Introductory Chemical Engineering Thermodynamics

Chapter 9 - Introduction to Multicomponent Systems

By J.R. Elliott and C.T. Lira

INTRODUCTION TO MULTICOMPONENT SYSTEMS

The primary difference between pure and multicomponent systems is that we must now consider the impacts of changing the composition on the Gibbs energy. Beyond that, the Gibbs energy must still be minimized, the calculus of classical thermodynamics must be applied, the fugacities of the components in the phases must be equal, and, in general, the problem is pedagogically the same as the phase equilibrium problem for pure components. The computational methodology gets more complicated because there is more to keep track of. And the best choice of "equation of state" can change quite a bit depending on the nature of the solution. In this context, "equation of state" refers to any model equation for the thermodynamic properties of mixtures. But computations and equation of state development should not seem unfamiliar at this stage in the course.
eg. $d \underline{U}(T, P, n)=(\partial \underline{U} / \partial P)_{T, n} d P+(\partial \underline{U} / \partial T) P, n d T+\Sigma\left(\partial \underline{U} / \partial n_{i}\right) P, T, n_{j \neq i} d n_{i}$
eg. $d \underline{G}(T, P, n)=(\partial \underline{G} / \partial P)_{T, n} d P+(\partial \underline{G} \partial T) P, n d T+\Sigma\left(\partial \underline{G} / \partial n_{i}\right)_{P, T, n_{j \neq i}} d n_{i}$
At constant moles of material, the mixture must follow the same constraints as any other fluid. That is, we only have two state variables left if we keep the composition constant.
$\Rightarrow(\partial \underline{G} / \partial P)_{T, n}=\underline{V}$ and $(\partial \underline{G} / \partial T)_{p, n}=-\underline{S}$; Fundamental properties
therefore $d \underline{G}=\underline{V} d P-\underline{S} d T+\Sigma\left(\partial \underline{G} / \partial n_{i}\right) T, P, n_{\neq i} d n_{i}$
$\mu_{i} \equiv\left(\partial \underline{G} / \partial n_{i}\right)_{T, P, n_{j} \neq i} \equiv \quad$ "chemical potential"

Equilibrium Constraint: equality of chemical potentials

$d \underline{G}=0=\Sigma \mu_{\mathrm{i}} d n_{i} \quad$ equilibrium, constant \boldsymbol{T} and \boldsymbol{P}

Define system of two components (eg. $\mathrm{EtOH}+\mathrm{H}_{2} \mathrm{O}$) between two phases (eg. vapor and liquid).
$\mu_{1}^{L} \mathrm{dn}_{1}^{L}+\mu_{2}^{\llcorner } \mathrm{dn}_{2}^{L}+\mu_{1}^{\vee} \mathrm{dn}_{1}^{\vee}+\mu_{2}^{\vee} \mathrm{dn}_{2}^{\vee}=0$
but if component 1 leaves the liquid phase then it must enter the vapor phase (and similarly for component 2).

$$
\begin{aligned}
& \Rightarrow \mathrm{dn}_{1}^{\mathrm{L}}=-\mathrm{dn}_{1}^{V} \text { and } \mathrm{dn}_{2}^{\mathrm{L}}=-\mathrm{dn}_{2}^{V} \\
& \Rightarrow\left(\mu_{1}^{V}-\mu_{1}^{V}\right) d n_{1}^{V}+\left(\mu_{2}^{V}-\mu_{2}^{L}\right) d n_{2}^{V}=0
\end{aligned}
$$

Therefore,
$\mu_{1}^{\vee}=\mu_{1}^{\mathrm{L}}$ and $\mu_{2}^{\vee}=\mu_{2}^{\mathrm{L}}$.
Chemical potential of a pure fluid
$\left.\left.\mu_{j}\right|_{n_{i} \rightarrow n} \equiv\left(\partial \underline{G} / \partial n_{i}\right)_{T, P, n_{j i+}}\right|_{n_{i} \rightarrow n}=\left.\left(\partial(n G) / \partial n_{i}\right)\right|_{n_{i} \rightarrow n}=G\left(\partial n / \partial n_{i}\right)+\left.n\left(\partial G / \partial n_{i}\right)\right|_{n_{i} \rightarrow n}$
but $\left.n\left(\partial \underline{G} / \partial n_{i}\right)\right|_{n_{i} \rightarrow n}=n(\partial G / \partial n)$ and $G=G(T, P) \neq f(n) \Rightarrow n(\partial G / \partial n)=0$.
Therefore, $\left.\mu_{j}\right|_{n_{i} \rightarrow n}=G$
Note: This means $G^{L}=G^{V}$ for pure fluid, as before.
Thus, μ_{i} is a "generalized G " for components in mixtures.

Equilibrium Constraint: equality of fugacities

Fugacity - "escaping tendency"

For a pure fluid:
$\ln (f / P) \equiv\left(G-G^{i g}\right) / R T$

For mixtures, generalize:
$\ln (f / P) \equiv\left(G-G^{i g}\right) / R T \quad$ to $\quad R T \ln \left(\Phi_{i} / P\right) \equiv\left(\mu_{i}-\mu_{i}^{i g}\right)$
where $\$_{i}$ fugacity of component i in a mixture.
Equality of fugacities as a criterion of phase equilibrium
$\mu_{i}^{V}\left(T^{e q}, P^{e q}\right)=\mu_{i}^{L}\left(T^{e q}, P^{e q}\right)$
By definition, $\mu_{i}^{V}\left(T^{e q}, P^{e q}\right)-\mu_{i}^{L}\left(T^{e q}, P^{e q}\right)=R T \ln \left[\$_{i}^{V}\left(T^{e q}, P^{e q}\right) / \$_{i}^{L}\left(T^{e q}, P^{e q}\right)\right]$
but, $\mu_{i}^{V}\left(T^{e q}, P^{e q}\right)-\mu_{i}^{L}\left(T^{e q}, P^{e q}\right)=0 \Rightarrow \ln \left(\$_{i}^{V} / \$_{i}^{L}\right)=0$
$\delta_{i}^{\$}=\$_{i}^{L}$ at equilibrium.

Activity, Activity Coefficient, and Fugacity Coefficient

"Activity" $a_{i}=\$_{i} / f_{i}^{\circ} \quad$ Ionic solutions, reactions
"Activity coefficient" $=\gamma_{i}=\$_{i}^{\$} /\left(x_{i} f_{i}^{0}\right) \quad$ Low pressure phase equilibria
"Fugacity coefficient" $=\phi_{i}=\$_{i} /\left(x_{i} P\right) \quad$ High pressure phase equilibria where $f_{i}{ }^{\circ}$ is the value of the fugacity at standard state. The most common standard state is the pure component at the same temperature and pressure as the system of interest. In that case $f_{i}^{\circ}=f_{i}$. Note that the defining equation for activity coefficient can be rearranged to become an equation for calculating the fugacity of a component in a mixture. This is the general procedure used for liquids.

$$
f_{i}^{\$ L}=\gamma_{i} x_{i} f_{i}^{o}=\gamma_{i} x_{i} f_{i}^{o} \equiv \gamma_{i} x_{i} \phi_{i} P
$$

IDEAL SOLUTIONS

The simplest solution model is to assume that interaction energiess in the mixture are like interaction energies in the pure fluid. e.g. ${ }^{35} \mathrm{Cl}_{2}$ mixed with ${ }^{37} \mathrm{Cl}_{2}$ then, $\Delta H_{m i x}^{i s}=0$ and $\underline{H}_{\text {Tot }}^{i s}=\Sigma n_{i} H_{i}$
As for the entropy change of mixing, the loss of order due to mixing is unavoidable $\Delta S_{m i x}^{i s} / R=-\Sigma x_{i} \ln \left(x_{i}\right)$
Combining $\Rightarrow \frac{\Delta G_{m i x}^{i s}}{R T}=\frac{\Delta H_{m i x}^{i s}}{R T}-\frac{\Delta S_{m i x}^{i s}}{R}=+\sum x_{i} \ln \left(x_{i}\right)$
The definition of fugacity in terms of a change in free energies gives:
$\frac{\Delta G_{m i x}}{R T}=\sum \frac{n_{i}}{n} \frac{\left(\mu_{i}-G_{i}\right)}{R T}=\sum x_{i} \ln \left(\frac{f_{i}^{\$}}{f_{i}}\right)$
Thus, for an ideal solution, $\frac{\Delta G_{m i x}}{R T}=\sum x_{i} \frac{\left(\mu_{i}-G_{i}\right)}{R T}=\sum x_{i} \ln \left(\frac{f_{i}^{\$}}{f_{i}}\right)$
$\Rightarrow \boldsymbol{f}_{i}^{\boldsymbol{s}} / f_{i}=x_{i} \Rightarrow \boldsymbol{f}_{i}^{\text {is }}=x_{i} f_{i}$

Raoult's Law

$\$_{i}=\$_{i} \Rightarrow$ Substituting the ideal solution result $\Rightarrow y_{i} f_{i}^{V}=x_{i} f_{i}{ }^{L}$
$\left(f_{i}^{V} / P\right)=\varphi\left(T r_{i}, P r_{i}, \omega_{i}\right)$ for the vapor
We correct the fugacity of the saturated liquid for the effect of pressure on the liquid.
$f_{i}^{s a t}=P_{i}^{s a t} \varphi\left(T r_{i}, P r_{i}^{s a t}, \omega_{i}\right)$
$d G=R T d \ln (f) \Rightarrow R T \ln \left(f_{i}^{L} / f_{i}^{s a t}\right)=G_{i}^{L}-G_{i}^{s a t}$
$(\partial G / \partial P)_{T}=(\partial H / \partial P)_{T}-T(\partial S / \partial P)_{T}=V-T(\partial V / \partial T)_{p}+T(\partial V / \partial T)_{p}=\underline{V}$
$\Rightarrow\left(G_{i}^{L}-G_{i}^{s a t}\right)=\int V^{L} d P \approx V^{L}\left(P-P_{i}^{s a t}\right)=R T \ln \left(f_{i}^{L} / f_{i}^{s a t}\right)$
$\Rightarrow f_{\mathrm{i}}^{\mathrm{L}} / f_{i}^{s a t}=\exp \left[V^{L}\left(P-P_{i}^{s a t}\right) / R T\right]$ "Poynting Correction"
Substituting, $y_{i} P\left(T r_{i}, P r_{i}\right) \quad x_{i} P_{i}^{s a t} \varphi\left(T r_{i}, P r_{i}^{s a t}\right) \exp \left[V^{L}\left(P-P_{i}^{s a t}\right) / R T\right]$

$$
K==_{i} x \frac{i}{P}\left[\frac{\left({ }_{i}, P^{\text {sat }}\right)\left[V\left(-P_{i}\right) /\right]}{\varphi\left(T r_{i}, r\right)}\right.
$$

Note: at reasonably low pressures,
$\varphi \approx 1$ and $\exp \left[\mathrm{V}^{L}\left(P-P_{i}^{\text {sat }}\right) / R T\right] \approx 1 \quad \Rightarrow \quad K_{i}=\frac{P_{i}^{\text {sat }}}{P} \quad$ "Raoult's Law"

Classes of VLE calculations

Type	Information_required	Information_computed	Convergence
BP	T, x	P, y	Easiest
DP	T, y	P, x	Not bad
BT	P, x	T, y	difficult
DT	P, y	T, x	difficult
FL	P, T	$x, y, L / F$	Most difficult

Short-cut Estimation of VLE K-ratios and Initial Guesses for VLE

$K_{i}=\frac{10^{\left[7 / 3\left(1+\omega_{i}\right)\left(1-1 / T r_{i}\right)\right]}}{P r_{i}}$
Bubble Point Pressure: $P={ }_{i} P=\quad{ }_{i} P_{i}^{\text {sat }}={ }_{i} P c_{i} 10^{\left[\frac{7}{3}\left(1+{ }_{i}\right)\left(1-1 / T r_{i}\right)\right]}$
Dew point pressure, $:^{\Sigma \mathrm{x}_{\mathrm{i}}}=1=\Sigma \frac{y_{i}}{K_{i}}=\Sigma \frac{y_{i} P}{P c_{i} 10^{\left[\frac{7}{3}\left(1+\omega_{i}\right)\left(1-1 / T_{i}\right)\right]}} \Rightarrow \frac{1}{P}=\sum \frac{y_{i}}{\left.P c_{i} 10^{\left[\frac{7}{3}\left(1+w_{i}\right)\left(1-1 / T_{i}\right)\right.}\right]}$
For bubble or dew point temperatures, it is not so straightforward. One guess would be:
$\mathrm{T}=\Sigma \mathrm{X}_{\mathrm{i}} \mathrm{T}_{\mathrm{i}}^{\text {sat }}$
$\mathrm{T}=\Sigma \mathrm{y}_{\mathrm{i}} \mathrm{Tc}_{\mathrm{i}} \mathrm{T}_{\mathrm{i}}^{\text {sat }} / \Sigma \mathrm{y}_{\mathrm{i}} \mathrm{Tc} \mathrm{c}_{\mathrm{i}}$
But these are somewhat cruder guesses than for the pressures.

Example 9.1 Bubble temperature, dew temperature, and flash

A distillation column is to produce overhead and bottoms products having the following compositions:

	$\mathrm{z}($ Overhead $)$
Propane	0.23
Isobutane	0.67
n-Butane	0.10
	1.00

a) Calculate the temperature at which the condenser must operate in order to condense the overhead product completely at 8 bars.
b) Assuming the overhead product vapors are in equilibrium with the liquid on the top plate of the column, calculate the temperature of the overhead vapors and the composition of the liquid on the top plate when operating at the pressure of part (a).
c) Suppose only a partial condensation at 320 K . What fraction of liquid would be condensed?

Example 9.1 Bubble temperature...

Solution: Use the short-cut estimates of the K-ratios
a) The maximum temperature is the bubble point temperature.

	Guess	$\mathrm{T}=310 \mathrm{~K}$	Guess	$\mathrm{T}=320 \mathrm{~K}$
	Ki	yi	Ki	Yi
C3	1.61	0.370	2.03	0.466
iC4	0.616	0.413	0.80	0.536
nC4	0.438	0.044	0.58	0.058
		0.827		1.061
$\Rightarrow T$	$0+$	60-0.827	320-3	0) $=317$

Example 9.1 Dew temperature...

b) The saturated vapor is at its dew point temperature.

	Guess	$T=315 \mathrm{~K}$		Guess	$T=320 \mathrm{~K}$
	y_{i}	K_{i}	x_{i}	K_{i}	x_{i}
C 3	0.23	1.81	0.127	2.03	0.113
iC 4	0.67	0.70	0.957	0.80	0.838
nC 4	0.10	0.50	0.200	0.58	0.172
			1.284		1.123

$\Rightarrow T=320+\left(\frac{1.00-1.123}{1.281-1.123}\right)(320-315)=324$

Example 9.1 ...Flash

c) This is an isothermal flash problem.

M-Bal:
$z \mathrm{C} 3=x_{\mathrm{C}} 3(L / F)+y_{\mathrm{C}} 3(V / F)$
$z \mathrm{IC} 4=x_{\mathrm{iC}} 4(L / F)+y_{\mathrm{iC}} 4(V / F)$
$z \mathrm{NC} 4=x_{\mathrm{nC}} 4(L / F)+y_{\mathrm{nC}}(V / F)$
Where z is the feed compostion and L / F is the liquid to feed ratio. Overall, $\mathrm{V} / \mathrm{F}=1-\mathrm{L} / \mathrm{F}$,
$z_{i}=x_{i}\left[(L / F)+K_{i}(1-L / F)\right]$
$x_{i}=\frac{z_{i}}{K_{i}+(L / F)\left(1-K_{i}\right)}$
$y_{i}=\frac{z_{i} K_{i}}{K_{i}+(L / F)\left(1-K_{i}\right)}$

Solve $\left(\Sigma x_{i}-\Sigma y_{i}\right)=0$. That is

$$
\Sigma x-\Sigma y=\Sigma \frac{z_{i}\left(1-K_{i}\right)}{K_{i}+(L / F)\left(1-K_{i}\right)} \equiv \Sigma D_{i}=0
$$

	Guess			$L / F=0.5$	$L / F=0.6$	$L / F=0.77$
	z_{i}	K_{i}	D_{i}	K_{i}	D_{i}	K_{i}
C 3	0.23	2.03	-0.1564	2.03	-0.1678	2.03
iC 4	0.67	0.80	0.1489	0.80	0.1457	0.80
nC 4	0.10	0.58	0.0532	0.58	0.0505	0.58
		0.0457		0.0284		0.1915
$\Rightarrow L / F=0.77+\left(\frac{0+0.0045}{0.0284+0.0045}\right)(0.6-0.77)=0.7467$		-0.0045				

