the
node with cost 90 in OPEN$_i$ has a local rank of three and, assuming that processor j is the only
neighbor of processor i, a neighborhood rank of five. At any time in the execution of a parallel
A* algorithm, the S-rank range for the nodes at position m in a set S of processors is defined as
$\max(\text{rank}_S(\text{node}_{i,m}) - \text{rank}_S(\text{node}_{j,m}) + 1)$ over all processors $i, j \in S$. When $S = \{0,1,\ldots,P-1\}$,
the S-rank range is called the global-rank range, and when $S = \text{neighbors}(i) \cup \{i\}$, it is called the
neighborhood-rank range for the neighborhood of processor i. For instance in Fig. 2(a) and Fig. 2(b),
the $\{i,j\}$-rank range for nodes at position two are two and six, respectively.

In contrast to a parallel local A* algorithm, a parallel global A* (PGA*) algorithm uses a
global/centralized OPEN list or multiple lists that are kept consistent across processors, and pro-
cesses nodes in the order of their global ranks. Thus in PGA* search at any time the best nodes of
all processors lie in a global-rank range of at most P, which is optimal. However, such global-rank
ordered searches are suitable only for shared-memory machines [11] and do not scale up well with
the number of processors, since contention for the global list or the cost of maintaining consistent multiple lists becomes excessive.

Since PGA* algorithms have poor scalability, we focus on PLA* algorithms that use nearest-neighbor load information and work transfers to ensure that neighboring processors expand comparably promising nodes. In such nearest-neighbor PLA* algorithms, in the ideal case processors will expand nodes such that the neighborhood-rank range for best nodes in the neighborhood of any processor is at most \(d + 1\), where \(d\) is the degree of the architecture. Such an ideal search is called \textit{neighborhood-rank ordered search}. Due to the relatively low overheads in PLA* algorithms, they scale much better than PGA* algorithms. However, the departure from strict global-rank ordered search and a distributed-memory implementation introduce a number of inefficiencies in PLA* algorithms:

1. \textit{Starvation}: This is defined as the total time (over all processors) spent in idling, and occurs when processors run out of work.
2. \textit{Non-essential work}: This is the total time spent in processing nonessential nodes. It arises because processors perform \textit{local-rank ordered search} (processors expand nodes in order of non-decreasing local ranks), rather than global-rank ordered search.
3. \textit{Memory overhead}: This is caused by the generation and storage of nonessential nodes. Therefore reducing nonessential work automatically takes care of the memory overhead problem.
4. \textit{Duplicated work}: This is the total extra time associated with pursuing duplicate search spaces and is due to \textit{inter-processor duplicates}, i.e., duplicate nodes that arise in different processors, when the search space is a graph.

The above inefficiencies grow with the number of processors \(P\) used thus causing the efficiency \(E = T_1/(P \cdot T_P)\) of PLA* to deteriorate; here \(T_1\) denotes the sequential execution time and represents the \textit{essential work} for the problem in terms of the amount of time spent processing essential nodes, and \(T_P\) denotes the execution time on \(P\) processors. We use \textit{work density} to refer to the ratio \(T_1/P\).

Load balancing strategies are used to tackle the inefficiencies of starvation and nonessential work (and hence that of memory overhead), while duplicate pruning strategies [8, 16, 17] are required to minimize duplicated work. Since the subject of this paper is load balancing methods, we will confine our attention to tree search spaces. However, for graph-search problems, we briefly point out how any load balancing method can be applied with similar effectiveness in combination with a commonly used hashing-based duplicate pruning technique.
The duplicate pruning technique referred to above utilizes a suitable hash function to associate an owner processor with each distinct node of the search space. Then duplicate nodes arising in different processors are transmitted to the same owner processor where duplicate checking and pruning takes place [8, 17]. Nodes may be transferred from their owner processor, in accordance with any load balancing algorithm, to other processors where they are expanded [16]. Thus when a node \(u \) is first generated, it is hashed to its corresponding owner processor. Subsequently, when a duplicate copy \(v \) of node \(u \) is generated in any processor, it will be hashed to the same owner processor. Node \(v \) then gets pruned in the owner processor and any cost improvement is propagated to the descendents of node \(u \) in the owner and other processors to which \(u \) has been transferred\(^5\). Thus the duplicate pruning technique determines where nodes are checked for duplicates and pruned, while the load balancing algorithm decides where they are expanded.

In the next section, we critique previous approaches to quantitative and qualitative load balance, and in the two subsequent sections we present our parallel startup scheme and dynamic load balancing strategy that address the inefficiencies of starvation and nonessential work. For termination detection, we have used an optimal spanning-tree-based algorithm which can be found in [6].

4 Previous Load Balancing Strategies

During parallel search in PLA\(^*\), it is not only important to perform quantitative load balance across processors to reduce starvation, but also to ensure that a certain amount of qualitative load balance prevails, so that nonessential work is minimized. A number of methods have been proposed to achieve quantitative and/or qualitative load balance [1, 2, 9, 10, 11, 12, 14, 19, 21, 23]. Here we critically analyze the effectiveness of five representative schemes—two purely quantitative load balancing schemes, viz., the round-robin (RR) strategy [9, 12, 19] and the neighborhood averaging (NA) strategy [21], and three schemes directed primarily towards qualitative load balance, viz., the random communication (RC) strategy [10, 11], the Anderson-Chen (AC) strategy [2], and the Luling-Monien (LM) strategy [14]. In all load balancing schemes that we have implemented, unless otherwise stated, work transfer from a donor to an acceptor processor comprises alternate best-cost nodes, starting with the second best-cost node, from the OPEN list of the donor.

\(^5\)Note that, because of the partial expansion scheme used in SEL_SEQ_A\(^*\) on each processor, node \(u \) may be partially expanded in its owner processor and partially in other processors to which the load balancing algorithm transfers it, and so may also have descendents in these processors.
4.1 Quantitative Load Balancing Strategies

In the round-robin (RR) strategy, a processor that runs out of nodes requests work from its busy neighbors in a round-robin fashion, until it is successful in procuring work [9, 12, 19]. The donor processor grants a fixed fraction (one third in our implementation) of its active nodes to the acceptor processor. The drawback of this scheme is that a number of decisions such as the next processor to request from and the fraction of work that should be granted are oblivious to the load distribution in the neighboring processors.

The neighborhood averaging (NA) strategy tries to achieve quantitative load balance by balancing the number of active nodes (active_len) among neighboring processors [21]. For this purpose, each processor reports the current active_len value to its neighbors when it has changed by some constant absolute amount delta. Let \(w_i \) denote the amount of work (in terms of active_len) available with processor \(i \), and \(W_{avg,i} \) the average amount of work per processor available with \(i \) and its neighbors. Let \(\delta_j^i = w_j - W_{avg,i} \) denote the surplus amount of work at processor \(j \) with respect to \(W_{avg,i} \). If a processor \(i \) determines that it is a source processor, i.e., its load \(w_i \) is greater than its average neighborhood load \(W_{avg,i} \), it donates its surplus work \(\delta_j^i \) one node at a time to all its sink neighbors in a round-robin fashion, so that no sink processor \(j \) receives more nodes than its deficiency \(-\delta_j^i\). This attempts to bring the load of the sink neighbors to the neighborhood average. Figure 1 depicts how source processor \(j_2 \) donates its surplus work \(\delta_j^i = w_j - W_{avg,j_2} = 15 - 7 = 8 \) nodes, to its sink neighbors \(j_3, i_2 \) and \(j_1 \). In our implementation, we used the value of delta that gave the best performance (10-50), and performed work (node) transfer en masse rather than one node at a time to reduce work transfer overhead.

There are two main drawbacks in this scheme. First, work transfer decisions rely solely on the load distribution around the source processor, and not that around the sink processors as well. This can give rise to two types of problems. Firstly, since this is a source-initiated strategy, it can happen that multiple source neighbors (e.g., \(j_4, i_3 \) and \(k_3 \) in Fig. 1) may simultaneously attempt to satisfy the deficiencies of a sink processor (\(j_3 \)), thus in all likelihood converting the latter to a “source” relative to its previously source neighbors. As a result, thrashing of work will occur. Further, as illustrated in Fig. 1, it is also possible for work transfer decisions to be contrary to the goal of good load balance. When processor \(j_2 \) determines that it is a source processor relative to its average neighborhood load \(W_{avg,j_2} \), and that it has a sink neighbor \(j_3, j_2 \) is actually a “sink” processor relative to the average neighborhood load \(W_{avg,j_3} \) of processor \(j_3 (w_{j_2} = 15 < W_{avg,j_3} = 22, \) even though \(w_{j_2} = 15 > W_{avg,j_2} = 7 > w_{j_3} = 2) \). In this case, processor \(j_3 \) should actually receive work

8
from its other source neighbors (j_4 and i_3), and then grant some of it to processor j_2, i.e., work transfer should take place from the heavily loaded neighborhood of processor j_3 to the lightly loaded neighborhood of processor j_2, instead of in the reverse direction as the NA strategy would effect. The second major drawback in this strategy is that load information is disseminated when absolute changes in load occur rather than percentage changes—small load changes are more important at lower loads than at heavier loads. By not taking this into account, load reports may either be too frequent (high communication overhead) or too widely spaced (poor load balancing decisions).

4.2 Qualitative Load Balancing Strategies

We now discuss previous qualitative load balancing methods. Clearly, any scheme that performs global-rank ordered search will minimize nonessential work, but the cost of enforcing such a discipline can severely limit the scalability of parallel A^*; PGA* is an example of such an approach. The challenge is to devise a low-cost approach to approximating this ideal discipline. We will analyze the effectiveness of previous load balancing methods [2, 10, 11, 14] by answering two questions: (i) Are there situations in which (redundant) work transfers take place even when there is qualitative load balance (how costly is the approach)? (ii) Are there situations in which work transfers exacerbate an existing qualitative load imbalance (how accurately does it approximate the ideal discipline)? Although these seem extreme situations, their likelihood will be indicative of the overall effectiveness of the load balancing methods.

In the random communication (RC) strategy, each processor donates the newly generated children of the node expanded in each iteration to random neighbors [10, 11]. The fact that work transfers in this scheme are independent of load conditions, gives rise to two significant problems.
First, both the foregoing situations are possible, i.e., work transfers can take place between processors that have equally good nodes, and also a processor with bad quality nodes may donate work to another with superior quality work. Second, its performance will not improve with increase in the granularity of node expansion, i.e., the speedup \((T_1/T_p) \) for instances of two applications with the same number of essential nodes but different granularities will be approximately the same. This is in contrast to the efficacy of strategies that use load information, e.g., the two strategies discussed next and our QE strategy presented in Section 6. Such strategies can afford to increase the amount of load information used with increase in the granularity of node expansion to make better load balancing decisions, thus leading to enhanced overall performance.

In the scheme proposed by Anderson and Chen, herein referred to as the AC strategy, each processor \(i \) periodically reports the non-decreasing list of costs of nodes in \(OPEN_i \) to its neighbors [2]. Then, for each neighbor \(j \), processor \(i \) computes its load (relative to processor \(j \)'s load) as:

\[
w_i = \sum_{u \in OPEN_i} \frac{1}{\text{pos}_{[i,j]}(u)}\]

processor \(j \)'s load \(w_j \) is computed similarly by \(i \). If \(w_i \) exceeds \(w_j \) by some threshold, then processor \(i \) donates work to processor \(j \) (no details are given in [2] regarding which nodes are donated). In Fig. 2(a) we show a situation wherein this scheme will cause work transfer between two processors with perfectly balanced loads relative to each other\(^6\). A distribution of nodes among a set \(S \) of processors is said to be perfect load balanced if at any time the active \(\text{len} \) value for any two processors differs by at most one, and the \(S \)-rank range of the nodes at any position in the \(OPEN \) lists of the processors is at most \(|S|\). For instance, in Fig. 2(a) nodes at any position \(m \) in \(OPEN_i \) and \(OPEN_j \) have ranks of \(2m-1 \) and \(2m \), respectively, relative to the processor-set \(\{i,j\} \), thus representing an \(\{i,j\}\)-rank range of two. Next, in Fig. 2(b) we depict a situation in which a processor \(i \) with essential nodes (assuming that the optimal solution has a cost of 55 and current best \(\text{soln} = 170 \) will actually receive nodes from a processor \(j \) with no essential nodes, rather than donate some of its essential nodes to the latter. Another major drawback in this scheme is that the overhead of transferring, storing and merging cost-lists, and computing the work load is \(\Theta(|OPEN|) \), which is high, since the \(OPEN \) queue is frequently very long; this also means that the cost-list information will age substantially before it gets used, leading to even poorer load balancing decisions.

Finally, Luling and Monien have proposed a qualitative load balancing method, referred to here as the LM strategy, that defines the load of a processor \(i \) as:

\[
w_i = \sum_{u \in OPEN_i} (\text{best soln} - \text{cost}(u))^2
\]

\(^6\)Here we assume that the threshold value for work transfer is less than 0.5; it is easy to give an example for a larger threshold value.

\(^7\)There are other definitions of \(w_i \) that are proposed, but this definition is suggested as the one best suited to
Figure 2: Comparison of the effectiveness of the AC, LM and QE strategies in achieving qualitative load balance. Work transfer operations in the three strategies (a) under a perfectly balanced load condition, and (b) under a condition of load imbalance.

[14]. The behavior of the load balancing algorithm is determined by the following parameters: (i) \(\Delta_{\text{down}} \), \(\Delta_{\text{up}} \): a load balancing activity is initiated if the load decreases by more than \(\Delta_{\text{down}} \% \) or if it increases by more than \(\Delta_{\text{up}} \% \). (ii) \(\Delta \): a processor participates in load balancing activity with its neighbor if their loads differ by more than \(\Delta \% \). (iii) \(w_{\text{min}} \): for a processor to participate in any load balancing activity, its load must be larger than \(w_{\text{min}} \). From Fig. 2 we see that the LM strategy shares with the AC strategy the deficiencies of redundant work transfer (Fig. 2(a)) and ineffective qualitative load balance (Fig. 2(b)). Another major drawback in this scheme is that the load definition used to compute a processor’s load and to perform load balance is dependent on the absolute cost of nodes. To achieve good qualitative load balance as depicted by the OPEN lists of processors \(i \) and \(j \) in Fig. 2(a), only the neighborhood ranks of nodes are important. By not taking this into account, the efficacy of the LM strategy will be sensitive to the absolute-cost distribution of nodes in OPEN, which depends on the application, the heuristic function being used, the input data distribution, and even the stage of execution of PLA*. Additionally, this method is highly communication intensive, since it uses only single-node work transfers.
5 Static Load Balancing - Parallel Startup Phase

Here we describe and analyze a novel parallel startup phase, PAR_START, that is used in all of our parallel algorithms. The startup phase is structured as a b-ary startup tree of depth d (see Fig. 3). In the startup tree, each vertex corresponds to a node generation phase, the outgoing edges from a vertex to a node distribution phase (these will be described shortly), and each leaf to the nodes finally allocated to a single processor. The startup phase execution pattern for any processor is described by a unique path from the root of the startup tree to the corresponding leaf. Initially all processors start with the same root node (node $a1$ in Fig. 3). Then each processor asynchronously executes SEL_SEQ_A* until it has obtained $b.m$ ($m = 2$ in Fig. 3) active nodes, where m is the multiplicity of each branch. Thus nodes $b1$, $b2$, $b3$ and $b4$ are obtained from node $a1$. This is the node generation phase. Next in the node distribution phase, the P processors are divided into b groups labeled 1 through b, with group i being assigned m nodes, viz., the i'th, $(2.b + 1 - i)$'th, $(2.b + i)$'th, $(4.b + 1 - i)$'th, $(4.b + i)$'th, and so on, best-cost nodes in OPEN. Thus in Fig. 3, processors 0 and 1 (group 1), for instance, receive the 1-st ($b1$) and $(2.b + 1 - 1)'$th = $(2.2 + 1 - 1)'$th = $4'$th ($b4$) best-cost nodes. If we assume that the amount of essential work received by the i'th group of processors is inversely proportional to $\sum_{u \text{ is assigned to group } i} \text{pos}_{(j)}(u)$ and if m is even, where OPEN$_j$ is the original list from which nodes were split among processor groups, then this pattern of node assignment will effect perfect work distribution across processor groups. The above sequence of node generation and distribution alternates, until each processor has obtained its own m nodes. This completes the startup phase, and subsequently, each processor executes SEL_SEQ_A* on its starting nodes. Note that, since in each distribution phase the work load is evenly distributed across the different processor groups under the preceding assumption, at the end of the startup phase all processors will end up with the same work load. Therefore we obtain the following theorem.

Theorem 1 If the amount of essential work corresponding to any set R of nodes in any list OPEN$_j$ is assumed to be inversely proportional to $\sum_{u \in R} \text{pos}_{(j)}(u)$, and if the multiplicity m is even, then the parallel startup scheme PAR_START distributes the initial load equally among all processors.

Furthermore, our startup scheme does not involve any communication between processors. Therefore we have:

Property 1 The parallel startup scheme PAR_START does not involve any communication between processors.
Figure 3: Structure of the startup phase represented by a startup tree for $b = 2$, $m = 2$ and $P = 4$.

This property is especially important for distributed implementations of PLA* where communication latencies are high.

Since the assumption in Theorem 1 will not hold exactly in practice, the load balance obtained in the startup phase will not really be perfect. Under more realistic conditions, the parameters b and m will affect the degree of load balance achieved by the startup phase. Before we consider the effect of b and m, we define a few terms that are useful in our subsequent discussions. The *quality* of a node refers to the amount of essential work associated with the node as reflected by its cost\(^8\).

By *quantity* of work (nodes) in a processor, we mean its value of *active\(\text{\textit{Jen}}\)*. A good distribution of nodes across processors is one in which different processors have almost equal quantity and quality of nodes. Clearly, since each processor obtains the same number of starting nodes, a good quantity distribution is effected by the startup phase. To judge the impact of parameters b and m on startup phase qualitative load balance, we note that in any distribution phase, the assignment of the first set of b least-cost nodes will determine the load of a processor group more than each of the subsequent sets of nodes. Therefore processor groups receiving good nodes in the first set of b nodes will be more heavily loaded than others. Hence smaller the branching factor b, more are the number of distribution phases and more is the deterioration in the quality distribution of starting nodes across processors. On the other hand, a larger value for m means a larger choice of nodes to expand from in the node generation phase, and hence better quality of nodes for the subsequent distribution phase. We will analyze the effect of parameters b and m on the performance of parallel A* at different work densities in Section 8.

Now we analyze the time complexity of the startup phase. Let us call the combination of a node generation phase followed by a node distribution phase, a *step*. Then in each step, $b.m$ distinct

\(^8\)A less expensive node is likely to generate more essential nodes compared to a costlier node with a comparable number of visited cities. Therefore, the amount of work a node represents can be approximately deduced from its cost.
active nodes are generated, and m of them are distributed to each of the b processor groups. Note that each processor executes a total of $\lceil \log_b P \rceil$ steps. Therefore the startup phase time T_{su} becomes:

$$T_{su} = \Theta(m.b.\lceil \log_b P \rceil) = \Theta(m.b.\left\lceil \frac{\log P}{\log b} \right\rceil)$$ \hspace{1cm} (3)

Thus T_{su} increases linearly with m and relatively more slowly with b and P. In fact, we see that for the parallel startup phase with constant values of b and m, T_{su} grows only as $\Theta(\log P)$, which is optimal as we show in the following two theorems, while for a sequential startup phase ($b = P$, $m = 1$) used in previous work [12], T_{su} grows as $\Theta(P)$.

Theorem 2 The minimum time in which the startup phase can be completed on any P-processor parallel machine is $\Theta(\log P)$.

Proof: We first consider startup phase time complexity on a P-processor PRAM with concurrent read (CR) capability, which implies that all processors have simultaneous access to all nodes that are generated. The startup problem is then to generate P distinct nodes from root, so that subsequently each processor can pick a distinct starting node. Let c, a constant with respect to P, be the maximum number of children of any search-space node. We assume the generation of one child of any node in the startup problem to be an unit-time atomic task. Thus from root a maximum of c nodes can be generated in unit time by c processors in parallel. Similarly, if there are $i < P$ nodes at any intermediate stage of the startup phase, in the next time unit a maximum of $i.c$ nodes can be generated. Consequently, after j time units, the maximum number of distinct nodes available will be c^j. Thus the startup time complexity becomes $\Theta(\log_c P) = \Theta(\log P)$.

Secondly, since any problem is at least as easy to solve on a PRAM with CR capability as on any other same-sized machine, it follows that the startup problem will take $\Omega(\log P)$ time on any P-processor machine with or without a CR capability. \Box

Theorem 3 The parallel startup scheme PAR_START executes in optimal time on any parallel machine.

Proof: From Eq. 3, it follows that for constants b and m, the startup time complexity is $\Theta(\log P)$, which from Theorem 2 is optimal for all parallel machines. \Box
6 Dynamic Load Balancing - The Quality Equalizing (QE) Strategy

In this section, we present our new load balancing strategy called quality equalizing (QE) strategy because of its use of a highly effective scheme (Section 6.2) for balancing the quality of work between neighbors. The QE strategy comprises both a quantitative load balancing scheme to reduce starvation and load balancing overhead, and a qualitative load balancing scheme to curtail nonessential work. The two schemes are described in detail below.

6.1 Quantitative Load Balancing

In this scheme, each processor monitors its active len periodically and reports any significant changes in it to its neighbors—in our implementation a change of 10% is reported to the neighbors. Also, each processor assumes that the processor space comprises its neighbors and itself only. Here we use \(w_i, W_{avg,i} \) and \(\delta_i^j \) to mean the same quantities as in the discussion of the NA strategy in Section 4. To achieve perfect quantitative load balance between \(i \) and its neighbors, each processor should have \(W_{avg,i} \) amount of work. This means that each neighbor \(j \) of \(i \) should contribute \(\delta_i^j \) units of work to \(i \), which is the common pool. A negative value for \(\delta_i^j \) implies a deficiency, and in that case \(j \) will collect \(-\delta_i^j \) units of work from \(i \) instead of contributing. Similarly, if we look at the work transfer problem from the perspective of a neighboring processor \(j \) of \(i \), then to achieve perfect load balance between \(j \) and its neighbors, processor \(i \) should collect \(-\delta_j^i \) units of work from \(j \).

In our scheme, when a processor \(i \) anticipates running out of work (the way this is done will be described shortly), it requests work from the neighbor \(i_1 \) that has the maximum amount of work. A request for work from \(i \) to \(i_1 \) carries the information \(\delta_i^{i_1} \), and the amount of work granted is \(\min(\delta_i^{i_1}, -\delta_i^{i_1}) \) (with the restriction that at least 10 percent and no more than 50 percent of the work at \(i_1 \) is granted). The minimum of the two is taken because we do not want to transfer any extra work that may cause a work transfer in the opposite direction at a later time. If the work request is turned down by processor \(i_1 \), say, because \(i_1 \) has already granted work to another sink processor in the meantime, then processor \(i \) requests work from the processor with the next most amount of work, and so forth, until it either receives work or has requested all its neighbors. In the latter case, it waits a certain amount of time, and then resumes requesting work as before. We will refer to work requests meant to effect quantitative load balance as quantitative work requests.
In Fig. 1 we show how a sink processor j_3 will request work using the above quantitative load balancing scheme. From the discussion of the NA strategy in Section 4, we concluded that processor j_3 should actually receive work from processor j_4 rather than from processor j_2 as in the NA strategy. This is exactly what happens in the QE strategy, and thus work flows from the heavily loaded neighborhood of j_4 to the lightly loaded neighborhood of j_2 via processor j_3. The NA strategy makes work transfer decisions for processor j_2 considering a processor space comprising its neighbors and itself, i.e., a processor space of radius one. On the other hand, our quantitative load balancing scheme makes work transfer decisions for processor j_3 considering a processor space comprising its neighbors, its neighbors’ neighbors (since the average neighborhood load of the neighbors is taken into account), and itself, i.e., a processor-space of radius two. Therefore we obtain the following property of the QE strategy.

Property 2 The QE strategy makes quantitative load balancing decisions for any processor i considering a processor-space radius of two around it using only near-neighbor load information.

Anticipatory Quantitative Load Balance: To reduce idling caused by latency between work request and work procurement, processors issue quantitative work requests when starvation is anticipated as follows\(^9\). We note that at any time the least-cost node in a processor is expanded. Therefore any decrease in $active_{\text{len}}$ below a low threshold implies that the best nodes available are not good enough to generate active nodes and hence this decrease is likely to continue\(^10\). In our scheme, processors start requesting nodes when $active_{\text{len}}$ is below a certain low threshold, the acceptor threshold, and it is decreasing. It is found that this prediction rule works very well in practice. Using such a look-ahead approach, we are able to overlap communication and computation. Moreover, the delay due to transfer of a long message can be mitigated by pipelining the message transfer, i.e., by sending the work in batches. Basically, the first message unit should be short, so that the processor does not idle long before it receives any work. Subsequent messages (for the same work transfer) can be longer, but should not be so long that the preceding message unit gets consumed and the processor idles for an appreciable period of time. For the problem sizes we experimented with, it sufficed to use a short message (one or two nodes) followed by longer messages (each not exceeding 20 nodes). Note that we perform quantitative load balance only when a processor is about to starve, not at all times as in the NA strategy. Thus our quantitative load

\(^9\)This latency may be caused primarily by a lack of work with the neighbors, or if there is work, then by the neighbors being busy. Furthermore, the message transfer time might be high because of a long message.

\(^10\)If the threshold is kept low and the expansion of best node does not yield any active nodes, it is more likely that the other nodes in $OPEN$ will not yield any essential nodes, than when the threshold is high.
balancing overhead is low.

6.2 Qualitative Load Balancing

Here the objective is to minimize the total amount of nonessential work. This is done by ensuring that neighboring processors expand nodes with comparable neighborhood ranks. In this method, each processor periodically monitors the cost of its sth best node in OPEN, where $s \geq 2$ is the span, and reports any changes to its neighbors. We will refer to this node as the threshold node and its cost as the threshold cost of the processor. In this manner, every processor at any time has information regarding the threshold cost of its neighbors. Note that because of message latency, and due to the time spent expanding nodes, the threshold-cost information may become stale before it is processed by a processor. To simplify the discussion, such information aging is assumed here to be zero; later we will show how it can be taken into account by choosing the position of the threshold node appropriately.

A processor i requests work from the neighbor j with the least threshold cost, when the cost of its best node is more than the threshold cost of that neighbor. The work request carries processor i's best-node cost, and processor j grants only a few good nodes with better cost. In case, the work request is turned down by processor j, say, because j has already granted work to another processor in the meanwhile, then processor i requests work from the neighbor with the next least threshold cost that is less than the best-node cost of i, and so forth, until it either gets work or has requested all such neighbors.

From the condition for triggering work requests, we immediately obtain the following defining property of our qualitative load balancing method:

Property 3 In the QE strategy, a processor i requests nodes with better neighborhood rank than that of its best node, whenever the latter's rank relative to any neighboring processor deteriorates beyond the threshold value s. Furthermore, work is requested from the neighbor that has a threshold node with the least rank relative to the set of processors neighbors$(i) \cup \{i\}$.

From the above property, it is clear that in the worst case, each neighbor of a processor i can have exactly $s - 1$ nodes that have better neighborhood ranks than i's best node, and still not cause i to request work. Hence we obtain:

Property 4 In the QE strategy, the neighborhood-rank range of best nodes in the neighborhood of any processor can become at most $d \cdot (s - 1) + 1$ before work transfer is triggered to reduce it, where
\(d \) is the degree of the target architecture.

For a small enough span, the above worst-case neighborhood-rank range of \(d(s - 1) + 1 \) for the best nodes departs by only a small factor from the ideal range of \(d + 1 \). Hence parallel search using the QE strategy is close to neighborhood-rank ordered search. Furthermore, since neighborhoods are connected, and since work transfers (comprising alternate best-cost nodes from the OPEN lists of donor processors) expedite the dispersal of nodes with good global ranks at any processor to other processors, an almost-ideal neighborhood-rank range for best nodes in neighboring processors translates to a small factor difference from the ideal global-rank range of \(P \) for the best nodes in all processors. Consequently, nonessential work is curtailed. Work requests meant to correct qualitative load imbalance will be referred to as qualitative work requests. Since only a few nodes are transferred, this scheme has very low work transfer overhead, and therefore is especially useful at low and intermediate work densities.

In Fig. 2, we show work transfer decisions made in the above described qualitative load balancing scheme under a condition of perfect load balance (Fig. 2(a)) and a condition of load imbalance (Fig. 2(b)). In Fig. 2(a), no work transfer takes place because the best-node cost of none of the processors exceeds the threshold cost of the other. It is easy to see that work transfers under balanced load conditions will never take place when the span is at least two. Therefore we have:

Property 5 If two processors \(i \) and \(j \) have perfect load balance, then the QE strategy will not perform any work transfer between them.

In Fig. 2(b), the QE strategy transfers essential nodes from processor \(i \) (the processor with essential nodes) to processor \(j \) (the processor with no essential nodes), since the cost of the best node in processor \(j \) (56) is more than the threshold cost of processor \(i \) (53). In fact, if a processor \(i \) has no essential nodes, i.e., its best-node cost is greater than the optimal solution cost, and has at least one neighbor with \(s \) or more essential nodes, i.e., the minimum threshold cost among the neighbors of \(i \) is less than or equal to the optimal solution cost, then a work request for essential nodes will be generated from processor \(i \). Therefore we have the following property.

Property 6 In the QE strategy, if a processor \(i \) has no essential nodes, and has at least one neighbor with \(s \) or more essential nodes, then a work request for essential nodes will be generated from processor \(i \).

From Properties 3 and 6, we see that work requests in the QE strategy are triggered based on the neighborhood rank of nodes rather than on the absolute cost of nodes as in the LM strategy of
Section 4.2. Thus the QE strategy is impervious to the absolute cost-wise distribution of nodes in the OPEN list, which depends on the application, the heuristic lower-bound function, the input data distribution and also the stage of execution of PLA*.

Tackling Information Aging: We now determine appropriate choices for the position τ of the threshold node and the span s to be used to account for information aging and to expedite good load balance, respectively. Basically, we want that when any processor i reports its threshold node u’s cost (i.e., its τ’th best-node cost) at time t_1 to a neighbor j, and when j compares that with its best-node cost at some later time t_2, node u will have become the s’th best node in OPEN$_i$, i.e., at time t_2, processor j should compare its best-node cost with the s’th best-node cost of processor i. Let this delay $(t_2 - t_1)$ in the processing of threshold-cost information after its transmission be denoted by t_d. Since at time t_2, node u, which was at position τ in OPEN$_i$ at time t_1, will have advanced to position11 $\tau - O(t_d)$, we should keep $\tau = s + O(t_d)$. In our scheme, a processor repeatedly: (1) expands a node, (2) then processes all incoming messages (e.g., load information and work requests from neighbors) and outgoing messages (e.g., load information and work transfers to neighbors when required). The time to execute these steps once is $t_c + t_m$, where t_c is the node-expansion time and t_m is the message-processing time. In the worst-case, each node expansion may result in d informational messages (e.g., due to a change in the threshold cost) to/from d neighbors and one work request/transfer message. Thus $t_m = O(d)$. Also, let t_c denote the transmission time for load information to reach a neighbor, i.e., t_c is a known constant of the parallel machine. Since a processor processes a new set of messages every $t_c + t_m$ time, the average delay $t_d = t_c + (t_c + t_m)/2$. Hence we should choose $\tau = s + O(t_c + (t_c + t_m)/2)$ to account for information aging. For high granularity applications, such as TSP considered in this paper, t_c dominates t_c and t_m, and information aging is almost negligible. Therefore we used $\tau = s$ in our implementation. However, for lower granularity applications, information aging can be a factor influencing performance, and can be tackled by choosing τ as above.

We now consider the choice of the span value s. Note that smaller the span, less is the nonessential work (because of tighter load balance) and more the work transfer overhead, and vice versa. Also, note that the value of s determines the potential number of nodes of better cost at a source processor compared to the best-node cost of a requesting sink neighbor. Suppose we keep s constant with respect to d. Now consider a sink processor k that sends a qualitative work request at

11If all the children of the nodes expanded in processor i after time t_1 occupy positions in OPEN$_i$ behind node u, u will advance to position $\tau - \Theta(t_d)$ at time t_2. But since some children may occupy positions ahead of u, u will actually advance to position $\tau - O(t_d)$ at time t_2.

19
time \(t_1 \) to its source neighbor \(i \) with the least threshold cost. If at \(t_1 \) processor \(i \) receives multiple work requests, then only a constant number of them are guaranteed to be honored. If \(k \)'s request is honored, the work transfer from \(i \) to \(k \) helps limit the \(\{i, k\} \)-rank range of their best nodes to \(s \). However, if \(k \)'s request is turned down, it will request from another source neighbor. In the worst-case, processor \(k \) may need to request from \(O(d) \) source neighbors before finally receiving work from some source neighbor \(j \) at time \(t_2 \). In this case, the time elapsed between the first request and the last request is \(t_2 - t_1 = O(d.t_d) \), where recall that \(t_d = t_c + (t_e + t_m)/2 \). If processor \(k \) had requested work from processor \(j \) at time \(t_1 \), it would have received at least one node \(u \) with a \(\{j, k\} \)-rank of no more than \(s \). However, by requesting work at a later time \(t_2 \), it can only be sure of receiving a node with a \(\{j, k\} \)-rank not more than \(\text{rank}_{\{j, k\}}(u) + O(d.t_d) \). Hence, by keeping a constant span, the rank range of best nodes of neighboring processors can only be limited to \(O(s + d.t_d) \). On the other hand, if we choose \(s = O(d) \), all work requests will be honored the first time around, since the number of simultaneous requests to the same source processor grows as \(O(d) \), and hence a best-node rank range of \(O(d) \) between any two processors can be maintained. Moreover, keeping \(s = O(d) \), as opposed to keeping it constant, reduces work transfer overhead leading to improved performance. In our implementation, we let \(s \) grow at a rate slightly less than \(\Theta(d) \). A formal description of the QE strategy that comprises all the schemes discussed in this section is given in Fig. 4.

Later in Section 8, we will compare the performance of the QE strategy with that of the RR and RC strategies. Since the QE strategy performs both quantitative and qualitative load balance, while the RR and RC strategies are geared primarily towards a single type of load balance, we also consider two methods that combine previous quantitative and qualitative load balancing approaches to make a stronger comparison. The mixed methods are RR+RC and NA+RC, and are similar to the RR and NA strategies, respectively, except that as in the RC strategy, each processor also donates the newly generated children of the node expanded in each iteration to random neighbors. In Fig. 5, we give a formal description of PLA\(^*\) that utilizes the parallel startup phase PAR_START and either one of the above load balancing methods.

7 **Scalability Analysis of PLA\(^*\)_QE**

In this section, we derive good upper and lower bounds on the scalability of parallel A\(^*\) algorithms. First, we define a few terms and state our assumptions. We assume that all processors expand nodes
Procedure QE
/* Procedure QE is used in PLA*-QE to achieve load balance */
\begin{verbatim}
begin
Each processor $i, 0 \leq i < P$, executes the following steps:
1. Report work status: Periodically monitor $active_{len}$ and the threshold cost, and report any significant changes (10% and greater than 0%, respectively) in them to all neighbors.
2. Receive work report: If (a work status report is received from a neighbor) then record it.
3. Update j_{max} and j_{best}. $j_{max} :=$ neighbor with the maximum $active_{len}$ value; and $j_{best} :=$ neighbor with the least threshold cost.
4. Work request:
 \begin{verbatim}
 if (no previous work request from i remains to be serviced) then begin
 if($active_{len} = 0$) or ($active_{len} < acceptor threshold$ and is decreasing) then begin
 Send a quantitative work request to j_{max}, along with the information $\delta_{i_{max}}$.
 end
 else if($best_{node}$ is costlier than the threshold cost of j_{best}) then begin
 Send a qualitative work request to j_{best}, along with the cost of $best_{node}$.
 endif
 endif
 \end{verbatim}
5. Donate work: If (a quantitative work request is received from neighbor j) then grant $\min(\delta_{i_{j}}, -\delta_{i_{j}})$ (but at least 10% and not more than 50% of $active_{len}$) active nodes in a pipelined fashion.
6. Donate work: If (a qualitative work request is received from neighbor j) then grant a few active nodes that are cheaper than j's $best_{node}$.
7. Receive work: If (work is received) then insert nodes received in $OPEN_{i}$.
\end{verbatim}
end /* Procedure QE */

Figure 4: Algorithm for the Quality Equalizing Strategy.

Algorithm PLA*(P, P, b, m)
/* Given a COP P, and the branching factor b and multiplicity m for the startup phase, PLA* returns an optimal solution to P, using P processors */
\begin{verbatim}
begin
Each processor $i, 0 \leq i < P$, executes the following steps, starting with the same root:
1. Parallel startup phase: Execute the parallel startup scheme PAR,START with branching factor b and multiplicity m.
 \begin{verbatim}
 if an optimal solution is found in the startup phase then report solution to host and exit.
 Otherwise initialize $OPEN_{i} :=$ my m nodes; $active_{len} := m$.
 \end{verbatim}
 If any solution has been found in the startup phase then $best_{solin} :=$ cost of current best solution
 else $best_{solin} := \infty$. /* $best_{solin}$ holds the cost of the current global best solution */
repeat
2. Execute an iteration of SEL,SEQ,A* on $OPEN_{i}$.
3. If (a solution is generated that is better than $best_{solin}$) then update $best_{solin} :=$ current solution cost; broadcast $best_{solin}$ to all other processors.
4. If (a solution update message is received) and (if the received solution is better than the current best solution in $OPEN_{i}$) then update $best_{solin}$.
5. Execute one of RR, RC, RR+RC, NA+RC and QE strategies depending on the load balancing method to be used.
until(termination is detected)
end /* Algorithm PLA* */
\end{verbatim}

Figure 5: Algorithm PLA*.
synchronously and that all node expansions take the same time. This makes the analysis tractable and will give correct performance prediction in order terms. Let \(W \) denote the total essential work in terms of the total number of essential expansions. The speedup \(S \) is defined as the ratio \(W/I_P \), and the efficiency \(E \) as \(S/P \), where \(I_P \) is the number of iterations required by the parallel algorithm executing on \(P \) processors. The total overhead over all processors \(W_o \) for a parallel algorithm is therefore equal to \(P I_P - W \). Hence efficiency \(E = W/(W + W_o) = 1/(1 + W_o/W) \). The isoefficiency function of a parallel algorithm is defined to be the required rate of growth of \(W \) with respect to \(P \), to keep the efficiency fixed at some value, and is a measure of the scalability of the algorithm [12]. From the expression for efficiency, we notice that \(W \) needs to grow as \(W_o \) for constant efficiency. In other words, the rate of growth of \(W_o \) with \(P \) (and other architectural parameters that change with the size of the parallel machine) is the isoefficiency function of the parallel algorithm. Lower values of the isoefficiency function like \(\Theta(P) \) and \(\Theta(P \log^2 P) \) indicate that the algorithm is very scalable, while high values of this function like \(\Theta(P^2) \) imply poor scalability. In our analysis, we consider all three overheads incurred by PLA*, viz., starvation, work transfer overhead and nonessential work.

First, we obtain an upper bound on the total work transfer overhead \(W_o^{wt} \) over all processors. \(W_o^{wt} \) includes overheads incurred by a processor in work transfer and load-information communication when it has essential nodes to process. Otherwise, such overheads are included in starvation (if the processor is idling) or nonessential work (if the processor is processing nonessential nodes) overheads. Therefore, representing \(W_o^{wt} \) in units of node-expansion time, \(W_o^{wt} = W_0 t_m/t_e \), where recall from Section 6.2 that \(t_e \) is the node-expansion time, and \(t_m = O(d) \) is the message-processing time per node expanded. We can represent \(t_e \) and \(W \) as polynomials in \(N \), where \(N \) is the number of variables in the COP to be solved. For instance, for both the heuristics used in our parallel A* algorithms to solve TSP (viz., our simple heuristic of Section 2 and the LMSK heuristic [13]), \(y = 2 \), and the average-case complexity of solving TSP is polynomial in \(N \) [24]. Thus let \(t_e = \Theta(N^y) \) and \(W = \Theta(N^x) \), so that \(W = \Theta(t_e^{x/y}) \). Hence for isoefficiency:

\[
W = \Theta(W_o^{wt}) = \Theta(W_0^{wt} t_m/t_e)
\]

\[
\Rightarrow t_e = O(d)
\]

\[
\Rightarrow W = O(d^{x/y})
\]

Thus:

Theorem 4 The isoefficiency function of PLA*–QE, as determined by work transfer overhead, on any \(P \)-processor architecture with degree \(d \) is \(O(d^{x/y}) \).
In the following analysis, we will see that asymptotically, the overheads due to startup phase and nonessential work dominate the work transfer overhead, and hence determine the scalability of PLA*-QE. However, in practice, keeping work transfer overhead low, especially for low granularity applications (\(y\) small), can improve performance. Recall from Section 6.2 that a smaller span minimizes nonessential work while increasing work transfer overheads, and vice versa. Hence an appropriate value of span should be chosen to obtain a good trade off—obviously a larger span should be chosen for lower than for higher granularity applications.

We now derive a lower bound on the isoefficiency function of a generic parallel A* algorithm by considering the overhead incurred in the startup phase. The startup phase overhead \(W^{su}_o\) accrues from the limited initial parallelism available in the search problem. Recall from Section 5 that in each node generation phase of PAR.START, \(b.m\) nodes are generated. Since at the \(i\)’th level of the startup tree (see Fig. 3), there are \(b^{i-1}\) node generation phases that are taking place in parallel, and since there are \([\log_b P]\) such levels, the total number of distinct nodes \(N_{su}\) generated in the parallel startup phase is:

\[
N_{su} = \sum_{i=1}^{[\log_b P]} b^{i-1} \cdot b.m = m.b \cdot \frac{b^{[\log_b P]} - 1}{b - 1} = \Theta(m.P) \quad (7)
\]

Therefore the total work accomplished in the startup phase is\(^\text{12}\) \(\Theta(m.P)\), for some constant \(m \geq 1\). Hence assuming the startup phase to be the only overhead, the parallel execution time using Eq. 3 becomes:

\[
I_P = I_{su} + \frac{W - N_{su}}{P} = m.b \cdot \frac{\log P}{\log b} + \frac{W - \Theta(m.P)}{P} \quad (8)
\]

where \(I_{su}\) is the number of iterations taken to accomplish \(m.P\) units of work in the startup phase, \(W - N_{su}\) is the time taken for the remainder work, and \(b \geq 2\) is a constant. Therefore:

\[
W^{su}_o = P.I_P - W = m.P \left(\frac{b.\log P}{\log b} \right) - \Theta(m.P) = \Theta(P.\log P) \quad (9)
\]

Thus:

Theorem 5 The isoefficiency function of PLA*, as determined by the parallel startup phase, on any \(P\)-processor architecture is \(\Theta(P.\log P)\).

Since from Theorem 3 our parallel startup scheme is optimal, we obtain:

Theorem 6 A lower bound on the isoefficiency function of an arbitrary parallel A* algorithm on any \(P\)-processor architecture is \(\Theta(P.\log P)\).

\(^{12}\)This assumes that the number of nodes generated is of the same order as the number of nodes expanded, which because of our use of the partial expansion scheme (see Section 2) is actually true.
In the above analysis, we considered the overhead incurred in the initial stage (startup phase) of PLA*-QE to lower bound its isoefficiency function. To obtain an upper bound on its isoefficiency function, we will determine the overhead in the final stage of PLA*-QE—we assume that due to the availability of appreciable number of essential nodes during the intermediate stage of PLA*, the idling and nonessential work overhead during this period is not more (in order terms) than the overhead incurred in the final stage of PLA*. The final stage of PLA*-QE is defined to begin when at least one processor runs out of essential work and does not receive any further essential work in the remaining part of the execution (due to neighbors having very few essential nodes). Furthermore, since we are considering the final stage of PLA*, we assume that the expansion of essential nodes at this stage does not yield any more essential child nodes.

First, we determine the overhead W'_0 incurred in a $(D + 1)$-processor linear array in a bad case of the final stage, and then generalize that analysis to obtain the overhead W_0 for any P-processor parallel architecture in a corresponding situation. Although the scenario we consider is not provably the worst, it none the less seems to be an almost-worst case. It will be intuitively clear shortly that the overhead incurred in this bad case is more than that in the average case, and hence the following bad-case analysis suffices to provide an upper bound on the average isoefficiency function of PLA*-QE. We determine W'_0 assuming that at the onset of the final stage of PLA*-QE, exactly one processor, denoted by origin, runs out of essential nodes—the case of multiple processors simultaneously running out of essential work will be shown later to yield a smaller overhead. Figure 6(a) depicts the bad-case situation in question starting at iteration r for a $(D + 1)$-processor linear array, with the origin processor being processor 0. Here processor i has $i.(s - 1)$ essential nodes, where $0 \leq i \leq D$ and s is the span. Since at iteration r, the only neighbor, processor 1, of processor 0, has less than s essential nodes, i.e., less than the minimum number of essential nodes to trigger work transfer in the QE strategy, processor 0 does not request any work from processor 1. Similarly, at iteration $(r + s - 1)$ when processor 1 runs out of essential nodes, its neighbors processor 0 and processor 2 have only 0 and $s - 1$ essential nodes, respectively, which are both less than the minimum required to cause work transfer. Note that in the situation shown in Fig. 6(a), the time period over which any number of processors incur overhead is prolonged maximally by distributing the maximum possible number of essential nodes over all processors, such that the QE strategy does not trigger even when work is available. As a result, the maximum amount of idling and nonessential work overhead is incurred.

To compute the overhead in this bad-case scenario, we note that processor 0 idles (or expands
nonessential nodes) from iteration r through $r + D_1(s - 1) - 1$ (i.e., a total of $D_1(s - 1)$ iterations), and processor 1 idles (or expands nonessential nodes) from iteration $r + 1, (s - 1)$ through $r + D_1(s - 1) - 1$ (i.e., a total of $(D - 1), (s - 1)$ iterations), and so forth. Thus the total overhead for the linear array becomes:

$$W'_o = \sum_{i=0}^{D-1} 1(D - i)(s - 1) = D_1(D + 1)(s - 1)/2 = D_1(D + 1)d/2$$

(10)

Recall from Section 6.2 that s is scaled as approximately $\Theta(d)$, where d is the node degree of the target architecture, to expedite good load balance in the QE strategy; here we have used $s = d + 1$ for simplicity. Intuitively, it is clear that on the average the distribution of essential nodes across processors in the final stage will not be as skewed as depicted in Fig. 6(a), and hence the actual overhead will generally be less than that given by Eq. 10. Consequently, W'_o will yield an upper bound on the average isoefficiency function of PLA*-QE on a linear array.

We now consider the bad-case situation for a $(D + 1)$-processor linear array, wherein there are c origin processors. At iteration r, each origin processor will be associated with a string of processors with monotonically increasing number of essential nodes as we move away from the origin. Let the lengths of the different strings be $D_1 + 1, D_2 + 1, \ldots, D_c + 1$, and, without loss of generality, let $D_1 + 1$ be the length of the longest string. From the analogy of the scenario depicted in Fig. 6(a), it is clear that all processors in the i'th string of length $D_i + 1$, where $2 \leq i \leq c$, will run out of essential nodes at iteration $r + D_i(s - 1) = r + D_i.d$. There after, all processors in the i'th string idle (or perform nonessential work) until the algorithm terminates at iteration $r + D_1.d$ when the first string (the longest string) runs out of essential nodes, i.e., all processors in the i'th string idle for a total of $D_1.d - D_i.d$ iterations. Thus the total overhead W''_o in this case can be computed using Eq. 10 as:

$$W''_o = \sum_{i=1}^{c} \frac{D_i(D_i + 1)}{2}.d + \sum_{i=2}^{c} (D_1.d - D_i.d)(D_i + 1)$$

(11)

It can be shown\footnote{Using the fact that $D + 1 = (D_1 + 1) + (D_2 + 1) + \ldots, + (D_c + 1)$. Eq. 11 can be simplified to $W''_o/d = D_1(D - D_1/2) + D_1 + (c - 1)/2 - (D_2^2 + D_2 + \ldots, + D_c^2)/2 < D_1(D - D_1/2) + D_1 + (c - 1)/2$. Since from Eq. 10, $W'_o/d = D_1^2/2 + D$, and, since clearly for $c > 1$, $D^2/2 > D_1(D - D_1/2)$ and $D > D_1 + (c - 1)/2$, we obtain $W''_o < W'_o$ for $c > 1$.} that $W''_o < W'_o$ for $c > 1$, thus establishing our original claim.

Now we extend the bad-case overhead analysis presented above for a $(D + 1)$-processor linear array, to an arbitrary P-processor parallel architecture of diameter D. Similar to the linear array case, assuming that just a single processor runs out of essential work at the start of the final stage of the search gives a higher overhead than assuming that multiple processors run out of essential nodes simultaneously. Therefore we consider the former case. Also, we use the argument made
Figure 6: A bad-case distribution of essential nodes in the final stage of PLA*-QE in the different processors of (a) a linear array of \((D + 1)\) processors, and (b) an arbitrary topology shown using a breadth-first spanning tree rooted at \textit{origin}.

earlier that to obtain the bad-case situation of the type shown in Fig. 6(a), we need to distribute the maximum possible number of essential nodes across processors in such a manner that load balance will not occur in spite of the availability of essential work. From the analogy of the linear array case, this means that in the bad case the number of essential nodes present in each processor at the start of iteration \(r\) (the onset of the final stage of PLA*-QE) is determined by the condition that it increases by \((s - 1)\) with each link away from \textit{origin}. Equivalently, the bad-case distribution at iteration \(r\) can also be arrived at by embedding a breadth-first spanning tree on the target architecture rooted at \textit{origin}, and by assigning to each processor \(x\), \textit{dist}(\(x\))(\(s - 1\)) essential nodes, where \textit{dist}(\(x\)) is the distance of \(x\) from \textit{origin} on this tree (see Fig. 6(b)). Note that, since we are considering a breadth-first spanning tree, \textit{dist}(\(x\)) is the length of the shortest path from \textit{origin} to \(x\) on the target topology.

The justification for using the shortest path from processor \(x\) to \textit{origin}, and not longer paths that may exist in the topology, to determine the bad-case essential node distribution is the following. Suppose a processor \(x\) with \textit{dist}(\(x\)) = \(i\) has a longer path of length, say, \(j\) to \textit{origin}. Now, two conditions must be satisfied. First, the bad-case distribution mandates that the number of essential nodes away from \textit{origin} must increase by \((s - 1)\) with each link away from \textit{origin}. Second, the net difference in the number of essential nodes obtained by adding the positive or negative differences of \((s - 1)\) essential nodes between neighboring processors, should be zero after one full traversal (say, starting from \textit{origin}) of the cycle \(C\) formed by the \(i\)- and \(j\)-length paths. Since \textit{origin} has 0 essential nodes at iteration \(r\), it is clear that the only way these two conditions can be simultaneously satisfied is by having the number of essential nodes monotonically increase away from \textit{origin} in both directions on \(C\) until the middle processor \(y\) at \textit{dist}(\(y\)) = \((i + j)/2\) is reached. From this it
follows that the number of essential nodes at any processor x is determined by the shortest path between it and \textit{origin}.

Now to obtain the overhead W_o for the bad case depicted in Fig. 6(b), compare it with Fig. 6(a). It is clear that for the case in Fig. 6(b), all processors at a distance i from \textit{origin} will be without essential work from iteration $r + i.(s - 1)$ through iteration $r + D.(s - 1) - 1$. If we denote by p_i, the number of processors at a distance of i from \textit{origin}, then the overhead for any P-processor parallel architecture is given by:

$$W_o = \sum_{i=0}^{D-1} p_i.(D - i).(s - 1) = \sum_{i=0}^{D-1} p_i.(D - i).d < D.d \sum_{i=0}^{D-1} p_i = P.D.d$$

(12)

Hence we obtain the following theorem regarding the scalability of any P-processor parallel architecture:

\textbf{Theorem 7} The isoefficiency function of PLA*-QE is upper bounded by $\Theta(W_o)$, where $W_o = \sum_{i=0}^{D-1} p_i.(D - i).d = O(P.D.d)$ is with respect to an \textit{origin} processor that maximizes it. Here p_i denotes the number of processors at a distance of i from \textit{origin}, and D and d are the diameter and degree, respectively, of the P-processor target architecture.

The expression for W_o in Eq. 12 can be simplified for an interesting class of parallel architectures called k-ary n-cube tori, which includes rings ($n = 1$), 2-D tori ($n = 2$), 3-D tori ($n = 3$) and hypercubes ($k = 2$) as special cases [5]. Here, n is the dimension and k the radix of the architecture. The number of processors $P = k^n$. Every processor in the k-ary n-cube has an n-digit radix-k label $(a_{n-1}, a_{n-2}, \ldots, a_i, \ldots, a_1, a_0)$, and has neighbors $(a_{n-1}, a_{n-2}, \ldots, (a_i + 1) \mod k, \ldots, a_1, a_0)$ and $(a_{n-1}, a_{n-2}, \ldots, (a_i - 1) \mod k, \ldots, a_1, a_0)$ along each dimension i. Therefore every processor has m neighbors along each dimension, where $m = 2$ for $k > 2$, and $m = 1$ for a hypercube ($k = 2$). Also, k-ary n-cube meshes are defined in the same way except that there are no end-around connections in any dimension; the linear array ($n = 1$) and 2-D mesh ($n = 2$) are its special cases. The upper bound on the isoefficiency function of PLA*-QE for these architectures is established next.

\textbf{Theorem 8} The isoefficiency function of PLA*-QE on P-processor k-ary n-cube tori and meshes is upper bounded by $\Theta(P.k.n^2)$.

\textbf{Proof Outline:} From Eq. 12, $W_o = d.(D.\sum_{i=0}^{D-1} p_i - \sum_{i=0}^{D-1} i.p_i)$. To simplify the second term, assume for simplicity that k is even and let $l = k/2$. Since k-ary n-cubes are homogeneous, take any processor as \textit{origin}. Now along every dimension, there is one processor each at distances 0
and l and two processors each at intermediate distances from origin. Therefore the coefficient of x^i in $p(x) = (1.x^0 + 2.x^1 + 2.x^2 + \ldots, 2.x^{i-1} + 1.x^i)^n$ is p_i, i.e., $p(x) = \sum_{i=0}^{D-1} p_i x^i$. Consequently, $\sum_{i=0}^{D-1} i. p_i = p'(1) = P.k.n/4$, where $p'(x)$ is the derivative of $p(x)$ with respect to x. Now using $d = m.n$ and $D = k.n/2$, we obtain $W_o = m.P.k.n^2/4 = \Theta(P.k.n^2)$. This expression for W_o is also valid, in order terms, for k-ary n-cube meshes. □

For the linear-array/ring ($n = 1$), 2-D mesh ($n = 2$) and hypercube ($k = 2$) architectures, three popular topologies, we directly obtain from Theorem 8 the following three corollaries:

Corollary 1 The isoefficiency function of PLA*-QE on a linear array or ring with P processors is upper bounded by $\Theta(P^2)$.

Corollary 2 The isoefficiency function of PLA*-QE on the hypercube architecture with P processors is upper bounded by $\Theta(P.\log^2 P)$.

Corollary 3 The isoefficiency function of PLA*-QE on the 2-D mesh architecture with P processors is upper bounded by $\Theta(P.\sqrt{P})$.

In the next section, we present performance results for PLA*-QE on the hypercube architecture that validate our scalability analysis.

8 Performance Results

We implemented five PLA* algorithms each incorporating the parallel startup scheme PAR_START, and either one of RR, RC, QE, RR+RC and NA+RC load balancing strategies, on an nCUBE2 hypercube multicomputer. All our algorithms use the tree search-space formulation of Section 2 to solve TSP. Unless otherwise stated, the simple heuristic of Section 2 is used as the lower-bounding function. The TSP city graphs chosen were complete, with intercity distances either uniformly or normally distributed over the interval [1, 100]. Three merits of performance, averaged over ten TSP instances, are used: (1) Average execution time measured in milliseconds; (2) Average speedup defined as the ratio (average T_1)/(average T_P); and (3) Average isoefficiency function, which is measured as the required rate of growth of essential work (as represented by average T_1 for different values of N) with respect to P to keep the efficiency fixed at some value. Below we present performance results of our parallel startup scheme and load balancing strategies.
8.1 Effect of Parallel Startup Phase

In Fig. 7, we plot the execution time T_P for various b and m combinations, as a percentage of the execution time of the case $b = P$ and $m = 1$ (sequential startup). The amount of startup phase time T_{su} affects the performance at different work densities in the following ways: (1) At low work densities (roughly $P > 16$ for $N = 19$) the fraction of the time $1 - T_{su}/T_P$ spent in completely parallel execution is small; this can be countered by decreasing T_{su} and hence smaller values of b and m yield better performance. (2) At intermediate work densities (roughly $4 < P \leq 16$ for $N = 19$) the total time $T_P - T_{su}$ available for load balancing is insufficient; this can be alleviated by a good distribution of starting nodes and hence larger (though not necessarily the largest) values of b and m prove to be more useful. (3) Finally, at high work densities (roughly $P \leq 4$ for $N = 19$) $T_P \gg T_{su}$, so that the effect of b and m is minimal. Thus the choice of b and m is more crucial at low and intermediate work densities, i.e., for medium to large number of processors for a given problem size. Notice also that the improvement in total execution time obtained using a startup phase with maximum parallelism ($b = 2$) with respect to a completely sequential startup phase ($b = P$), grows with the number of processors used and is as high as 10% for $P = 32$ and 60% for $P = 256$ (the latter is not shown).
8.2 Effect of Load Balancing Strategies

In Fig. 8 we plot the speedup curves for PLA* using the RR, RC and QE strategies. The fact that PLA*-QE performs significantly better than PLA*-RR and PLA*-RC at lower and intermediate work densities corroborates our predictions regarding the utility of the QE strategy in enhancing scalability—speedups of PLA*-QE for \(P = 256 \), i.e., at an intermediate work density, and for \(P = 1024 \), i.e., at a lower work density, are about 25-50% and 30-100%, respectively, above the speedups of PLA*-RR and PLA*-RC for uniformly distributed data (Fig. 8(a)). The corresponding figures for normally distributed data are 15-120% and 20-185% (Fig. 8(b)). Note that the speedup values for normally distributed data with a small deviation are larger compared to that for uniformly distributed data for the same input problem size. The reason for this is that the number of essential nodes in the former case is greater due to there being more nodes of comparable quality because of the smaller deviation for the intercity costs; thus the work density is larger leading to a more efficient parallel search.

Next in Fig. 9, we plot the speedup curves for the various load balancing methods using the LMSK heuristic, which is much tighter than the simple heuristic of Section 2; the curve for RR strategy could not be plotted because of memory overflow caused by large amounts of nonessential work. Here again we notice that the speedup of PLA*-QE is high and about 35-50% better on 1024 processors than that obtained using the RC strategy; the speedup improvement over the RR strategy for a smaller problem size \((N = 36) \) with uniformly distributed data, is 123% (not shown). Furthermore, we observe from Fig. 9 that the QE strategy yields 11-22% better speedup for \(P = 1024 \) than the RR+RC and NA+RC methods, which combine previous quantitative and qualitative load balancing schemes. Also, note from Fig. 9(a) that we obtain an average speedup of about 985 on 1024 processors using our QE strategy, which represents a very high efficiency of 0.96. From Figs. 8 and 9, we see that the performance of the QE load balancing method remains excellent even when the heuristic function or the input data distribution are varied—the differences in speedup for the QE strategy in the various cases is due to differences in work densities, with larger speedups corresponding to higher work densities. This bears out our argument in Section 6.2 that the QE strategy is robust with respect to changes that affect the cost-wise distribution of

\[\text{\small \cite{14}} \]

Some large TSP instances included in the plots of Figs. 8, 9 and 10 could not be solved on processors less than a certain number \(P' \) due to memory overflow. Since the relative speedup \(T_{256}/T_{P'} \) at \(P' \) was found to be almost two (i.e., almost perfect), and since this relative speedup could have only improved at smaller number of processors had there been enough memory to solve these instances (because of lower overhead at smaller number of processors), we assumed the speedup at \(P = P' \) to be \(P' \).
Figure 8: Speedup curves for PLA* algorithms using the simple heuristic of Section 2 and employing different load balancing strategies, for (a) uniformly distributed data and (b) normally distributed data.

nodes. Thus the QE strategy should be effective in the solution of a variety of COPs.

Finally, in Fig. 10 we plot the isoefficiency curves for PLA*-RR, PLA*-RC and PLA*-QE15. Although not many data points are available, we notice that the general trend of the isoefficiency function for PLA*-QE is close to the lower bound of $P \log P$ and is much better than that of PLA*-RR and PLA*-RC. Also, note that the isoefficiency function of PLA*-QE is better than $P \log^2 P$ and the isoefficiency functions of all PLA* algorithms are worse than $P \log P$. This supports our scalability analysis in the previous section.

9 Conclusions

Although it is possible to obtain linear speedups in parallel A* search for sufficiently high work densities, at lower and intermediate work densities (i.e., for larger number of processors keeping problem size fixed), inefficiencies such as uneven work distribution and search of nonessential spaces gain prominence and cause the efficiency to deteriorate. In this work, we proposed a novel parallel startup scheme PAR_START and an efficient dynamic load balancing method, the quality equalizing (QE) strategy, to tackle these problems, and thus improve the scalability of parallel A*

15Since points corresponding exactly to the desired efficiency could not be obtained, we used the closest points available. The isoefficiency curves for the analytical lower and upper bounds were plotted by making them coincident with the isoefficiency curve for PLA*-QE at $P = 1$, and then letting them grow for larger values of P at the rates $P \log P$ and $P \log^2 P$, respectively—this determines the constants associated with the analytical bounds.
Figure 9: Speedup curves for PLA* algorithms using the LMSK heuristic and employing different load balancing strategies, for (a) uniformly distributed data and (b) normally distributed data.

Figure 10: Isoefficiency curves for PLA* algorithms using the simple heuristic of Section 2 and employing different load balancing strategies, for uniformly distributed data.
algorithms. PAR_START executes in an optimal time of $\Theta(\log P)$ and also achieves good initial load balance across processors. The QE strategy was shown to possess certain unique load balancing properties that aid in achieving good quantitative and qualitative load balance. Finally, we performed a scalability analysis of parallel A* algorithms and showed that: (1) $\Theta(P, \log P)$ is a lower bound on the isoeficiency function of any parallel A* algorithm, and (2) $\Theta(P, D, d)$ is an upper bound on the isoeficiency function of our parallel A* algorithm using the QE strategy, where D is the diameter and d is the degree of the target architecture. Performance results corroborate our scalability analysis, and show that the QE strategy yields speedup improvements of 20-185\% over the previously proposed RR and RC strategies, and 11-22\% over the RR+RC and NA+RC strategies that combine prior quantitative and qualitative load balancing methods. We used two different heuristic functions for the TSP problem, and intercity costs that were either uniformly or normally distributed, to model the different cost-wise distribution of search-space nodes typically seen across various applications. Performance results show that for comparable work densities, the QE strategy performs equally well for different node-cost distributions, and thus is a very robust load balancing method.

Acknowledgement

We thank the anonymous referees for their constructive criticisms that helped improve the quality of this paper.

References

