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II.  Generalized Fluid Properties
The principle of two-parameter corresponding states
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Critical Definitions:
Tc  - critical temperature - the temperature above which no liquid can exist.
Pc  - critical pressure - the pressure above which no vapor can exist.
ω - acentric factor - a third parameter which helps to specify the vapor pressure curve
which, in turn, affects the rest of the thermodynamic variables.

Note:  at the critical point,   cc

TT

PandT
PP

at           0       and       0
2

2

=









=






∂ρ
∂

∂ρ
∂



Chapter 6 - Engineering Equations of State Slide 2

II.  Generalized Fluid Properties
The van der Waals (1873) Equation Of State (vdW-EOS)

Based on some semi-empirical reasoning about the ways that temperature and density
affect the pressure, van der Waals (1873) developed the equation below, which he
considered to be fairly crude.  We will discuss the reasoning at the end of the chapter, but
it is useful to see what the equations are and how we use them before deriving the details.
The vdW-EOS is:
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van der Waals’ trick for characterizing the difference between subcritical and
supercritical fluids was to recognize that, at the critical point,

cc

TT

,  PT
PP

at           0       and       0
2

2

=





=





∂ρ
∂

∂ρ
∂

Since there are only two “undetermined parameters” in his EOS (a and b), he has reduced
the problem to one of two equations and two unknowns.  Running the calculus gives:
a = 0.475 R2Tc

2/Pc;  b = 0.125 RTc/Pc

The capability of this simple approach to represent all of the properties and processes
that we will discuss below is a tribute to the genius of van der Waals.
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II.  Generalized Fluid Properties
The principle of three-parameter corresponding states
Reduced vapor pressure behavior:
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To improve our accuracy over the VdW EOS, we can generate a different set of PVT
curves for each family of compounds.  We specify the family of compounds via the
"third parameter" i.e. ω.  Note:  The specification of Tc , pc , and ω provides two points
on the vapor pressure curve.  The key to accurate characterization of the vapor liquid
behavior of mixtures of fluids is the accurate characterization of the vapor pressure of
pure fluids. VLE was central to the development of distillation technology for the
petrochemical industry and provided the basis for most of today’s process simulation
technology.



Chapter 6 - Engineering Equations of State Slide 4

II.  Generalized Fluid Properties
The Peng-Robinson (1976) Equation of State
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where ρ  = molar density = n/V
By fitting the critical point, where ∂P/∂V = 0 and ∂2P/∂V2 = 0,
a = 0.457235528 αR2Tc

2/Pc;  b = 0.0777960739 RTc/Pc

α = [1+ κ (1-√Tr)]2 ;  κ = 0.37464 + 1.54226ω - 0.26992ω2

ω ≡ -1 - log10(P
sat/Pc)Tr =0.7 ≡ “acentric factor”

Tc , Pc , and ω are reducing constants according to the principle of corresponding states.
By applying Maxwell's relations, we can calculate the rest of the thermodynamic
properties (H,U,S) based on this single equation.



Chapter 6 - Engineering Equations of State Slide 5

II.  Generalized Fluid Properties
Solving the Equation of State for Z
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          Z ≡ P/ρRT
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Rearranging yields a cubic function in Z

Z3 -(1-B)Z2 + (A-3B2-2B)Z - (AB-B2-B3) = 0

Naming this function F(Z), we can plot F(Z) vs. Z to gain some understanding about its
roots
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II.  Generalized Fluid Properties
Solving the Equation of State for Z
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II.  Generalized Fluid Properties
Solving the Equation of State for Z (cont.)
1.  Guess Zold=1 or Zold=0 and compute Fold(Zold).
2.  Compute Fnow(Z) at Z=1.0001 or Z=0.0001
3.  "Interpolate" between these guesses to estimate where F(Z)=0.

∆Z = (0 - Fnow)*(Znow-Zold)/(Fnow - Fold).
4.  Set Fold=Fnow, Zold=Znow, Znow=Zold+∆Z
5.  If |∆Z/Znow| < 1.E-5, print the value of Znow and stop.
6.  Compute Fnow(Znow) and return to step 3 until step 5 terminates.
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II.  Generalized Fluid Properties
An Introduction to the Radial Distribution Function
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where g(r) is our "weighting factor" henceforth referred to as the radial distribution
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An Introduction to the Radial Distribution Function
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II.  Generalized Fluid Properties
The connection from the molecular scale to the macroscopic scale

The Energy Equation
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II.  Generalized Fluid Properties
The Van der Waals Equation of State
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The resulting equation of state is:
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By fitting the critical point, where ∂P/∂V = 0 and ∂2P/∂V2 = 0,
a = 0.475 R2Tc

2/Pc;  b = 0.125 RTc/Pc
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II.  Generalized Fluid Properties
Example.  From the molecular scale to the continuum
Suppose that the radial distribution function can be reasonably represented by:
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where x ≡ r/σ and b ≡ π/6 NAσ3

Derive expressions for the compressibility factors of fluids that can be accurately represented
by the square-well potential.  Evaluate this expression at bρ = 0.2 and ε/kT = 1.
Solution:  First read Appendix C then note that, for the square-well potential,
exp(-u/kT) = exp(ε/kT) H(r-σ) + [exp(ε/kT)-1] [1-H(r-1.5σ)]
Taking the derivative of the Heaviside function gives the Dirac delta in two places:
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Noting that y(r) ≡ g(r) exp(u/kT) and that exp(u/kT) is best evaluated inside the well:
Z = 1+ 4bρ { g(σ+) - 1.53[1-exp(-ε/kT)] g(1.5σ-)}            This is true for SW with any g(r).
For the above expression: g(σ+) = 1 + bρ ε/kT  and g(1.5σ-) = 1 + 0.198 bρ ε/kT
Z = 1+ 4bρ {1 + bρ ε/kT - 1.53[1-exp(-ε/kT)]( 1 + 0.198 bρ ε/kT)}
Z = 1+4(0.2){1+0.2-2.1333*1.0396} = 0.1858


