VLSI Workshop Day 2

Today's Topic: Revised Course Content

	<u> </u>				
	DAY 1	DAY 2	DAY 3	DAY 4	DAY 5
9:00	common session	common session	common session	common session	common session
9:30	Introduction; VLSI Curriculum; Course Content Overview	Course content: technology & device models	Teaching skills; effective lectures	DIS: Research in Education	DIS: Engaging in Research
10:00					
10:30				New tech. resources	Research: MEMS & Sensors
11:00	Components of VLSI Course	Course content: CMOS logic, layout, sequential logic	Teaching resources; effective homework, exams, labs	Trends in VLSI	
11:30				VLSI Implementations of DSP	Research: Bio-medical Electronics
12:00					
12:30	lunch	lunch	lunch	lunch	lunch
1:00					
1:30	common session	common session	common session	BOG: VLSI Course Content Lectures	common session
2:00					
2:30	Components of VLSI Course	Advanced/grad topics & courses	BOG: Session A		BOG: New Technology Lectures
3:00					
3:30		DIS: Challenges to Teaching VLSI			
4:00	DIS: What BOGs do you want?		BOG: Session B	DIS: BOG	
4:30		DIS: Break Out Groups & Lectures		common accolor	DIS: Summary & Action Items
5:00				common session	
	<u>Questionnaire</u>	Course Lecture	Course Lecture	New Tech Lecture	

A. Mason

Day 2 Agenda

Morning

- Collect Questionnaires
- Questions from Day 1?
- Review content of my VLSI Design course
- Present lecture on material of your choice

<u>Afternoon</u>

- Discuss advanced & graduate course topics
- Discuss challenges & solutions to teaching VLSI
- Review upcoming Break Out Groups (BOGs)
- Choose lecture topics

Course Topics I

- CMOS Logic
 - All notes (PPT slides) for my
 - MOSFET switch, Boolean logic in CMOS lectures are on the web at
 - www.egr.msu.edu/classes/ece410/mason/

- CMOS Technology
 - layers, process flow, parasitics, fabrication techniques
 - critical to understanding performance issues
- CMOS Layout
 - design rules, layout principles, stick diagram, cell hierarchy
 - essential for analog/mixed-signal and microsystems
- MOSFET Physics & Models
 - semiconductor physics, diode & MOSFET models, CMOS capacitances
 - content varies based on student background
- Digital Gate Analysis
 - transient & DC timing analysis of INV
 - transient & DC analysis of NAND/NOR & beyond
 - static and dynamic power analysis
 - design for performance: transistor sizing
 - critical for cell library design & performance optimization

Course Topics II

- Cell Layout & Chip Floorplanning
 - standard cell layout structure, multi-cell layout, power & signal routing, use of metal layers, floorplanning
- Structure & Operation of Digital Functions
 - Basic Gates (MUX, En/Decoder, FF, Shifters, Registers, etc.)
 - Arithmetic Circuits, mainly adders (Manchester in CMOS)
 - Memory (SRAM, DRAM, ROMs, PROMs, PLA, FPGA)
- Design Project
 - Microprocessor datapath with ALU, SRAM, and shifter
- Advanced Logic Structures

A. Mason

July 2008

- dynamic, differential, pass-gate
- Submicron Issues
 - MOSFET submicron models, design considerations/limits, submicron technology (physical structures)

What topics would you like to review?

Advanced & Graduate Course Topics

Outline

- Advanced topics in undergrad VLSI course
- Beyond VLSI Design: related undergrad and grad courses
- Open Discussion

A. Mason

- How can you add interest to your course with advanced topics
- How can you expand/improve your curriculum beyond VLSI Design

Advanced Course Topics

- Why advanced topics in undergrad VLSI course?
 - gives student some idea what is beyond current course
 - helpful in choosing other course or career path
 - gives students some insight on start-of-the-art issues
 - gives instructor a chance to study & present something new
- Choosing advanced topics
 - relevant to student interests or career options
 - interesting to instructor

A. Mason

July 2008

- up-to-date
- Idea for interactive learning
 - assign students to individually study an advanced topic (maybe pick from a list you provide) and present it in your class
 - they develop professional skills & you learn something new

Possible Advanced Course Topics

- VLSI technology issues
 - submicron fabrication
 - MEMS
- Next-generation alternatives to CMOS
 - BiCMOS or compound semiconductors
 - quantum or bimolecular devices
- Advanced Digital Systems
 - wireless digital radio
- Analog/mixed-signal design
- Preview of other senior(final)-level courses
 - computer architecture
 - HDL/FPGA design
 - embedded systems

Beyond VLSI Design

Where do students that love your VLSI Design course go next?

- System on Chip Design
- IC Testing (lab-based)
- Instrumentation
- Advanced VLSI Design
 - advanced gate structures, submicron design, low voltage/power design
 - floorplanning, I/O structures, I/O protocols, BIST, testability
- VLSI Implementation of Signal Processing Algorithms
- Others?
 - .
 - .
 - .
 - .

Open Discussion: Challenges to Teaching VLSI Design

Agenda

- Metrics to assess effectiveness
 - How do you determine a challenge exists?
- Identify challenges and discuss solutions
 - Organize by categories
 - Administrative/Curriculum
 - Effective Teaching

A. Mason

July 2008

- Students
- Resources

NOTE: For workshop participants, notes for this session are in Day 1, slide 25+.

Metrics for Challenge Assessment

How do you recognize there is a challenge to overcome? What metrics can assess effectiveness of our course?

- Student interest
- Student understanding
- Student placement
- Reputation to employers
- Difficulty (time, stress, etc.) of teaching
- Others?
 - •
 - .
 - .

Challenges: Administrative/Curriculum

- Student's don't have adequate background
 - adjust content of preceding courses
 - cover background in your course
- I don't have enough time to prepare effective lectures/homework/labs
 - work with administrators
 - cut back & focus on key concepts
- .
- •
- - .
 - •

Challenges: Effective Teaching

- I can not keep my students interested
 - interactive teaching; challenge with questions (more in day 3)
 - real-life practical examples/analogies
 - guest speakers from industry; show importance of class
- Homework not effective or appropriately challenging
 - study homework from other instructors or other textbooks
 - break problems into steps; easier for students and grading
- I repeat answers to same questions in office hours
 - consider 'group office hours' or discussion sessions
- .
- .
- .
- - •
 - .

A. Mason

July 2008

Challenges: Students

- Students more interested in IT than VLSI
 - make VLSI exciting
 - develop understanding of role of VLSI material for future industry
 - •
- Students fail to understand key concepts
 - spend more time teaching those concepts
 - seek new/different examples, illustrations, etc.
 - develop step-by-step homework on difficult concepts
- Students do not study/practice outside of class
 - random quick (5 min) quizzes
 - bonus points for attending office hours
 - increase importance of homework to overall grade
- Students do not have enough time to learn complex material or do complex lab assignments
 - .
 - •
- .
 - .
 - .

Challenges: Resources

To run efficiently, a VLSI course needs good CAD tools, staff support for CAD tools, a TA for help wit lab assignments, and well planned labs.

- My school does not have adequate VLSI CAD tools
 - use free SPICE and stick diagrams
 - use cheaper tools (Tanner vs. Cadence)
 - supplement CMOS science & technology with HDL design & simulation
- I have to grade my own homework and don't have time
 - supplement calculation problems with T/F or multiple choice problems
 - the key is to get students studying daily/weekly
 - grade only on effort; provide solutions & have students check their own work
- •
- .
- .
- - .
 - .
- .
- .
- •

DIS: Upcoming Break Out Groups

- Day 3
 - Session A (pick one)
 - Preparing homework
 - Developing final year projects
 - Establishing relations with industry
 - Getting chips fabricated/tested
 - Session B (pick one)
 - Setting up VLSI lab assignments
 - Developing PG projects
 - Engaging in research
 - Evolving/expanding curriculum
- Day 4
 - Practice lectures
- Day 5
 - Present 'new technology'

Assignment: Lecture Topics

- On Day 4, each of you will give a brief (~10min) lecture of VLSI Design material to your break-out group.
 - Lectures should incorporate "effective teaching" practices (discussed tomorrow/Day 3)
 - Lectures will be discussed by working group to identify strengths and weaknesses in your presentation
 - Use of whiteboard, PPT slides, etc. is up to each individual
 - Welcome to use notes from my VLSI Design course
- Topics chosen from list to follow, or pick your own
 - must be specific topic suitable for ~10 min presentation
- Group will provide ~5 min evaluation
 - positive and critical feedback to help you improve
- Form break-out groups now and choose topics
 - one presenter for each topic within a group, please
- Questions?

July 2008

Possible Lecture Topics

- Implementing a generic logic function in CMOS
- Physical layers in CMOS process
- Specific fabrication technique (e.g., thermal oxidation)
- Layout design rules
- Stick diagrams
- INV DC analysis (gate switching threshold)
- INV Transient analysis (rise/fall times)
- Power consumption in CMOS
- MOSFET I-V Characteristics or RC Model
- Origin of parasitic capacitances in CMOS
- Concept of hierarchical design
- Routing/interconnectivity rules in CMOS layout
- CMOS structure for specific digital gate (e.g., flip flop, decoder)
- CMOS structure for specific arithmetic gate
- CMOS structure for specific type of memory
- A specific advanced logic structure (e.g., dynamic/domino)

Start preparing your lecture tonight!