6.6 SOLVING THE EQUATION OF STATE FOR Z

This example complements Example 6.3 of the textbook by providing hand calculations.

Example S6.1 Peng-Robinson Solution by Hand Calculation

Perform a hand calculation of the real roots for argon at 105.6 K and 0.498 MPa .
Solution: Looking up critical constants, $T_{c}=150.86, P_{c}=4.898, \omega=-0.004$

$$
T_{r}=105.6 / 150.86=0.70 ; \quad P_{r}=0.498 / 4.898=0.1017
$$

From Eqn. 6.17

$$
\begin{gathered}
\kappa=0.37464+1.54226(-0.004)-0.26993(-0.004)^{2}=0.36847 \\
\alpha=[1+0.36847(1-\sqrt{0.70})]^{2}=1.1240
\end{gathered}
$$

From Eqn. 6.16

$$
\begin{gathered}
a=0.45724 \frac{(8.314 \cdot 150.86)^{2}}{4.898}(1.124)=165067 \frac{\mathrm{MPa} \cdot \mathrm{~cm}^{6}}{\mathrm{~mol}^{2}} \\
\quad b=0.077796(8.314)(150.86) / 4.898=19.922 \mathrm{~cm}^{3} / \mathrm{mol}
\end{gathered}
$$

using Eqns. 6.21 and 6.23

$$
\begin{gathered}
A=a P /(R T)^{2}=(165067)(0.498) /[(8.314)(105.6)]^{2}=0.1066 \\
B=b P / R T=(19.922)(0.498) /[(8.314)(105.6)]=0.0113
\end{gathered}
$$

Determining the coefficients of Eqn 6.25 and B. 27 (from appendix B)

$$
\begin{gathered}
a_{2}=-(1-B)=-(1-0.0113)=-0.9887 \\
a_{1}=\left(A-3 B^{2}-2 B\right)=0.1066-3(0.0113)^{2}-2(0.0113)=0.08362 \\
a_{0}=-\left(A B-B^{2}-B^{3}\right)=-\left(0.1066(0.0113)-0.0113^{2}-0.0113^{3}\right)=-0.001075
\end{gathered}
$$

At this point, the coefficients could be plugged into a polynomial root finding calculator program. However, the hand caculations from Appendix B will be followed. From Eqn. B.30,

$$
\begin{gathered}
p=\left(3(0.08362)-(-0.9887)^{2}\right) / 3=-0.2422 \\
q=\left(2(-0.9887)^{3}-9(-0.9887)(0.08362)+27(-0.001075)\right) / 27=-0.04511
\end{gathered}
$$

From B. 31, $R=-0.04511^{2} / 4+(-0.2422)^{3} / 27=-1.75 \mathrm{E}-5$, so three real roots exist. Using the trigonometric method, from B.36-B37

$$
m=2 \sqrt{(-(-0.2422)) / 3}=0.5683
$$

2 Unit I First and Second Laws

Example S6.1 Peng-Robinson Solution by Hand Calculation

Numbering roots in a manner that will result in largest to smallest Z, (using radians)

$$
\begin{gathered}
\theta_{1}=\frac{1}{3} \operatorname{acos}(3(-0.04511) /((-0.2422)(0.5683)))=0.061185 \\
\theta_{2}=0.061185+4.1888=4.250 \\
\theta_{3}=0.061185+2.0944=2.1556
\end{gathered}
$$

From B. 38 (using radians)

$$
\begin{aligned}
& x_{1}=0.5683 \cos (0.061185)=0.56724 \\
& x_{2}=0.5683 \cos (4.2500)=-0.25351 \\
& x_{3}=0.5683 \cos (2.1556)=-0.31372
\end{aligned}
$$

and using B. 29

$$
\begin{gathered}
Z_{1}=0.56724-(-0.9887) / 3=0.8968 \\
Z_{2}=-0.25351-(-0.9887) / 3=0.07606 \\
Z_{3}=-0.31372-(-0.9887) / 3=0.01584
\end{gathered}
$$

and using $V=Z R T / P$

$$
\begin{aligned}
& V_{1}=0.8968(8.314)(105.6) /(0.498)=1581 \mathrm{~cm}^{3} / \mathrm{mol} \\
& V_{2}=0.07606(8.314)(105.6) /(0.498)=134 \mathrm{~cm}^{3} / \mathrm{mol} \\
& V_{3}=0.01584(8.314)(105.6) /(0.498)=27.9 \mathrm{~cm}^{3} / \mathrm{mol}
\end{aligned}
$$

The results are in good agreement with textbook Example 6.3, recognizing limitations of roundoff errors.

