Contents

Foreword .. xv

Preface .. xvii

1 Prologue .. 1

1.1 Single and Multi-Objective Optimization 2

1.1.1 Fundamental Differences 3

1.2 Two Approaches to Multi-Objective Optimization 4

1.3 Why Evolutionary? 7

1.4 Rise of Multi-Objective Evolutionary Algorithms 8

1.5 Organization of the Book 9

2 Multi-Objective Optimization 13

2.1 Multi-Objective Optimization Problem 13

2.1.1 Linear and Nonlinear MOOP 14

2.1.2 Convex and Nonconvex MOOP 15

2.2 Principles of Multi-Objective Optimization 16

2.2.1 Illustrating Pareto-Optimal Solutions 18

2.2.2 Objectives in Multi-Objective Optimization 22

2.2.3 Non-Conflicting Objectives 23

2.3 Difference with Single-Objective Optimization 23

2.3.1 Two Goals Instead of One 24

2.3.2 Dealing with Two Search Spaces 24

2.3.3 No Artificial Fix-Ups 25

2.4 Dominance and Pareto-Optimality 25

2.4.1 Special Solutions 26

2.4.2 Concept of Domination 28

2.4.3 Properties of Dominance Relation 29

2.4.4 Pareto-Optimality 30

2.4.5 Strong Dominance and Weak Pareto-Optimality 32

2.4.6 Procedures for Finding a Non-Dominated Set 33

2.4.7 Non-Dominated Sorting of a Population 40

2.5 Optimality Conditions 44
3 Classical Methods ... 47
 3.1 Weighted Sum Method ... 48
 3.1.1 Hand Calculations .. 50
 3.1.2 Advantages .. 52
 3.1.3 Disadvantages ... 52
 3.1.4 Difficulties with Nonconvex Problems 53
 3.2 c-Constraint Method ... 55
 3.2.1 Hand Calculations .. 56
 3.2.2 Advantages .. 58
 3.2.3 Disadvantages ... 58
 3.3 Weighted Metric Methods 58
 3.3.1 Hand Calculations .. 60
 3.3.2 Advantages .. 61
 3.3.3 Disadvantages ... 61
 3.3.4 Rotated Weighted Metric Method 61
 3.3.5 Dynamically Changing the Ideal Solution 63
 3.4 Benson's Method .. 64
 3.4.1 Advantages .. 65
 3.4.2 Disadvantages ... 65
 3.5 Value Function Method 65
 3.5.1 Advantages .. 66
 3.5.2 Disadvantages ... 66
 3.6 Goal Programming Methods 67
 3.6.1 Weighted Goal Programming 68
 3.6.2 Lexicographic Goal Programming 70
 3.6.3 Min–Max Goal Programming 71
 3.7 Interactive Methods ... 72
 3.8 Review of Classical Methods 72
 3.9 Summary ... 75

4 Evolutionary Algorithms .. 77
 4.1 Difficulties with Classical Optimization Algorithms 77
 4.2 Genetic Algorithms ... 80
 4.2.1 Binary Genetic Algorithms 80
 4.2.2 Real-Parameter Genetic Algorithms 106
 4.2.3 Constraint-Handling in Genetic Algorithms 122
 4.3 Evolution Strategies 129
 4.3.1 Non-Recombinitive Evolution Strategies 129
 4.3.2 Recombinative Evolution Strategies 132
 4.3.3 Self-Adaptive Evolution Strategies 134
 4.3.4 Connection Between Real-Parameter GAs and Self-Adaptive ESs 136
 4.4 Evolutionary Programming (EP) 138
CONTENTS

4.5 Genetic Programming (GP) ... 140
4.6 Multi-Modal Function Optimization 143
 4.6.1 Diversity Through Mutation 144
 4.6.2 Preselection ... 144
 4.6.3 Crowding Model ... 145
 4.6.4 Sharing Function Model 145
 4.6.5 Ecological GA .. 156
 4.6.6 Other Models .. 156
 4.6.7 Need for Mating Restriction 158
4.7 Summary .. 159

5 Non-Elitist Multi-Objective Evolutionary Algorithms 161
 5.1 Motivation for Finding Multiple Pareto-Optimal Solutions 162
 5.2 Early Suggestions ... 164
 5.3 Example Problems .. 166
 5.3.1 Minimization Example Problem: Min-Ex 166
 5.3.2 Maximization Example Problem: Max-Ex 167
 5.4 Vector Evaluated Genetic Algorithm 169
 5.4.1 Hand Calculations ... 170
 5.4.2 Computational Complexity 172
 5.4.3 Advantages .. 173
 5.4.4 Disadvantages ... 173
 5.4.5 Simulation Results .. 173
 5.4.6 Non-Dominated Selection Heuristic 174
 5.4.7 Mate Selection Heuristic 175
 5.5 Vector-Optimized Evolution Strategy 178
 5.5.1 Advantages and Disadvantages 179
 5.6 Weight-Based Genetic Algorithm 179
 5.6.1 Sharing Function Approach 180
 5.6.2 Vector Evaluated Approach 186
 5.7 Random Weighted GA .. 190
 5.8 Multiple Objective Genetic Algorithm 190
 5.8.1 Hand Calculations ... 193
 5.8.2 Computational Complexity 196
 5.8.3 Advantages .. 196
 5.8.4 Disadvantages ... 196
 5.8.5 Simulation Results .. 196
 5.8.6 Dynamic Update of the Sharing Parameter 197
 5.9 Non-Dominated Sorting Genetic Algorithm 199
 5.9.1 Hand Calculations ... 203
 5.9.2 Computational Complexity 206
 5.9.3 Advantages .. 206
 5.9.4 Disadvantages ... 206
5.9.5 Simulation Results .. 206
5.10 Niched-Pareto Genetic Algorithm 208
 5.10.1 Hand Calculations .. 210
 5.10.2 Computational Complexity 212
 5.10.3 Advantages .. 212
 5.10.4 Disadvantages .. 212
 5.10.5 Simulation Results 213
5.11 Predator-Prey Evolution Strategy 213
 5.11.1 Hand Calculations .. 214
 5.11.2 Advantages .. 216
 5.11.3 Disadvantages .. 216
 5.11.4 Simulation Results 217
 5.11.5 A Modified Predator-Prey Evolution Strategy 218
5.12 Other Methods .. 220
 5.12.1 Distributed Sharing GA 221
 5.12.2 Distributed Reinforcement Learning Approach 221
 5.12.3 Neighborhood Constrained GA 222
 5.12.4 Modified NESSY Algorithm 222
 5.12.5 Nash GA .. 224
5.13 Summary ... 224

6 Elitist Multi-Objective Evolutionary Algorithms 227
 6.1 Rudolph’s Elitist Multi-Objective Evolutionary Algorithm 228
 6.1.1 Hand Calculations .. 230
 6.1.2 Computational Complexity 232
 6.1.3 Advantages .. 232
 6.1.4 Disadvantages .. 232
 6.2 Elitist Non-Dominated Sorting Genetic Algorithm 233
 6.2.1 Crowded Tournament Selection Operator 235
 6.2.2 Hand Calculations .. 237
 6.2.3 Computational Complexity 240
 6.2.4 Advantages .. 240
 6.2.5 Disadvantages .. 240
 6.2.6 Simulation Results 241
 6.3 Distance-Based Pareto Genetic Algorithm 241
 6.3.1 Hand Calculations .. 244
 6.3.2 Computational Complexity 246
 6.3.3 Advantages .. 246
 6.3.4 Disadvantages .. 246
 6.3.5 Simulation Results 247
 6.4 Strength Pareto Evolutionary Algorithm 249
 6.4.1 Clustering Algorithm 251
 6.4.2 Hand Calculations .. 252
Contents

6.4.3 Computational Complexity .. 256
6.4.4 Advantages .. 256
6.4.5 Disadvantages ... 256
6.4.6 Simulation Results ... 257

6.5 Thermodynamical Genetic Algorithm 258
6.5.1 Computational Complexity ... 259
6.5.2 Advantages and Disadvantages 260

6.6 Pareto-Archived Evolution Strategy 260
6.6.1 Hand Calculations .. 263
6.6.2 Computational Complexity .. 264
6.6.3 Advantages .. 265
6.6.4 Disadvantages ... 265
6.6.5 Simulation Results ... 266
6.6.6 Multi-Membered PAES ... 266

6.7 Multi-Objective Messy Genetic Algorithm 267
6.7.1 Original Single-Objective Messy GAs 267
6.7.2 Modification for Multi-Objective Optimization 269

6.8 Other Elitist Multi-Objective Evolutionary Algorithms 270
6.8.1 Non-Dominated Sorting in Annealing GA 270
6.8.2 Pareto Converging GA .. 271
6.8.3 Multi-Objective Micro-GA .. 272
6.8.4 Elitist MOEA with Coevolutionary Sharing 272

6.9 Summary ... 273

7 Constrained Multi-Objective Evolutionary Algorithms 275
7.1 An Example Problem .. 276
7.2 Ignoring Infeasible Solutions .. 277

7.3 Penalty Function Approach .. 277
7.3.1 Simulation Results .. 281

7.4 Jiménez-Verdegay-Gomez-Skarmeta's Method 283
7.4.1 Hand Calculations .. 284
7.4.2 Advantages .. 286
7.4.3 Disadvantages ... 286
7.4.4 Simulation Results ... 286

7.5 Constrained Tournament Method 287
7.5.1 Constrained Tournament Selection Operator 290
7.5.2 Hand Calculations .. 291
7.5.3 Advantages and Disadvantages 292
7.5.4 Simulation Results ... 293

7.6 Ray-Tai-Seow's Method ... 294
7.6.1 Hand Calculations .. 296
7.6.2 Computational Complexity .. 297
7.6.3 Advantages .. 297
7.6.4 Disadvantages .. 297
7.6.5 Simulation Results ... 298
7.7 Summary .. 298

8 Salient Issues of Multi-Objective Evolutionary Algorithms 301
 8.1 Illustrative Representation of Non-Dominated Solutions 302
 8.1.1 Scatter-Plot Matrix Method 302
 8.1.2 Value Path Method .. 302
 8.1.3 Bar Chart Method ... 304
 8.1.4 Star Coordinate Method 305
 8.1.5 Visual Method .. 306
 8.2 Performance Metrics .. 306
 8.2.1 Metrics Evaluating Closeness to the Pareto-Optimal Front 310
 8.2.2 Metrics Evaluating Diversity Among Non-Dominated Solutions 313
 8.2.3 Metrics Evaluating Closeness and Diversity 318
 8.3 Test Problem Design .. 324
 8.3.1 Difficulties in Converging to the Pareto-Optimal Front 333
 8.3.2 Difficulties in Maintaining Diverse Pareto-Optimal Solutions ... 333
 8.3.3 Tunable Two-Objective Optimization Problems 335
 8.3.4 Test Problems with More Than Two Objectives 346
 8.3.5 Test Problems for Constrained Optimization 348
 8.4 Comparison of Multi-Objective Evolutionary Algorithms 361
 8.4.1 Zitzler, Deb and Thiele's Study 361
 8.4.2 Veldhuizen's Study .. 364
 8.4.3 Knowles and Corne's Study 364
 8.4.4 Deb, Agrawal, Pratap and Meyarivan's Study 365
 8.4.5 Constrained Optimization Studies 370
 8.5 Objective Versus Decision-Space Niching 373
 8.6 Searching for Preferred Solutions 375
 8.6.1 Post-Optimal Techniques 376
 8.6.2 Optimization-Level Techniques 378
 8.7 Exploiting Multi-Objective Evolutionary Optimization 386
 8.7.1 Constrained Single-Objective Optimization 387
 8.7.2 Goal Programming Using Multi-Objective Optimization 394
 8.8 Scaling Issues .. 400
 8.8.1 Non-Dominated Solutions in a Population 402
 8.8.2 Population Sizing .. 404
 8.9 Convergence Issues .. 405
 8.9.1 Convergent MOEAs .. 406
 8.9.2 An MOEA with Spread ... 408
 8.10 Controlling Elitism .. 412
 8.10.1 Controlled Elitism in NSGA-II 414
 8.11 Multi-Objective Scheduling Algorithms 418
CONTENTS

8.11.1 Random-Weight Based Genetic Local Search 419
8.11.2 Multi-Objective Genetic Local Search 422
8.11.3 NSGA and Elitist NSGA (ENGA) 423
8.12 Summary ... 424

9 Applications of Multi-Objective Evolutionary Algorithms 429
9.1 An Overview of Different Applications 430
9.2 Mechanical Component Design 432
 9.2.1 Two-Bar Truss Design 432
 9.2.2 Gear Train Design 434
 9.2.3 Spring Design 435
9.3 Truss-Structure Design 437
 9.3.1 A Combined Optimization Approach 438
9.4 Microwave Absorber Design 442
9.5 Low-Thrust Spacecraft Trajectory Optimization 444
9.6 A Hybrid MOEA for Engineering Shape Design 448
 9.6.1 Better Convergence 449
 9.6.2 Reducing the Size of the Non-Dominated Set 451
 9.6.3 Optimal Shape Design 452
 9.6.4 Hybrid MOEAs 459
9.7 Summary ... 460

10 Epilogue ... 463

References .. 471

Index ... 491
Preface

Optimization is a procedure of finding and comparing feasible solutions until no better solution can be found. Solutions are termed good or bad in terms of an objective, which is often the cost of fabrication, amount of harmful gases, efficiency of a process, product reliability, or other factors. A significant portion of research and application in the field of optimization considers a single objective, although most real-world problems involve more than one objective. The presence of multiple conflicting objectives (such as simultaneously minimizing the cost of fabrication and maximizing product reliability) is natural in many problems and makes the optimization problem interesting to solve. Since no one solution can be termed as an optimum solution to multiple conflicting objectives, the resulting multi-objective optimization problem resorts to a number of trade-off optimal solutions. Classical optimization methods can at best find one solution in one simulation run, thereby making those methods inconvenient to solve multi-objective optimization problems.

Evolutionary algorithms (EAs), on the other hand, can find multiple optimal solutions in one single simulation run due to their population-approach. Thus, EAs are ideal candidates for solving multi-objective optimization problems. This book provides a comprehensive survey of most multi-objective EA approaches suggested since the evolution of such algorithms. Although a number of approaches were outlined sparingly in the early years of the subject, more pragmatic multi-objective EAs (MOEAs) were first suggested about a decade ago. All such studies exist in terms of research papers in various journals and conference proceedings, which thus force newcomers and practitioners to search different sources in order to obtain an overview of the topic. This fact has been the primary motivation for me to take up this project and to gather together most of the MOEA techniques in one text.

This present book provides an extensive discussion on the principles of multi-objective optimization and on a number of classical approaches. For those readers unfamiliar with multi-objective optimization, Chapters 2 and 3 provide the necessary background. Readers with a classical optimization background can take advantage of Chapter 4 to familiarize themselves with various evolutionary algorithms. Beginning with a detailed description of genetic algorithms, an introduction to three other EAs, namely evolution strategy, evolutionary programming, and genetic programming, is provided. Since the search for multiple solutions is important in multi-objective optimization, a detailed description of EAs, particularly designed to solve multi-modal
optimization problems, is also presented. Elite-preservation or emphasizing currently elite solutions is an important operator in an EA. In this book, we classify MOEAs according to whether they preserve elitism or not. Chapter 5 presents a number of non-elitist MOEAs. Each algorithm is described by presenting a step-by-step procedure, showing a hand calculation, discussing advantages and disadvantages of the algorithm, calculating its computational complexity, and finally presenting a computer simulation on a test problem. In order to obtain a comparative evaluation of different algorithms, the same test problem with the same parameter settings is used for most MOEAs presented in the book. Chapter 6 describes a number of elitist MOEAs in an identical manner.

Constraints are inevitable in any real-world optimization problem, including multi-objective optimization problems. Chapter 7 presents a number of techniques specializing in handling constrained optimization problems. Such approaches include simple modifications to the MOEAs discussed in Chapters 5 and 6 to give more specialized new MOEAs.

Whenever new techniques are suggested, there is room for improvement and further research. Chapter 8 discusses a number of salient issues regarding MOEAs. This chapter amply emphasizes the importance of each issue in developing and applying MOEAs in a better manner by presenting the current state-of-the-art research and by proposing further research directions.

Finally, in Chapter 9, the usefulness of MOEAs in real-world applications is demonstrated by presenting a number of applications in engineering design. This chapter also discusses plausible hybrid techniques for combining MOEAs with a local search technique for developing an even better and a pragmatic multi-objective optimization tool.

This book would not have been completed without the dedication of a number of my students, namely Sameer Agrawal, Amrit Pratap, Tushar Goel and Thirunavukkarasu Meyarivan. They have helped me in writing computer codes for investigating the performance of the different algorithms presented in this book and in discussing with me for long hours various issues regarding multi-objective optimization. In this part of the world, where the subject of evolutionary algorithms is still a comparative fad, they were my colleagues and inspirations. I also appreciate the help of Dhiraj Joshi, Ashish Anand, Shamik Chaudhury, Pawan Nain, Akshay Mohan, Saket Awasthi and Pawan Zope. In any case, I must not forget to thank Nidamarthi Srinivas who took up the challenge to code the first viable MOEA based on the non-domination concept. This ground-breaking study on non-dominated sorting GA (NSGA) inspired many MOEA researchers and certainly most of our MOEA research activities at the Kanpur Genetic Algorithms Laboratory (KanGAL), housed at the Indian Institute of Technology Kanpur, India.

The first idea for writing this book originated during my visit to the University of Dortmund during the period 1998-1999 through the Alexander von Humboldt (AvH) Fellowship scheme. The resourceful research environment at the University of Dortmund and the ever-supportive sentiments of AvH organization were helpful
in formulating a plan for the contents of this book. Discussions with Eckart Zitzler, Lothar Thiele, Jürgen Branke, Frank Kursawe, Günter Rudolph and Ian Parmee on various issues on multi-objective optimization are acknowledged. Various suggestions given by Marco Laumanns and Eckart Zitzler in improving an earlier draft of this book are highly appreciated. I am privileged to get continuous support and encouragement from two stalwarts in the field of evolutionary computation, namely David E. Goldberg and Hans-Paul Schwefel. The help obtained from Victoria Coverstone-Carroll, Bill Hartmann, Hisao Ishibuchi and Eric Michelsen was also very useful. I also thank David B. Fogel for pointing me towards some of the early multi-objective EA studies.

Besides our own algorithms for multi-objective optimization, this book also presents a number of algorithms suggested by other researchers. Any difference between what is presented here and the original version of these algorithms is purely unintentional. Wherever in doubt, the original source can be referred. However, I would be happy to receive any such comments, which would be helpful to me in preparing the future editions of this book.

The completion of this book came at the expense of my long hours of absence from home. I am indebted to Debjani, Debyan, Dhriti, and Mr and Mrs S. K. Sarkar for their understanding and patience.

Kalyanmoy Deb
Indian Institute Technology Kanpur
deb@iitk.ac.in