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Unit I.  Energy and Entropy
Chapter 3.  The Entropy Balance

Introduction to Entropy

Microscopic definition:  dS = k ln(p2/p1)
Macroscopic definition:  dS = Qdt/T
Macrostate                                                       
Box
A

Box
B

# Microstates Probability of
Macrostate

Atom
1             2

  0 2 1 0.25 B A A
  1 1 2 0.50 o B A
  2 0 1 0.25 x A B

4=22 B B

All of these microstates are “distinguishable”, because there is no question of which
particle went into Box A first when there is only one particle in Box A.
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Indistinguishable microstates:  We can tell where the particles are but
we don’t know when they got there.  Thermodynamics does not
care about time (except when you need to be quick on the test).

Consider 5 particles distributed between two boxes.  Similar to 2 particles we have:

BBAAA ABBAA AABBA AAABB
BABAA ABABA AABAB
BAABA ABAAB
BAAAB

In order to treat 1023 particles, we need a more general mathematical approach.  Consider
the case of two particles in Box B. There are 20 ways of this happening:  5 ways of
picking the first particle plus 4 ways of picking one of the remaining particles.  But why
does the above table show only 10?
ANS:  Only 10 are “distinguishable”.  e.g.  For the case of particles 2 and 5 in box B, we
could distinguish between whether particle 2 came first or particle 5 came first, if we
followed the process over time.  But if we only look at the result, then all we can say is
that particles 2 and 5 are in the box and we don’t know how they got there.  Looking at it
in this way, we see that there are only 10 ways of having 2 particles in Box B.
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We do not distinguish between, e.g. B1B2AAA vs. B2B1AAA or AB1AAB2 vs. AB2AA
B1
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I.  Energy and Entropy
N ways of            1 particle   in Box B
N(N-1)                 2 particles in Box B
N(N-1)(N-2)        3 particles in Box B
N!/(N-m)!            m particles in Box B

2 ways indist for 2 particles in Box B
2*3                      3
2*3*4                  4
m!                       m

In General:

p
N

m N mj
j

j j j

=
−
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!( )!      for two boxes.

p
N

m
j

j

ij
i

M
=

=
∏

!

!
1

          for M boxes.

Macrostate                                                       __
Box A Box B # Microstates Probability of

Macrostate
  0 5 1 0.0313
  1 4 5 0.1563
  2 3 10 0.3125
  3 2 10 0.3125
  4 1 5 0.1563
  5 0 1 0.0313

32=25
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I.  Energy and Entropy
Example 3.1.  Entropy change vs. volume change
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I.  Energy and Entropy
Example 3.1 (cont.).  Entropy change vs. volume change

Suppose the box with particles is three times as large as the empty box.  Then what is the
entropy change?  The trick is to imagine a number of equal size boxes.
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I.  Energy and Entropy
Example 3.2.  Entropy change of mixing ideal gases

One mole of pure oxygen and 3 moles of pure nitrogen are mixed at constant T and P.
Determine the entropy change.  You may treat O2 and N2 as ideal gases for this
calculation.
Solution:  If the oxygen and nitrogen act as ideal gases, then they have no interaction
energy with each other.  They are simply point masses that can’t see each other.  This
means that the entropy changes can be calculated independently for each.

For O2:  ∆SO2 = nO2 R ln(4) = ntot R [-xO2 ln(0.25)] = ntot R [-xO2 ln(xO2)]
For N2:  ∆SN2 = nN2 R ln(4/3) = ntot R [-xN2 ln(0.75)] = ntot R [-xN2 ln(xN2)]
Total: ∆Stot = -ntot R [xO2 ln(xO2) + xN2 ln(xN2)]

Answer: ∆Stot =-4 R [0.25ln(0.25)+0.75ln(0.75)] = -4*8.314*(-0.562) = 18.7 J/K

Note:  In general, ideal mixing ⇒ ∆Stot = -R*Σ xi ln(xi).  How would you use the
macroscopic definition of entropy to derive this result?  What would be the reversible
process and how would heat be involved?
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Example 3.3 Entropy Changes for an Ideal Gas in a Piston+Cylinder
(1) Suppose an ideal gas in a piston+cylinder is isothermally and reversibly expanded to twice its
original volume.  What will be the amount of heat added?  What does this suggest about changes in
entropy with respect to heat addition?
E-bal: Qrev = -Wrev = + ∫ PdV = RT ∫ dV/V = RT ln(V2/V1)
S-bal:  Microscopic definition:  particles at constant T ⇒ ∆S=R ln (V2/V1)

Comparing shows that Qrev = T∆S ⇒ dS Q dt
T

rev

=
&

Thus we have inferred the macroscopic definition of entropy from the microscopic definition.
We can now apply whichever definition is most convenient for a given problem.
(2) Suppose the above expansion had been carried out reversibly but adiabatically.  Then what would
be the relation between the temperature and volume, and how would the entropy change?

E-bal:  d(nU) = W& dt  ⇒   ndU = -PdV  ⇒  dU = -PdV = -RT dV/V = CV dT
⇒ Cv  ln(T2/T1) = -R ln(V2/V1)
S-bal:  MACROscopic definition: ∆S = 0
Rearranging the energy balance gives us a general relationship for any change in an ideal gas.
Comparing the equation below to the previous two examples shows that all are described by:

V
dVRT

dTCdS V
ig +=

Note:  Assuming a constant heat capacity, and noting PV=RT for an ideal gas:
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This equation provides the starting point for much of our discussion in Unit II.



Thermodynamics I.  Energy and Entropy Slide 9

Example 3.6.  Entropy Generation for an Ideal Gas in a Piston+Cylinder
Suppose the expansion were carried out adiabatically but irreversibly, such that no work
was derived.  What would be the final temperature and how much potentially useful
work would have been lost?
E-Bal:  d(nU) = Q + W = 0 + 0 = nCv  dT ⇒dT=0⇒Tf  =Ti .
S-Bal:  Microscopic definition at constant T: ∆S = R ln(V2/V1)
As for the lost work, a reversible expansion with Tf =Ti  would yield:  W = -RT ln(V2/V1)
Comparing the expression for lost work to the expression for entropy change:
Lost work = |W| =-RT ln(V2/V1) = T∆S ≡ T S gen
where Sgen    is the entropy generated by conducting the process irreversibly.

dS Q dt
T

rev

=
&

 + Sgen

for any process, noting that Sgen ≥ 0.
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Example 3.5  Simple Entropy Generation According to the Macroscopic Definition
A 500 ml glass of chilled water at 283 K is removed from a refrigerator and warmed to
298 K.  Calculate the entropy change of the water, the surroundings, and the universe.
Solution:
In this problem, each subsystem can be treated as being reversible, then the sum over
subsystems gives the total change.  Since the heat flows are obvious, it is straightforward
to apply the macroscopic definition.
Water: Macroscopic definition ⇒ dS = dQrev/T
E-bal: dQrev = dH = CpdT (const P heating, cf. Eqn 3.11)
∆Swater = ∫ mCp dT/T = mCp ln(Tf/Ti) = 500*4.184*ln(298/283) = 108 J/K

Surroundings:  Note the temperature of the surroundings is not significantly affected by
this process, but the heat can only come from the water (E-bal tells us so).
⇒ ∆Ssurr = ∫ dQrev/Tsurr = -500*4.184*(298-283)/298 = -31,380/298 = -105.3 J/K

Universe: ∆Stotal = ∆Swater + ∆Ssurr = 2.7 J/K > 0 ⇒ irreversible

NOTE! Temperature gradients cause irreversibilities as do u- gradients, P-gradients...
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I.  Energy and Entropy
THE COMPLETE ENTROPY BALANCE

genkk S
T

Q
Sm

dt

Sd &
&

++Σ=
.

Note:
1. Sgen must generally be back-calculated after treating the reversible process and

comparing to the actual process.  Therefore, we start most problems with Sgen = 0
2. The microscopic definition of entropy is not here.  It is necessary to understand the

nature of entropy and mixing processes, but it is not generally convenient for the kinds
of process calculations in Unit I.

3. In most cases of interest, ∆Srev=0.  e.g. turbine, compressor, piston. (Write this first,
then check the problem statement to see if it is true.)

4. In heat exchange: ∆S=Q/T.  If condensing, ∆S=∆Hvap*∆q/T.  e.g. boilers, condensers.
5. Rare but often overlooked: ∆Srev=Q/T. e.g. isothermal compressor.
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I.  Energy and Entropy
~Example 3.5gen.  Entropy generation in a temperature gradient - general formula

Suppose there are two heat reservoirs, one at a temperature TH and a second at a lower
temperature TL.  Let a quantity of energy Q be transferred as heat from the high-
temperature reservoir to the low-temperature reservoir.  We can imagine that the heat
leaving at TH occurs by a reversible process as does the heat entering at TL, but we do not
specify what happens in between.  What happens to the entropy?  (You may assume that
the two heat reservoirs are large enough that there is no temperature change in either
reservoir.)

T

T

Q

Q

H

L

L

H

Solution     ∆S1 = QH /TH;   ∆S2 = QL./TL.  ;
Energy balance: QH = -QL.   ;   No work is accomplished.
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Note:  If TH  >TL  and no work is accomplished, then ∆ Stot > 0.  (It could not
be less than zero because heat cannot flow from a lower temperature to a
higher temperature without adding work.)  This observation is basically one
way of stating the second "law" of thermodynamics.
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Example 3.8.  Reversible work between heat reservoirs
A reversible heat engine absorbs 1000 J at a constant temperature of 500°C, produces
work, and discards heat at 100°C.  Don’t worry for now about the machinations that
make this possible.  They basically involve some turbines and compressors and heat
exchangers to be discussed in detail in Chapter 4.  Considering simply the overall
entropy changes, what is the change in entropy of the heat source and the heat sink and
what is the total entropy change resulting from the process?  How much work is
produced?

T

T

Q

Q

H

L

L

H
W

Solution.
Energy Balance: (on engine): W = -Qnet = -(Qin+Qout) = -(- QH  - QL)
Entropy Balance:  ∆ Stot = 0 (reversible)
(This process is different from the previous example because QL ≠ - QH)
∆S1 = QH /TH  = -1000 J/ 773°K = -1.29 J/K
∆S2 = 1.29 J/K  = QL /TL ⇒ QL = 481
 ⇒ W = -(1000 - 481) = -518 J

Note: 






 −
−=

−
−=

LH

LH
HL
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H

rev

TT

TT
QT
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We don’t need to specify the mechanical details since an overall balance suffices.  If you
want to know, however, a “Carnot” cycle would give this result.  A typical Carnot cycle
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is:  (1) boiling at high temperature (2) isentropic turbine (3) condensation at low
temperature (4) isentropic compression back to saturated liquid at state 1.
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I.  Energy and Entropy
Example 3.11.  Heat pump analysis

It is proposed to heat a building using a heat pump.  The average outdoor temperature is
40°F and the indoors is to be maintained at 70°F.  The temperature difference between
the fluid inside the coils and the air is 10°F, indoors and out.  What would be the
maximum cost of electricity in ($/kW-hr) for which the heat pump would be competitive
with conventional heating where a fuel is directly burned for heat.  In the latter method,
the cost is $7.00 per million Btu.  (Consider only energy costs.  1kW = 56.9 Btu/min).
Solution  Entropy Balance  ∆S = 0

W Q Q= −
+

= −
1

30 80

460

50

540

( )

(80 )
*  (

Btu

min
) (

1kW

56.9
) 1 Btu

min

Heat pump cost = (5/54)(Q1/56.9)( θ hr) [ x $/kw-hr ];
Direct heating cost = Q1 (60 min/hr)  θ hr $7/(106 Btu)
For maximum, let heat pump cost = direct heating cost
⇒(5/54)  Qθ/56.9 x = Qθ 7*60/106 ⇒ x=$0.258/kw-hr  ;
actual cost 2/13/88 ∼ $0.10/kW-hr  therefore might use heat pump if COP ~ Carnot



Thermodynamics I.  Energy and Entropy Slide 16

Example 3.10 Turbine Efficiency
Steam is supplied to a steady state turbine at 1.35 MPa and 375°C.  In the actual process,
the discharge from the turbine at 0.01 MPa was saturated vapor only.  Determine the
efficiency of the turbine, the lost work and the effective temperature at which the lost
work was lost.
η = ∆H/∆Hrev = Wact/Wrev

Initially,  H C
1 35
375
. =3205 kJ/kg ; S C

1 35
375
.  = 7.2401 kJ/kg-K (by double interpolation)

Energy balance: Wact = ∆H = H MPa
sat
0 01. -3205 = 2584.3-3205 = -620.7 kJ/kg

Entropy balance:  ∆Srev = 0            e.g. Double Interpolation on Enthalpy
7.2382 = q’(8.1502) + (1-q’)(0.6493)

⇒q’ =  
( )
( )6492.01488.8

6492.02401.7

−
−

 =0.8788

T°C
350
375
400

P(MPa)=1.2
3154.2

3261.3

1.35
3151.1
3205

3258.9

1.4
3150.1

3258.1

⇒ H f
rev

 = 0.8788(2583.9)+(1-0.8788)(191.8) = 2294 kJ/kg  ⇒ Wrev = 2294 - 3205 = -911
⇒ η = -620.7/-911 = 68%                            Lost  work = - 911 -(-620.7) = - 290 kJ/kg
Sgen = (Sf

act - 7.2401) = 8.1488 - 7.2401 = 0.91 kJ/kg-K
T0 = |lost work|/Sgen = 290/0.91 = 318.7 K ~ 45.8 °C = Tsat(0.01 MPa)
That is, this lost work was lost at the temperature at which it was rejected downstream.
You can use this observation to solve LW = T2 Sgen directly (no quality necessary).
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I.  Energy and Entropy
Example 3.13.  Entropy change in a leaky tank

Consider an ideal gas leaking from a tank.  How does the entropy of the gas in the tank
change?  Use this perspective to develop a relation between Tf and Pf and compare it to
the expression we obtained previously by the energy balance.

Solution:

S-Balance:   S n dt d nS ndS Sdnout out = = +( )

M-Balance:  noutdt = dn ⇒ Soutdn = ndS+Sdn
But physically, we know Sout  = S  ⇒ Sout dn = Sdn  ⇒  ndS = 0

⇒  ∆S = 0    This much is true whether it is an ideal gas or not!

For an ideal gas:

  ∆S Cv n T T R n V V= + =l l( / ) ( / )2 1 2 1 0

( )1212
21

12
12 /ln)/ln()(ln)/ln( PPRTTRC

PT

PT
RTTC VV −+=





+=

⇒ =            2T T P P R Cp/ ( / ) /
1 2 1
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Example 3.14.  An ideal gas leaking through a turbine
A portable power supply consists of a 28 liter bottle of compressed helium, charged to
13.8 MPa at 300K, connected to a small turbine.  During operation, the He drives the
turbine continuously until the pressure in the bottle drops to 0.69 MPa.  The turbine
exhausts at 0.1 MPa.  Neglecting heat transfer, calculate the maximum possible work
from the turbine.  Assume helium to be an ideal gas with Cp/R = 5/2.

TANK TURBINE OVERALL
E-Bal: HT dn = d(nU)  W dt = +( H0- HT) n dt  W = - H0 (nf -ni ) + ∆ (nU)
S-Bal: ∆S = 0 ∆S = 0 ∆S = 0

CpR

i

T
iT P

P
TT

/







=

         

CpR

T
T P

P
TT

/
0

0 





=

         (Note:  P0 = 0.1)

Solution by overall balance:
nf  = Pf V/RTf ;  Tf =Tf (Pf /Pi )

R/Cp = 90.5 K ; nf =25.7gmol; ni =154.9gmol
Note:  Overall entropy balance ⇒∆S=0 ⇒ S0 =const. and P0 =const.=0.1MPa
Therefore, T0 =const.= Ti (P0 /Pi )

R/Cp = 41.8 K
Let Tref  ≡ 300 K, then
W = -[Cp(41.8-300)+R*300](25.7-154.9) + 25.7Cv(90.5-300) - 154.9Cv(300-300)
⇒  W = -441,200 J
Note:  U(300) ≡ 0 ⇒ H(300)=0+R*300 ⇒ H(T)  = Cp(T-300)+R*300
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Example (not in book).  Single stroke of a steam engine
A steam engine basically consists of a piston and a 1m3 cylinder connected to a high-
pressure steam line.  At the right moment, a valve is opened and steam flows into the
cylinder, pushing the piston towards the far end of the cylinder.  The air initially to the
right of the piston can be assumed to be at 1 bar.  Estimate the maximum work and the
resulting quality after a single stroke of this process.
Solution
E-bal:  Hindm+W= d(mU)
S-bal:  ∆S=0 (max work ⇒ rev)
For the process to be reversible, the pressure on the piston
must always equal the supply pressure, and the entropy is
also constant.  Since two properties specify the state
condition,

Uf = Uin and q=100%.
In other words, W=P∆V = (5-0.1)*1E6=4.9 MJ.

50 bars, saturated vapor
steam supply line


