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Abstract

Karush-Kuhn-Tucker (KKT) optimality conditions are often checked for investigating whether
a solution obtained by an optimization algorithm is a likely candidate for the optimum. In this
study, we report that although the KKT conditions must all be satisfied at the KKT point,
the extent of violation of KKT conditions at points arbitrarily close to the KKT point is not
smooth, thereby making the KKT conditions difficult to use directly to evaluate the perfor-
mance of an optimization algorithm. This happens due to the requirement of complimentary
slackness condition associated with KKT optimality conditions. To overcome this difficulty, we
define modified ǫ-KKT points by relaxing the complimentary slackness and equilibrium equa-
tions of KKT conditions and suggest a KKT-proximity measure, that reduces sequentially to
zero as the iterates approach the KKT point. Besides the theoretical development defining the
modified ǫ-KKT point, we present extensive computer simulations of the proposed methodol-
ogy on a set of iterates obtained through an evolutionary optimization optimization algorithm
to illustrate the working of our proposed procedure on smooth and non-smooth problems.
The results indicate that the proposed KKT-proximity measure can be used a termination
condition to optimization algorithms. We also provide a comparison of our KKT-proximity
measure with the stopping criterion used in the commercial softwares like Knitro.

1 Introduction

The Karush-Kuhn-Tucker (KKT) conditions are necessary for a solution in a non-linear program-
ming problem to be optimal (provided some regularity conditions are satisfied) and hence, they
play an important part in optimization theory [14]. However, the KKT conditions are not ad-
equately investigated for their regularity in the neighborhood of the KKT point, nor have they
been widely used in optimization algorithm design, primarily owing to the fact that these are
point conditions. The KKT conditions we know are precisely satisfied at an exact optimal point,
local or global, provided a suitable constraint qualification condition holds. Thus, it would be
important to know to what extent the KKT conditions are violated in the neighborhood of an
exact optimal point. Thus, when approaching the KKT point through a series of iterates obtained
by an optimization algorithm, the extent of violation of KKT conditions may not reduce in any
smooth manner. This makes any derivation of the extent of satisfaction of KKT conditions as
a check for termination difficult, even for smooth problems. Commercial softwares, like Knitro
[3] and MATLAB Optimization toolbox [12], base their stopping criterion on KKT conditions,
but they use complicated modifications of the KKT conditions. However, it is also true that the
KKT conditions are never used in the algorithm design. If one could judge the proximity and
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direction of the optimum from a given point, using some metric derived from the KKT condition
violations, this could be very helpful for devising a theoretically motivated termination condition
which could be used in the actual design of algorithms. This study is an aim to satisfy the former
of the requirements.
In this paper, a simplistic KKT-proximity measure has been derived from KKT conditions to
indicate the closeness of a given iterate to the optimum of an optimization problem. We begin
the paper by considering a minimization problem with smooth data. We present here the notion
of an ǫ-KKT point. In fact we show that if {xk} is a sequence of feasible points converging to x̄

and if a suitable qualification condition holds at x̄ then x̄ is a KKT point provided each xk is an
ǫk-KKT point where ǫk > 0 for all k and ǫk ↓ 0.
Thereafter, we suggest a modified ǫ-KKT point which we do in the general setting of a nonsmooth
optimization problem with locally Lipschitz data. The fundamental feature of this definition is
that we relax the complementary slackness condition and further in the subgradient conditions
instead of taking the exact reference point we move away from it consider a point from the
neighborhood. Both these steps are a departure from the approach used to define an ǫ-KKT point
in the smooth case. The move away from the exact reference point is significant since for a locally
Lipschitz problem one can very likely move to a point around which the function is continuously
differentiable and thus allowing us to work with derivatives rather than subgradients. Of course
this is made possible by the fact that a locally Lipschitz function is densely differentiable in any
neighborhood of a given point. Further,for any iterate, we suggest an optimization procedure
to find a minimum ǫ parameter that would satisfy the proposed modified ǫ-KKT conditions.
Additionally, we define the minimum ǫ value as a KKT-proximity measure of the iterate from the
KKT point. Due to the flexibility associated in satisfying all the approximate KKT conditions,
the KKT-proximity measure is found to behave smoothly in the vicinity of the KKT point. We
demonstrate this aspect on both smooth and non-smooth problems.

The remainder of the paper is organized as follows. Section 2 states the KKT conditions
separately for smooth and non-smooth problems. Section 3 defines an ǫ-KKT point by relaxing
the conditions involving the gradients. The inadequacy of the resulting KKT-error measure in
capturing the closeness of a point to the KKT point is then illustrated on a simple two-variable
constrained problem. Thereafter, in Section 3.3, we define a modified ǫ-KKT point which further
relaxes the complimentary slackness equation of the KKT condition set. Associated theorems
outlining the conditions for a series of modified ǫ-KKT points to approach the KKT point are
proven next. Based on the theorems, we propose a KKT-proximity measure for smooth and
non-smooth cases. We also try to answer (at least partially) the following question. Given
a local minimum, can we find a sequence of points converging to it which satisfies one of the
type of approximate optimality notions that we define here? Results are shown in Section 4
where the KKT-proximity measure for a sequence of iterates is plotted for a number of standard
constrained test problems. The iterates are taken as the generation-wise best solutions of a real-
coded genetic algorithm (RGA) [5]. We also include the best-reported solution in the iterate set
so that the convergence property of the RGA can be assessed from a theoretical point of view.
Section 5 compares the variation of KKT-proximity measure with the termination parameter
of a commercial optimization software – Knitro [3]. Conclusions and further research work are
suggested in Section 6.

2 KKT Conditions: Smooth and Non-smooth Cases

In this section, we present the KKT optimality conditions for smooth and non-smooth problems.

2



2.1 Smooth Case

For the given single-objective, constrained smooth optimization problem (P):

Minimize f(x),
Subject to gi(x) ≤ 0, i = 1, 2, . . . ,m,

(1)

the Karush-Kuhn-Tucker (KKT) optimality conditions are given as follows:

∇f(x̄) +
m

∑

i=1

ui∇gi(x̄) = 0, (2)

gi(x̄) ≤ 0, ∀i, (3)

uigi(x̄) = 0, ∀i, (4)

ui ≥ 0, ∀i. (5)

The parameter ui is called the Lagrange multiplier for the i-th constraint. Any solution x̄

that satisfies all the above conditions is called a KKT point [14]. The Equation 2 is known as
the equilibrium equation or the gradient condition. If we take the norm of the vector on the right
hand side of Equation 2 and the norm is non-zero then the value of the norm is called the KKT
error at that the reference point. Equation 4 is known as the complimentary slackness equation.
Note that the conditions given in equation 3 ensure feasibility for x̄ while the equation 5 tells us
that the Lagrange multipliers are non-negative.

The complimentary slackness condition implies that if a KKT point x̄ makes a constraint
inactive (meaning gi(x̄) < 0 for the i-th constraint), the corresponding Lagrange multiplier ui

must be zero. On the other hand, along with equation 5, we conclude that if the KKT point
makes the i-th constraint active (meaning gi(x̄) = 0), ui may take either zero or positive values.
Also, the equilibrium equation requires that the negative of the gradient vector of the objective
function at the KKT point be a positive linear combination of the gradient vectors of the active
constraints.

It is important to note that a KKT point is not necessarily a minima of the original prob-
lem. Further conditions (in general, involving constraint qualification conditions or second-order
derivatives) are necessary to establish the optimality of a point. However, in this paper, we keep
our discussions to KKT points which are candidates for the minimum point.

The KKT conditions clearly state that the KKT-error (‖∇f(x̄) +
∑m

i=1 ui∇gi(x̄)‖) is zero
at the KKT point. However, it is not clear and is not adequately mentioned in textbooks on
mathematical optimization as to how the KKT-error varies for points in the proximity of the
KKT point. If the KKT-error reduces monotonically for points as we get closer to the KKT point,
the KKT-error can be reliably used as a termination criterion for any constrained optimization
algorithm, including an evolutionary algorithm. We shall investigate this aspect through the
definition of a ǫ-KKT point a little later, but before that let us discuss the KKT conditions for a
non-smooth problem.

2.2 Non-Smooth Case

In optimization we often come across situations where the minimum or rather the optimum of a
function is achieved precisely at the point where the function is not differentiable. As an example
consider the function, f(x) = |x|, x ∈ ℜ. It is clear that the minimum of f is achieved at x = 0
where it is non-differentiable. The question is how to overcome this bane of non-differentiability.
The class of functions for which the issue of non-differentiability was first studied was the class of
convex functions. Note that the function f(x) = |x|, x ∈ ℜ, is also a convex function. For details
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on convex analysis see for example [14]. The tool that is used to replace the derivative at a point
of non-differentiability is called the subdifferential, which we now formally define.

Definition 2.1 Let f : ℜn → ℜ be a convex function. Then ξ ∈ ℜn is called a subgradient of f

at x ∈ ℜn, if
f(y) ≥ f(x) + 〈 ξ, y − x 〉 ∀ y ∈ ℜn.

The collection of all subgradients of f at x is called the subdifferential of f at x and is denoted
by ∂f(x). The set ∂f(x) is non-empty, convex and compact for any x ∈ ℜn. A point x̄ ∈ ℜn is a
global minimum of f if and only if 0 ∈ ∂f(x̄). For a convex function f , the one-sided directional
derivative at x ∈ ℜn in the direction d ∈ ℜn is given as

f ′(x,d) = lim
λ↓0

f(x + λd) − f(x)

λ
,

where λ ↓ 0 means λ > 0 & λ → 0. For a convex function the directional derivative exists for
each x and in each direction d. Further, we have

∂f(x) =
{

ξ ∈ ℜn : f ′(x,d) ≥ 〈ξ, d〉 ∀ d ∈ ℜn
}

.

Also,
f ′(x,d) = max

ξ∈∂f(x)
〈ξ, d〉.

Let us consider the convex problem (P). Assume that the Slater constraint qualification holds
true, i.e. there exists x̂ ∈ ℜn such that gi(x̂) < 0, ∀ i = 1, . . . ,m. Then x̄ ∈ ℜn is a minimum of
the above problem if and only if there exists u ∈ ℜm

+ such that

1. 0 ∈ ∂f(x̄) +
∑m

i=1 ui∂gi(x̄),

2. gi(x̄) ≤ 0, i = 1, . . . ,m,

3. uigi(x̄) = 0, i = 1, . . . ,m.

For more details on convex analysis and optimization, readers are referred to [14].
An important property of a convex function is that it is locally Lipschitz. A function f : ℜn →

ℜ is locally Lipschitz at x̄ ∈ ℜn if there exists a neighborhood U(x̄) of x̄ such that there exists a
K ≥ 0 (depending on x̄) for which

|f(y) − f(x)| ≤ K ||y − x||, ∀ x,y ∈ U(x̄).

Moreover the famous Rademacher’s theorem tells us that a locally Lipschitz function is differ-
entiable almost everywhere. This means that the points of non-differentiability form a set of
measure zero. The issue of non-differentiability for locally Lipschitz function has been tackled in
the following way. For a locally Lipschitz function the Clarke generalized directional derivative
at x in the direction v ∈ ℜn, is defined as:

f o(x,v) = lim sup
y→x,λ↓0

f(y + λv) − f(y)

λ
.

The Clarke subdifferential of a locally Lipschitz function f at x is given by

∂of(x) =
{

ξ ∈ ℜn : f o(x,v) ≥ 〈ξ, v〉, ∀ v ∈ ℜn
}

.

The set ∂of(x) is a non-empty, convex and compact set for each x ∈ ℜn. Further as a set valued
map ∂of is locally-bounded and graph closed and hence upper semi-continuous. For more details

4



on the Clarke subdifferential or the Clarke derivative see for example [4]. If x̄ is a local minimum
of f over ℜn, then 0 ∈ ∂of(x̄). This condition is only necessary and not sufficient in general.

It is simple to observe that every locally Lipschitz function is not convex. Further if f is
convex then

f ′(x,v) = f o(x,v), ∀ x,v ∈ ℜn,

and
∂of(x) = ∂f(x), ∀ x ∈ ℜn.

A locally Lipschitz function is called regular at x ∈ ℜn if the one-sided directional derivative
exists and

f ′(x,v) = f o(x,v), ∀ v ∈ ℜn.

Of course every convex function is regular.
Let us consider two locally Lipschitz functions f1 & f2, then we have

∂o(f1 + f2)(x) ⊂ ∂of1(x) + ∂of2(x).

Equality holds if both f1 and f2 are regular. Thus if f1 and f2 are convex, we have

∂(f1 + f2)(x) = ∂f1(x) + ∂f2(x).

Furthermore, ∂o(λf)(x) = λ∂of(x) for all λ ∈ ℜ. However, if f is convex then

∂(λf)(x) = λ∂f(x) ∀ λ ≥ 0.

Let us now consider the optimization problem (P) where f and each gi are now locally Lips-
chitz. Assume that x̄ is a local minimum of the above problem. Denote by I(x̄) = { i : gi(x̄) = 0 },
the set of all active constraints at x̄. We say that the Mangasarian-Fromovitz type constraint
qualification is satisfied at x̄ if there exists d ∈ ℜn such that

go
i (x̄,d) < 0, ∀ i ∈ I(x̄). (6)

Hence if the Mangasarian-Fromovitz type constraint qualification holds at a local minimum x̄,
then there exists u ∈ ℜm

+ such that

1. 0 ∈ ∂of(x̄) +
∑m

i=1 ui∂
ogi(x̄),

2. gi(x̄) ≤ 0, i = 1, . . . ,m,

3. uigi(x̄) = 0, i = 1, . . . ,m.

3 Approximate KKT Optimality Conditions

Let us begin by considering the smooth case. In this section we study the approximate KKT opti-
mality conditions and their relationship with the exact KKT optimality conditions (equation 2–5).
Our main aim in this section is to define certain notions of approximate KKT points and show
that, if a sequence of such points converges to a point where some constraint qualification is also
satisfied, then the limit point is a KKT point.

Very recently Andreani et al.[1] introduced some notions of approximate KKT conditions.
They studied only the smooth case while we shall consider both the smooth and non-smooth
cases. We would like to point out that our approach to approximate KKT points is quite different
from [1]. We discuss further the differences in subsection 3.6.
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3.1 An ǫ-KKT Point

Concentrating on the optimization problem (P) mentioned in section 2.1, we have the following
definition:

Definition 3.1 A point x which is feasible to (P) is said to be an ǫ-KKT point if given ǫ > 0,
there exist scalars ui ≥ 0, i = 1, 2, . . . ,m such that

1.
∥

∥∇f(x) +
∑m

i=1 ui∇gi(x)
∥

∥ ≤ ǫ,

2. uigi(x) = 0, for i = 1, 2, . . . ,m.

The Mangasarian-Fromovitz constraint qualification (MFCQ for short) for the problem (P) with
smooth data is given as follows : Let x be a feasible point of (P). Then MFCQ holds at x if there
exists d ∈ ℜn such that 〈∇gi(x), d〉 < 0 for all i ∈ I(x) where I(x) denotes the index of active
constraints at x, i.e. I(x) = {i : gi(x) = 0}.
The Mangasarian-Fromovitz constraint qualification (MFCQ) discussed above (equation 6) can
be alternatively stated in the following equivalent form, which can be deduced using separation
theorem for convex sets.
The constraints of (P) satisfy the MFCQ at a feasible x if there exists no vector 0 6= u ∈ ℜm

+

( ui ≥ 0 for i ∈ I(x) and ui = 0 for i 6∈ I(x) ) such that

m
∑

i=1

ui∇gi(x) = 0.

Now we will state our main result in the smooth case.

Theorem 3.2 Let {xk} be a sequence of feasible points of (P) such that xk → x̄ as k → ∞. Let
{ǫk} be a sequence of positive real numbers such that ǫk ↓ 0, as k → ∞. Further assume that for
each k, xk is an ǫk-KKT point of (P). If MFCQ holds at x̄, then x̄ is a KKT point.

Proof: Since xk is an ǫk-KKT point for (P), it is clear from the definition that xk is feasible
for each k and as each gi is continuous and {xk} → x̄ it is clear that x̄ is a feasible point for (P).
Now from the definition of ǫk-KKT points there exists a vector uk ∈ ℜm

+ for each k such that

1.
∥

∥∇f(xk) +
∑m

i=1 uk
i ∇gi(xk)

∥

∥ ≤ ǫk,

2. uk
i gi(xk) = 0 for i = 1, 2, . . . ,m.

Our claim is that the sequence uk is bounded. On the contrary assume that uk is not bounded.
Thus without loss of generality we can sat that ‖uk‖ → ∞ as k → ∞. Now consider the sequence
{wk}, with

wk =
uk

‖uk‖ , ∀ k.

It is clear that wk is bounded and hence without loss of generality we can conclude that wk → w̄

and ‖w̄‖ = 1. Now we have,

∥

∥∇f(xk) + ∇g(xk)
Tuk

∥

∥ ≤ ǫk, (7)

where ∇g(x) denotes the Jacobian matrix at the point x of the vector function g : ℜn → ℜm,
given as g(x) = [g1(x), . . . , gm(x)].
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Now by dividing both sides of equation 7 by ‖uk‖ we have
∥

∥

∥

∥

1

‖uk‖∇f(xk) + ∇g(xk)
T uk

‖uk‖

∥

∥

∥

∥

≤ 1

‖uk‖ǫk.

That is,
∥

∥

∥

∥

1

‖uk‖∇f(xk) + ∇g(xk)
Twk

∥

∥

∥

∥

≤ 1

‖uk‖ǫk. (8)

Since f is a smooth function as xk → x̄ we have ∇f(xk) → ∇f(x̄) and thus the sequence {∇f(xk)}
is bounded and further as ǫk → 0, the sequence {ǫk} is bounded. This shows that

1

‖uk‖∇f(xk) → 0 as k → ∞,

and
1

‖uk‖ǫk → 0 as k → ∞.

Thus, passing to the limit in equation 8 as k → ∞, we have ‖∇g(x̄)T w̄‖ → 0 (note that since g

is smooth ∇g(xk) → ∇g(x̄)). That is,
∑m

i=1 w̄i∇gi(x̄) = 0, where w̄ = [w̄1, w̄2, . . . , w̄m]. Since
‖w̄‖ = 1, it is clear that MFCQ is violated at x = x̄. This is a contradiction. Hence, the sequence
{uk} is indeed bounded. Thus, we can assume without loss of generality that uk → ū ∈ ℜm

+ (since
ℜm

+ is a closed set). Hence as k → ∞ from items (1) and (2), we have

1.
∥

∥∇f(x̄) +
∑m

i=1 ūi∇gi(x̄)
∥

∥ = 0, and

2. ūigi(x̄) = 0, for i = 1, 2, . . . ,m.

Hence, x̄ is a KKT point. �

Figure 1 illustrates the outcome of the above theorem. At any iterate xk, the parameter ǫk

satisfying the two conditions given in theorem 3.2 is obtained. If for a sequence of iterates xk (as
k → ∞) the corresponding ǫk reduces to zero and if at the limit point (= x̄) the MFCQ holds,
then the point x̄ is the KKT point.

Remark 1 It is clear from the above theorem that if f and gi, i = 1, 2, . . . ,m are differentiable
convex functions, then x̄ as in the above theorem is a solution of the problem. However, an
important question is whether the sequence {xk} will converge at all. Of course, if the set

C =
{

x : gi(x) ≤ 0, i = 1, 2, . . . ,m
}

is compact then {xk} will have a subsequence which will converge and that would be enough for
our purposes. Further, in many simple situations C is actually compact. Consider for example,

C =
{

(x, y) ∈ ℜ2 : x2 + y2 ≤ 1, x + y ≤ 1
}

.

It is simple to observe that C is compact.

3.2 KKT-Error Measure using ǫ-KKT Points

We now suggest a KKT-error measure based on the above definition of an ǫ-KKT point. To
compute the KKT-error measure, we only consider constraints which are active with the following
active index set: I(xk) = { i | gi(xk) = 0}. Then, we solve the following optimization problem to
find the Lagrange multipliers for all active constraints:

Minimize
∥

∥ ∇f(xk) +
∑

i∈I(xk) ui∇gi(xk)
∥

∥,

Subject to ui ≥ 0 ∀ i ∈ I(xk).
(9)
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Figure 1: A sketch explaining Theorem 3.2.

Note that only ui’s for active constraints are variables to the above problem. The optimal solution
of the above problem is the KKT-error (ǫk) at xk, or

ǫk =
∥

∥ ∇f(xk) +
∑

i∈I

u∗
i∇gi(xk)

∥

∥. (10)

We now consider a two-variable problem and illustrate how the KKT error (ǫk) changes as the
iterates xk approach the optimal point (also a KKT point).

Consider the problem (Figure 2):

Minimize f(x) = x2 + y2 − 10x + 4y + 2,
Subject to g1(x) = x2 + y − 6 ≤ 0,

g2(x) = x − y ≤ 0,
g3(x) = − x ≤ 0.

(11)

It can be verified that the point x∗ = (1.5, 1.5)T is the global optimum (also a KKT point since
f and gi are convex and the Slater constraint qualification holds). At x∗, the second constraint
is active. Now, consider a point close to the optimum, say (1.495, 1.505)T . At this feasible point,
none of the constraints are active, and the KKT-error is simply ‖∇f‖ which is not equal to zero.
Further, consider sequences of points approaching x∗ along two paths, (i) x = y and (ii) x+y = 3,
with their KKT-error plots shown in Figures 3(a) and 3(b), respectively.

On the path x = y, the constraint g2 (equation 11) is active and the error smoothly reduces
to zero at the KKT point. However, on the path x + y = 3, all constraints are inactive along this
line (except at the KKT point itself) and we can observe the discontinuous behavior of the error.

The above results show that the sequence of KKT-error values computed keeping the comple-
mentary slackness condition depends on the manner the iterates approach the KKT point. For
certain sequence of points, the KKT-error can remain quite high in the vicinity of a KKT point
before suddenly dropping to zero at it. Also, no particular relationship can be obtained between
the KKT-error and the proximity of an iterate to the optimum. Thus, the KKT-error computed
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Figure 2: Contour plot of the objective and feasible region.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

α

K
K

T
 E

rr
or

(a) The KKT-Error reduces smoothly to zero at
x
∗ while traversing along x = y = 1.35 + 0.3α

keeping the constraint active.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

α

K
K

T
 E

rr
or

(b) The KKT-Error has a discontinuity at x
∗,

where it is zero. Plot of points along the line
x = 1.35 + 0.3α, y = 1.65 − 0.3α

Figure 3: Behavior of KKT-Error.

keeping strict complementary slackness condition does not give us any information about the
proximity from the optimum and hence, cannot be used as a reliable termination criterion for an
optimization algorithm.

A careful observation reveals that this happens mainly due to the discontinuity enforced by
the complimentary slackness condition (equation 4). For a feasible point very near to a constraint
boundary, but not on the boundary, ui must be zero whereas as soon as the point is on the
constraint boundary, ui is allowed to take any non-negative value. Hence, the participation of the
gradient vector of the corresponding constraint in the equilibrium equation (equation 2) may be
sudden, thereby causing a fluctuation in the KKT-error value.

Thus, in order to use the KKT-error as a KKT-proximity measure or as a termination criterion
for an algorithm so that the progress of the algorithm towards the optimum solution can be
measured by its magnitude, we need to relax the complimentary slackness condition. In the
following section, we discuss a couple of such recent efforts.

Please note that Deb et al. [6] have suggested a KKT based technique for establishing
KKT-optimality conditions for multi-objective optimization problems. Since KKT conditions
for multi-objective optimization involve additional multipliers related to objective functions [11],
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the optimization task involved in computing the KKT-error has a greater flexibility in reducing
its value. However, in handling single-objective optimization, there is no additional parameter
for the objective and the flexibility only comes from the active constraints. Although we do not
consider multi-objective optimization problems in this paper, we are currently extending the ideas
of this paper to such problems.

3.3 Modified ǫ-KKT Point

In order to modify the ǫ-KKT point defined in the above subsection, we now consider the problem
(P) with locally Lipschitz data. This means that both the objective f and the constraints gi are
locally Lipschitz and not necessarily differentiable. We will begin by introducing the notion of a
modified ǫ-KKT point.

Definition 3.3 A point x which is feasible for (P) is said to be a modified ǫ-KKT point for a
given ǫ > 0 if there exists x̂ ∈ ℜn such that ‖x − x̂‖ ≤ √

ǫ and there exists ζ ∈ ∂of(x̂) and
ψi ∈ ∂ogi(x̂) and scalars ui ≥ 0 for i = 1, . . . ,m such that

1. ‖ζ +
∑m

i=1 uiψi‖ ≤ √
ǫ,

2.
m

∑

i=1

uigi(x) ≥ − ǫ.

Interestingly, there is no restriction for x̂ to be feasible. Although the first condition is defined
for x̂, the second condition must be true for the original point x.

The above definition is given for non-smooth objective and constraint functions. The benefit
of being able to choose x̂ is that, for a point x of non-differentiability, we can avoid computing
the subdifferentials by choosing a point x̂ where the functions are differentiable. If the objective
function and constraints are continuously differentiable at x̂ or for smooth cases, where every
function is smooth, the subdifferentials can be replaced by the gradient vectors putting, ζ = ∇f(x̂)
and ψi = ∇gi(x̂). Also for smooth functions, the condition ‖x− x̂‖ ≤ √

ǫ is trivially satisfied for
all non-negative value of ǫ, if we take x̂ = x. Hence, for smooth cases, the difference between the
Definitions 3.1 and 3.3 lie only in the relaxation of the complimentary slackness condition.

It is interesting to note that in general given a feasible point of the problem (P) it is possible
find an ǫ > 0 with respect to which the given point is an modified ǫ-KKT point. Let us consider
for simplicity the problem (P) with smooth data and let us consider the definition of the modified
ǫ-KKT point as considered above for the smooth case. Then we can simply evaluate ǫ by solving
the following problem

Minimize ǫ,

Subject to
∥

∥ ∇f(x) +
∑m

i=1 ui∇gi(x)
∥

∥ ≤ √
ǫ,

∑m
i=1 uigi(x) ≥ − ǫ,

ui ≥ 0 ∀ i.

The value of ǫ which solves this problem will be referred to as the KKT proximity measure. We
will discuss this in more details in subsections 3.4 and 3.5.
The main results below shall be considered in the non-smooth setting. The famous Ekeland’s
variational principle (EVP) will play a pivotal role and we state it below.

Theorem 3.4 (Ekeland’s Variational Principle) Let f : ℜn → ℜ ∪ {+∞} be a proper lower-
semicontinuous function which is bounded below on ℜn. Let ǫ > 0 be given and let x ∈ ℜn is such
a point for which we have

f(x) ≤ inf
y∈ℜn

f(y) + ǫ.

10



Then for any γ > 0 there exists x̂ ∈ ℜn such that

1. ‖x − x̂‖ ≤ γ,

2. f(x̂) ≤ f(x) ≤ infy∈C f(y) + ǫ, and

3. x̂ is the solution of the problem

min
y∈C

f(y) +
ǫ

γ
‖y − x̂‖.

It is important to note that Ekeland’s variational principle was originally given for an optimization
problem over a complete metric space. Further any closed subset of a complete metric space is
a also a complete metric space and thus we could have have presented the Ekeland’s variational
principle in terms of a closed subset of ℜn and considering f to be just finite valued.

The natural question to ask is whether the modified ǫ-KKT point arises in a natural way. We
show that at least in the case when (P) is a convex problem, it is indeed the case. We show this
fact through the following theorem.

Theorem 3.5 Let us consider the problem (P) where f and each gi, i = 1, , . . . ,m is a convex
function. Let x be a feasible point which is an ǫ-minimum of (P). That is,

f(x) ≤ inf
y∈C

f(y) + ǫ.

Assume further that the Slater’s constraint qualification holds, that is, there exists a vector x∗ ∈ ℜn

such that gi(x
∗) < 0, for all i = 1, . . . ,m. Then x is a modified ǫ-KKT point.

Proof: Since x is an ǫ-minimum of the convex problem it is clear that there is no x′ ∈ ℜn

which satisfies the system

f(x′) − f(x) + ǫ < 0,

gi(x
′) < 0, i = 1, . . . ,m.

Now using standard separation arguments (or the Gordan’s theorem of the alternative) we con-
clude that there exists a vector 0 6= (u0,u) ∈ ℜ+ ×ℜm

+ such that for all x′ ∈ ℜn

u0(f(x′) − f(x)) + u0ǫ +
m

∑

i=1

uigi(x
′) ≥ 0. (12)

Suppose u0 = 0. Then, from equation 12 we have

m
∑

i=1

uigi(x
′) ≥ 0, ∀ x′ ∈ ℜn. (13)

Since Slater’s constraint qualification holds, we have
∑m

i=1 uigi(x
∗) < 0. This contradicts equa-

tion 13. Hence, u0 > 0 and without loss of generality, we can set u0 = 1. Equation 12 becomes

f(x′) − f(x) + ǫ +

m
∑

i=1

uigi(x
′) ≥ 0, ∀ x′ ∈ ℜn. (14)

Now putting x′ = x, we have
m

∑

i=1

uigi(x) ≥ − ǫ.
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This establishes item 2 in the definition of a modified ǫ-KKT point. Now setting,

L(x′,u) = f(x′) +
m

∑

i=1

uigi(x
′),

we have from equation 14

L(x′,u) ≥ L(x,u) − ǫ, ∀ x′ ∈ ℜn. (15)

Thus, x is the ǫ-minimum of L(·,u) over ℜn. Now applying the Ekeland’s variational principle
we have by setting γ =

√
ǫ, that there exists x̂ ∈ ℜn such that ‖x − x̂‖ ≤ √

ǫ and x̂ solves the
convex problem

min
x′∈ℜn

L(x′,u) +
√

ǫ ‖x′ − x̂‖.

Hence we have

0 ∈ ∂x(L(.,u) +
√

ǫ ‖. − x̂‖)(x̂).

Now using the sum rule for the subdifferentials of a convex function and further noting that
subdifferential of the norm function at the origin is the unit ball we have

0 ∈ ∂xL(x̂, u) +
√

ǫ Bℜn ,

where Bℜn denotes the unit ball in ℜn and ∂ − x denotes subdifferentiation with respect to the
first variable. . Hence, using again usual rules of convex analysis, we have

0 ∈ ∂f(x̂) +
m

∑

i=1

ui∂gi(x̂) +
√

ǫ Bℜn .

Thus, there exists ζ ∈ ∂f(x̂) and ψi ∈ ∂gi(x̂) and b ∈ Bℜn such that

0 = ζ +

m
∑

i=1

uiψi +
√

ǫ b.

Hence,
∥

∥ζ +
∑m

i=1 uiψi

∥

∥ ≤ √
ǫ. This establishes the result. �

Before stating the next result let us mention the non-smooth version of MFCQ that we need in
the sequel. We shall call this the Basic constraint qualification (BCQ). The problem (P) satisfies
BCQ at x if there exists no u ∈ ℜm

+ with u 6= 0 and ui ≥ 0, for all i ∈ I(x) and ui = 0 for i 6∈ I(x)
such that

0 ∈
m

∑

i=1

ui∂
ogi(x).

Theorem 3.6 Let us consider the problem (P) with locally Lipschitz objective function and con-
straints. Let {xk} be a sequence of vectors feasible to (P) and let xk → x̄ as k → ∞. Consider
{ǫk} to be a sequence of positive real numbers such that ǫk ↓ 0 as k → ∞. Further assume that
for each k, xk is a modified ǫk-KKT point of (P). Let the Basic constraint qualification (BCQ)
hold at x̄. Then x̄ is a KKT point of (P).

Proof: Since each xk is a modified ǫk-KKT point, for each k there exists yk with ‖xk −yk‖ ≤√
ǫk and there exists ζk ∈ ∂of(yk), ψ

k
i ∈ ∂ogi(yk), i = 1, 2, . . . m and scalars uk

i ≥ 0, i = 1, 2 . . . m

such that

(i)
∥

∥ζk +
∑m

i=1 uk
iψ

k
i

∥

∥ ≤ √
ǫk,
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(ii)
∑m

i=1 uk
i gi(xk) ≥ − ǫk.

Let us first show that {uk} is bounded. We assume on the contrary that {uk} is unbounded.
Thus, without loss of generality, let us assume that ‖uk‖ → ∞ as k → ∞. Now consider the

sequence wk = uk

‖uk‖ . Then {wk} is a bounded sequence and hence has a convergent subsequence.

Thus, without loss of generality we can assume that wk → w̄. Further it is clear that ‖w̄‖ = 1.
Now observe the following:

‖yk − x̄‖ ≤ ‖yk − xk‖ + ‖xk − x̄‖.

Hence,
‖yk − x̄‖ ≤ √

ǫk + ‖xk − x̄‖.
Now as k → ∞, ǫk ↓ 0 and xk → x̄. This shows that yk → x̄. Since, the Clarke subdifferential is
locally bounded, the sequences {ζk} and {ψik}, i = 1, 2, . . . ,m are bounded. Thus, without loss
of generality we can conclude that ψk

i → ψ̄i for all i = 1, 2, . . . m. From (i) we have:

1

‖uk‖
∥

∥ζk +

m
∑

i=1

uk
iψ

k
i

∥

∥ ≤ 1

‖uk‖
√

ǫk.

Thus,
∥

∥

ζk

‖uk‖ +

m
∑

i=1

wk
i ψ

k
i

∥

∥ ≤ 1

‖uk‖
√

ǫk. (16)

where wk = [wk
1 , wk

2 , . . . wk
m], and wk = uk

‖uk‖ . Now as ǫk ↓ 0,
√

ǫk → 0 and hence, {√ǫk} is a

bounded sequence and
1

‖uk‖
√

ǫk → 0 as k → ∞.

Further as {ζk} is a bounded sequence, we have
ζ

k

‖uk‖ → 0 as k → ∞. Hence from 16, we have

∥

∥

m
∑

i=1

w̄iψ̄i

∥

∥ ≤ 0.

i.e.
∑m

i=1 w̄iψ̄i = 0 where w̄ = [w̄1, w̄2, . . . w̄m] and wk → w̄. As ‖w̄‖ = 1, it shows that the Basic
constraint qualification is violated. Hence, {uk} is a bounded sequence and thus we can assume
that uk → ū, ū ∈ ℜm

+ . Further as {ζk} is bounded we can assume that ζk → ζ̄ and since ∂of is
graph closed, ζ̄ ∈ ∂of(x̄). Moreover since each ∂gi is graph closed we have ψ̄i ∈ ∂gi( ¯boldx) for
all i = 1, . . . ,m. Hence, from (i) we can have ‖ζ̄ +

∑m
i=1 ūiψ̄i‖ ≤ 0, where ū = [ū1, ū2, . . . , ūm].

Thus, ζ̄ +
∑m

i=1 ūiψ̄i = 0. This shows that

0 ∈ ∂of(x̄) +
m

∑

i=1

ūi∂
ogi(x̄).

From (ii) we have
∑m

i=1 ūigi(x̄) ≥ 0. Now since xk is feasible we have gi(xk) ≤ 0, for all i =
1, 2, . . . m. Hence, gi(x̄) ≤ 0 for all i = 1, 2, . . . m. Hence, x̄ is feasible to (P). Since ūi ≥ 0, we
have

∑m
i=1 ūigi(x̄) ≤ 0. Therefore,

m
∑

i=1

ūigi(x̄) = 0.

Hence x̄ is a KKT point of (P). �

With the revised conditions stated in the above theorem, Figure 1 can be used to understand the
principle stated in the theorem with the modified ǫ-KKT points.
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Theorem 3.7 Let us consider the convex problem (P). Let the Slater’s constraint qualification
holds, that is, there exists x∗ ∈ ℜn such that gi(x

∗) < 0 for all i = 1, . . . ,m. Let {xk} be a
sequence of ǫk-minimum points and let xk → x̄ as ǫk ↓ 0. Then, x̄ is a minimum point of (P).

Proof: Since xk is an ǫk-minimum point, by applying Theorem 3.5 we have xk is modified ǫk-
KKT point for (P) for each k. Now applying Theorem 3.6 we have x̄ is a KKT point for (P)
and hence x̄ is a solution of (P). Note that the Slater’s Constraint Qualification implies the Basic
Constraint qualification in the case of a convex optimization problem. �

In all the above results in this section we consider a sequence {xk} satisfying the modified ε-KKT
conditions converging to x̄ which turns out to be a KKT point if a regularity condition is satisfied.
It is also interesting to ask the reverse question. Given a KKT point or a local minimum of the
problem (P) it is interesting to ask whether there exists a sequence of points converging to it
such that each element of the sequence satisfies certain approximate optimality condition. The
following results tries to answer this question at least partially.

Theorem 3.8 Let us consider the problem (P) with locally Lipschitz data. We assume that the
constraint functions gi , i = 1, . . . ,m are convex and the Slater constraint qualification hold. Let
x̄ be a local minimum for the problem (P). Further consider a sequence of positive numbers {ǫk}
with ǫk ↓ 0. Then there exists a feasible sequence {xk} with xk → x̄ such that for k sufficiently
large there exists an element xjk

of {xk} corresponding to which there exists another element x̂jk

such that ||xjk
− x̂jk

|| ≤ √
ǫk and there exists ζk

0 ∈ ∂◦f(x̂jk
),ψk

i ∈ ∂gi(x̂jk
) and λ̂i ≥ 0 such that

i) ||ζk
0 +

∑m
i=1 λ̂iψ

k
i || ≤

√
ǫk,

ii) λ̂igi(x̂jk
) = 0, for all i = 1, . . . ,m.

Proof: Since x̄ is a local minimum there exists δ > 0 such that f(x) ≥ f(x̄) for all x ∈
Bδ(x̄) ∩ C), where Bδ(x̄) denotes the closure of the open ball of radius δ > 0 centered at x̄

which is denoted at Bδ(x̄) and C the feasible set of the problem (P). For simplicity let us denote
Bδ(x̄)∩C by X and it is simple to observe that closed and bounded convex set. Thus there exists
a sequence {xk} in X with xk 6= x̄ and xk → x̄. Since f is locally Lipschitz we have f(xk) → f(x).
Then, for any natural number k and ǫk > 0 there exists an element xjk

such that

|f(xjk
) − f(x̄)| < ǫk.

It is simple to observe that when k2 > k1 we have ǫk2
≤ ǫk1

and one can choose xjk1
and xjk2

such that jk2
> jk1

. Hence from the above inequality we see that

f(xjk
) < f(x̄) + ǫk.

Thus xjk
is an ǫk-minimum of f over X. Thus using the Ekeland’s variational principle and

using the arguments in Theorem 2.1 in Hamel [8] we conclude that there exists x̂jk
∈ X such

that ||xjk
− x̂jk

|| ≤ √
ǫk along with the fact that f(x̂jk

) ≤ f(xjk
). Further from the Ekeland’s

variational principle we conclude that x̂jk
solves the problem

min
x∈X

f(x) +
√

ǫk||x − x̂jk
||.

Now using the standard necessary optimality condition for locally Lipschitz minimization from
Clarke [4] we have

0 ∈ ∂◦(f +
√

ǫk||. − x̂jk
||)(x̂jk

) + NX(x̂jk
).
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Now using the sum rule for Clarke subdifferential and noting that subdifferential of the norm
function at the origin is the unit ball and putting in the expression for X we have that

0 ∈ ∂◦f(x̂jk
) +

√
ǫkBℜn + N

Bδ(x̄)∩C
(x̂jk

). (17)

Note that when k is sufficiently xjk
∈ Bδ(x̄) ∪ C. Again for k sufficiently large we B√

ǫk
(xjk

) ⊂
Bδ(x̄). This shows that x̂jk

∈ Bδ(x̄). Hence N
Bδ(x̄)(x̂jk

) = {0}. Thus using the standard results

from convex analysis (see Rockafellar [14]) we have that

N
Bδ(x̄)∪C

(x̂jk
) = NC(x̂jk

).

Since the Slater constraint qualification holds it is well known result in convex analysis (see
Rockafellar [14]) that

NC(x̂jk
) =

{

m
∑

i=1

λi∂gi(x̂jk
) : λi ≥ 0, λigi(x̂jk

) = 0, ∀i = 1, . . . ,m

}

.

Hence using (17) we conclude that there exists ζk
0 ∈ ∂◦f(x̂jk

),ψk
i ∈ ∂gi(x̂jk

) and λ̂i ≥ 0 such that

i) ||ζk
0 +

∑m
i=1 λ̂iψ

k
i || ≤

√
ǫk,

ii) λ̂igi(x̂jk
) = 0, for all i = 1, . . . ,m.

This establishes the result. �

Using the above definition of modified ǫ-KKT point and associated theorems, and an overall
understanding of the interplay between satisfaction of complimentary slackness condition and
equilibrium equation, we now define a KKT-proximity measure as follows.

3.4 KKT-Proximity Measure for Smooth Problems

For a feasible iterate xk, we solve the following optimization problem with (ǫk,u
k) as the variable

vector:
Minimize ǫk,

Subject to
∥

∥ ∇f(xk) +
∑m

i=1 ui∇gi(xk)
∥

∥ ≤ √
ǫk,

∑m
i=1 uigi(xk) ≥ − ǫk,

ui ≥ 0 ∀ i.

(18)

Let us say the optimal solution to the above problem is (ǫ∗k,u
k∗). Then the KKT-proximity

measure is simply ǫ∗k. As a by-product of this optimization task, we also get the corresponding
Lagrange multiplier vector (uk∗).

3.5 KKT-Proximity Measure for Non-Smooth Problems

For a feasible iterate xk, we solve the following optimization problem with (ǫk, x̂, ζ,ψ,uk) as the
variable vector:

Minimize ǫk,

Subject to
∥

∥ζ +
∑m

i=1 uiψi

∥

∥ ≤ √
ǫk,

∑m
i=1 uigi(xk) ≥ − ǫk,

||x̂k − xk|| ≤ √
ǫk,

ui ≥ 0, ∀ i,

ζ ∈ ∂of(x̂k),
ψi ∈ ∂ogi(x̂k), ∀ i.

(19)
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This is the generic formulation for finding the KKT-proximity measure for any xk. How-
ever, the Rademacher’s theorem states that a locally Lipschitz function is differentiable almost
everywhere. This means that for a point xk, the functions f and gi’s are densely differentiable
on any neighborhood of xk. Thus, for a locally Lipschitz case, we should be able find x̂k where
the objective and constraint functions are differentiable. However, this simply means that the
gradients belong to the respective Clarke subdifferentials. But, in most cases the functions may
be continuously differentiable at x̂k in which case, the Clarke subdifferentials contain only the gra-
dients. Thus, moving away from the reference point xk in most cases will allow us to work with
derivatives, thereby eliminating the need of having variables ζ and ψ in the above optimization
problem.

To reiterate, we mention that there is no restriction on x̂k to be feasible. Also, the optimum
value of problem 19 is defined as the KKT-proximity measure for the iterate xk.

3.6 Andreani et al.’s Definition

Andreani [1] defined the notion of approximate KKT (AKKT) condition as follows:

Definition 3.9 A feasible point x̄ satisfies AKKT condition if and only if, there exists sequence
of feasible solutions {xk} ⊂IRn, {uk} ⊂IRm

+ and ǫk ≥ 0 such that xk → x̄, ǫk → 0 and for all
k ∈ IN

1.
∥

∥ ∇f(xk) +
∑m

i=1 uk
i ∇gi(xk)

∥

∥ ≤ ǫk,

2. uk
i = 0, for all i such that gi(xk) < −ǫk.

These conditions differ from our approximate KKT conditions in the previous section in the sense
that they relax the multiplier ui to be nonzero for some feasible points, lying only in an ǫk-
proximity to the i-th constraint boundary. This is a more stringent condition than that in our
definition and this may not be enough to have adequate number of constraints with non-zero La-
grange multipliers to make the KKT-error close to zero. Our approach relaxes the complimentary
slackness conditions more, but only to an extent where there is a balance between the KKT-error
and violation of complimentary slackness conditions.

There is another fundamental difference between the two approaches. In Andreani et al.’s
definition, the AKKT point is not defined for any arbitrary feasible iterate xk, rather an AKKT
point is the limit point x̄ of a sequence of iterates approaching with the condition that the
associated ǫk approaches to zero at the AKKT point. On the other hand, in our definition, for
every iterate xk there is a modified ǫ-KKT point with a ǫk that need not be even close to zero. The
parameter ǫk is such that the violation of the equilibrium equation and complimentary slackness
conditions are smaller than it. Moreover, we solve an optimization problem to find a Lagrange
multiplier vector u and ǫk such that ǫk takes the minimum possible value, thereby making a
balance between both equilibrium-error and violation of complimentary slackness conditions. Our
theorems suggest that if for a sequence of iterates the corresponding ǫk values approach zero and
certain other conditions hold, the resulting limiting iterate is a KKT point.

4 Simulation Results

The application of the ideas discussed in the earlier sections on the approximate KKT conditions
is that if an algorithm produces a sequence of points {xk} and if it is possible to find corresponding
ǫk values exhibiting a reducing sequence to zero, in accordance with either theorems 3.2 or 3.6
then the limit of the sequence is a KKT point.

Here, we consider iterates obtained from a real-coded evolutionary optimization algorithm
(RGA). A C-code code is available at http://www.iitk.ac.in/kangal/codes.shtml. The RGA
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uses a population of points in each iteration (called a ‘generation’ in the evolutionary algorithm
literature). At every generation, we consider all the feasible solutions and choose the one having
the best objective value as an iterate. If at any generation, no population member is feasible, we
skip our KKT-proximity measure computation for that generation.

In every problem, we add the best-known solution in the set of iterates at the end and compute
the KKT-proximity measure for that solution as well. A comparison of KKT-proximity measure
between the final RGA solution and the best-known solution will indicate the specific RGA’s
ability to approach the best-known solution to a problem and importantly will reveal whether the
best-known solution itself is a KKT point.

4.1 A Demonstration Problem

First, we investigate the results of the above-mentioned scheme for computing the KKT-proximity
measure on a demonstration problem.
We consider a simple two-variable, two-constraint problem to illustrate the working of our scheme:

Minimize f(x1, x2) = x2
1 + x2

2,

subject to g1(x1, x2) ≡ 3x1 − x2 + 1 ≤ 0,
g2(x1, x2) ≡ x2

1 + (x2 − 2)2 − 1 ≤ 0.
(20)

Figure 4 shows the feasible space and the optimum point (x̄ = [0, 1]T ). We consider a series of
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Figure 4: Feasible search space of the demonstration problem.

iterates (point number 0 at A to point number 49 at C) along the linear constraint boundary from
A to C and investigate the behavior of KKT-proximity measure estimate scheme (by solving prob-
lem 18) and compare it with the KKT-error estimate scheme based on the strict complementary
slackness scheme (by solving problem 9). It is clear from the figure that point A will have a large
KKT-error value, as no linear combination of ∇g1 and ∇g2 vectors will construct −∇f at this
point. However, as points towards C and inside the circle are considered, the second constraint is
inactive and it will have no role to play in the KKT conditions. Thus, for points inside the circle
and on the first constraint, only the first constraint participates in the KKT-error calculation for
the complementary slackness scheme. It is clear that on none of these points, ∇g1 = −∇f in
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order to make a zero error. In fact, the KKT-error reduces from near point A to near point C, as
shown in Figure 5.
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Figure 5: Lagrange multipliers and KKT-error using the complementary slackness scheme.

At point C, the second constraint is active again and ∇g2 is equal to −∇f at C. Thus, the
KKT-error will be zero. As it is clear from the figure, in the neighborhood of C, although KKT-
error reduces as the point gets closer to C along the line AC, there is a discontinuity of the error
at C. Lagrange multipliers for g1 and g2 are also shown in Figure 5. Since the second constraint is
inactive for points along AC (except A and C), u2 is zero and at C it is a positive value (u2 = 1).
Interestingly, u1 is constant (= 0.2) throughout, except at C, at which it is zero. The KKT-error
actually varies as 40x2

1 + 24x1 + 3.6 in the range 0 < x1 < 0.6 and at a point near C (x1 = 0)
the error is near 3.6. Then exactly at C, the error is zero, making a jump in the error value from
near 3.6 to zero, as shown in the figure.

Figure 6 shows the KKT-proximity measure computed using the proposed scheme (equa-
tion 18).

Our proposed approach seems to maintain a continuity in the KKT-proximity measure as it
reduces to zero. Due to this property, this modified KKT-proximity measure can be used as the
termination criterion of an optimization algorithm. Corresponding Lagrange multipliers u1 and
u2 are also shown in Figure 6. Interestingly, u2 is zero from A till an intermediate point B. As
shown in Figure 4 at points before B, the gradient of constraint g1 is more directed towards −∇f

and contributes in minimizing the KKT-error. At around B g2 is more directed towards −∇f and
so its Lagrange multiplier becomes nonzero. The roles of g1 and g2 essentially are interchanged.
Since the scheme allows larger values of u2, it grows to the extent needed to reduce the KKT-
proximity measure. Note that unless u2∇g2 is equal to −∇f , the KKT-proximity measure can
never be exactly zero, but due to the flexibility in choosing a large enough u2, the KKT-proximity
measure smoothly reduces to zero.

4.2 Numerical Results: Smooth Problems

The procedure proposed in subsection 3.3 is tested on a variety of test problems borrowed from
the constrained optimization literature [10].

We take the sequence of best individual of the population, for different generations of a real-
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Figure 6: Lagrange multipliers and KKT-error using proposed scheme.

coded genetic algorithm, adapted for handling constraints using a penalty-parameter-less strategy
[5]. For the RGA solutions, we first delete contiguously duplicate solutions and then solutions
which are infeasible. Thereafter, to each remaining solution, we apply the proposed scheme
(equation 18) to compute the discussed KKT-proximity measure. For problems in which the RGA
does not converge to the optimum, the reported optimal solution from [10] is manually appended
at the end of the RGA’s sequence of solutions {xk}. This is done to mainly demonstrate the
accuracy of the computation scheme, in checking whether the KKT-proximity measure goes to
zero at the optimum or not. Also, since our scheme produces the Lagrange multipliers, we are
able to tabulate the multipliers at the optimum for all problems. Lagrange multipliers obtained
for the best-known solutions (here, for the first time, confirmed as KKT points) are tabulated in
the appendix.

4.2.1 Problem g01

The following is Problem g01 from [10] containing 35 constraints and 13 variables.

Minimize f(x) = 5
∑4

i=1 xi − 5
∑4

i=1 xi
2 −

∑13
i=5 xi,

subject to g1(x) ≡ 2x1 + 2x2 + x10 + x11 − 10 ≤ 0,
g2(x) ≡ 2x1 + 2x3 + x10 + x12 − 10 ≤ 0,
g3(x) ≡ 2x2 + 2x3 + x11 + x12 − 10 ≤ 0,
g4(x) ≡ −8x1 + x10 ≤ 0,
g5(x) ≡ −8x2 + x11 ≤ 0,
g6(x) ≡ −8x3 + x12 ≤ 0,
g7(x) ≡ −2x4 − x5 + x10 ≤ 0,
g8(x) ≡ −2x6 − x7 + x11 ≤ 0,
g9(x) ≡ −2x8 − x9 + x12 ≤ 0,
g9+i(x) ≡ −xi ≤ 0, (i = 1, . . . , 13),
g22+i(x) ≡ xi − 1 ≤ 0, (i = 1, . . . , 9, 13),
g22+i(x) ≡ xi − 100 ≤ 0, (i = 10, 11, 12).

(21)

Solution sequences from 10 RGA runs are taken and the median, best and worst KKT-
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proximity measures are plotted in Figure 7. In all the runs, the RGA converges to the best-known
solution for this problem (f̄ = −15). Despite some initial fluctuations in the KKT-proximity
measure, it finally reduces to zero, indicating that the final RGA point is a KKT point. For
this problem, we observe that six constraints {g1, g2, g3, g7, g8, g9} including 10 upper-limit
constraints {xi ≤ 1, for i = 1, . . . , 9, 13} are active at the KKT point.
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Figure 7: KKT-proximity measure for problem g01.

The real-coded genetic algorithm used in this study to generate the iterates was not theoretical
proven to converge to the minimum point, even for a smooth problem. The RGA does not use any
gradient information in any of its operators. The RGA compares population members and em-
phasizes better solutions. Its recombination and mutation operators utilize the selected solutions
to create new solutions by using probabilistic operators. The RGA used in this study does not
even explicitly preserves the population-best solution, nor does it copy the current best solution
to the next generation. But the overall RGA that uses selection, recombination and mutation
operators in tandem to update a randomly created population of solutions iteratively seems to
take its generation-wise population-best solution towards the KKT point which is theoretically
defined through gradients of objectives and constraints and is a likely candidate for the minimum
point. Although our conclusion about the specific RGA-obtained solution being a KKT point is
correct, it does not prove that the specific RGA we have used here has a convergence proof for any
arbitrary problem. But this is the first time we can report that a direct search algorithm, such
as the specific RGA we have used here, finds a theoretically significant KKT point for a standard
constrained test problem.

4.2.2 Problem hs23

The following problem is taken from [9]. It is a two-variable, nine-constraint problem with a
quadratic objective function and a number of smooth constraints.
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Minimize f(x) = x2
1 + x2

2,

subject to g1(x) ≡ 1 − x1 − x2 ≤ 0,
g2(x) ≡ 1 − x2

1 − x2
2 ≤ 0,

g3(x) ≡ 9 − 9x2
1 − x2

2 ≤ 0,
g4(x) ≡ x2 − x2

1 ≤ 0,
g5(x) ≡ x1 − x2

2 ≤ 0,
g5+i(x) ≡ −50 − xi ≤ 0, (i = 1, 2),
g7+i(x) ≡ xi − 50 ≤ 0, (i = 1, 2).

(22)

Again, solution sequences from 10 RGA runs are taken and the best, worst and median KKT-
proximity measure values are plotted in Figure 8. In all the runs, the RGA converges to the KKT
point (1.0, 1.0)T and the KKT-proximity measure converges to zero between 30− 70 generations.
At the optimum, g4 and g5 are active. Importantly, the specific RGA seems to find the KKT
point for this problem as well.
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Figure 8: KKT-proximity measure for problem hs23.

4.2.3 Problem hs45

The following is problem hs45 from [9]. It is a five-variable, 10-constraint problem.

Minimize f(x) = 2 − 1
120x1x2x3x4x5,

subject to gi(x) ≡ −xi ≤ 0, (i = 1, . . . , 5),
g5+i(x) ≡ xi − i ≤ 0, (i = 1, . . . , 5).

(23)

The results in Figure 9 indicate that the best, median and worst KKT-proximity measure
values converge to zero close to the 30-th generation, after a large initial fluctuations. All the
runs converge to the optimum at (1.0, 2.0, 3.0, 4.0, 5.0)T where g6, g7, g8, g9, and g10 are active.
Since, it is evident from the diagram that the worst and the best KKT-proximity measure values
display a similar behavior, it suffices to consider only a singular RGA run and plot the KKT-
proximity measure. From next problem on, we only show the behavior of one run, however in all
cases a similar behavior for 10 runs are observed.
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Figure 9: KKT-proximity measure for problem hs45.

4.2.4 Problem g02

The following is problem g02 from [10]. It is a 20 variable, two-constraint problem, besides variable
bounds.

Minimize f(x) = −
∣

∣

∣

∣

P

20

i=1
cos4(xi)−2

Q

20

i=1
cos2(xi)√

P

20

i=1
ixi

2

∣

∣

∣

∣

,

subject to g1(x) ≡ 0.75 − ∏20
i=1 xi ≤ 0,

g2(x) ≡
∑20

i=1 xi − 7.5 ∗ 20 ≤ 0,
g1+2i(x) ≡ −xi ≤ 0, (i = 1, . . . , 20),
g2+2i(x) ≡ xi − 10 ≤ 0, (i = 1, . . . , 20).

(24)

For this problem, the RGA converges to a point at an Euclidean distance of 2.3568 from the
best-reported solution [10]. At the best-reported solution, the KKT-proximity measure is found
to be exactly zero (Figure 10), meaning that the reported solution (having f̄ = −0.80362) is a
likely candidate for the minimum. Only the first constraint g1 is found to be active at this point.
It is interesting to note that for this problem the specific RGA cannot locate the KKT point,
although the best-reported solution is a KKT point. The objective function is highly multi-modal
for this problem, the KKT-proximity analysis indicates that the specific RGA used here needs
further improvement for solving such multi-modal problems.

4.2.5 Problem g04

The following is problem g04 from [10], containing 5 variables and 6 constraints besides variable
bounds.
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Figure 10: KKT-proximity measure for problem g02.

Minimize f(x) = 5.3578547x3
2 + 0.8356891x1x5+

37.293239x1 − 40792.141,
subject to g1(x) ≡ 85.334407 + 0.0056858x2x5 + 0.0006262x1x4−

0.0022053x3x5 − 92 ≤ 0,
g2(x) ≡ −85.334407 − 0.0056858x2x5 − 0.0006262x1x4+

0.0022053x3x5 ≤ 0,
g3(x) ≡ 80.51249 + 0.0071317x2x5 + 0.0029955x1x2+

0.0021813x3
2 − 110 ≤ 0,

g4(x) ≡ −80.51249 − 0.0071317x2x5 − 0.0029955x1x2−
0.0021813x3

2 + 90 ≤ 0,
g5(x) ≡ 9.300961 + 0.0047026x3x5 + 0.0012547x1x3+

0.0019085x3x4 − 25 ≤ 0,
g6(x) ≡ −9.300961 − 0.0047026x3x5 − 0.0012547x1x3−

0.0019085x3x4 + 20 ≤ 0,
g7(x) ≡ 78 − x1 ≤ 0,
g8(x) ≡ 33 − x2 ≤ 0,
g6+i(x) ≡ 27 − xi ≤ 0, (i = 3, 4, 5),
g12(x) ≡ x1 − 102 ≤ 0,
g11+i(x) ≡ xi − 45 ≤ 0, (i = 2, 3, 4, 5).

(25)

The KKT-proximity measure is plotted in Figure 11 with a single RGA run. The KKT-
proximity measure smoothly reduces, eventually converging to zero close to the 550-th generation,
thereby concluding that the RGA is able to converge to the KKT point in this problem. The
KKT point is (78.0, 33.0, 29.995, 45.0, 36.775)T where constraints g1, g6, g7, g9, and g14 are active.
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Figure 11: KKT-proximity measure for problem g04.

4.2.6 Problem g06

The following is the problem g06 from [10] containing two variables, and six constraints, including
the variable bounds.

Minimize f(x) = (x1 − 10)3 + (x2 − 20)3,
subject to g1(x) ≡ −(x1 − 5)2 − (x2 − 5)2 + 100 ≤ 0,

g2(x) ≡ (x1 − 6)2 + (x2 − 5)2 − 82.81 ≤ 0,
g3(x) ≡ 13 − x1 ≤ 0,
g4(x) ≡ −x2 ≤ 0,
g5(x) ≡ x1 − 100 ≤ 0,
g6(x) ≡ x2 − 100 ≤ 0.

(26)

The RGA converges to the best-known solution in this problem (f̄ = −6961.8139), where we
obtain a zero KKT-proximity measure (Figure 12), confirming that the RGA-obtained solution is
a KKT point. Constraints g1 and g2 are found to be active at the optimum.

4.2.7 Problem g07

The following is a 10 variable, 28 constraint problem g07 from [10].
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Figure 12: KKT-proximity measure for problem g06.

Minimize f(x) = x2
1 + x2

2 + x1x2 − 14x1 − 16x2 + (x3 − 10)2+
4(x4 − 5)2 + (x5 − 3)2 + 2(x6 − 1)2 + 5x2

7+
7(x8 − 11)2 + 2(x9 − 10)2 + (x10 − 7)2 + 45,

subject to g1(x) ≡ −105 + 4x1 + 5x2 − 3x7 + 9x8 ≤ 0,
g2(x) ≡ 10x1 − 8x2 − 17x7 + 2x8 ≤ 0,
g3(x) ≡ −8x1 + 2x2 + 5x9 − 2x10 − 12 ≤ 0,
g4(x) ≡ 3(x1 − 2)2 + 4(x2 − 3)2 + 2x2

3 − 7x4 − 120 ≤ 0,
g5(x) ≡ 5x2

1 + 8x2 + (x3 − 6)2 − 2x4 − 40 ≤ 0,
g6(x) ≡ x2

1 + 2(x2 − 2)2 − 2x1x2 + 14x5 − 6x6 ≤ 0,
g7(x) ≡ 0.5(x1 − 8)2 + 2(x2 − 4)2 + 3x2

5 − x6 − 30 ≤ 0,
g8(x) ≡ −3x1 + 6x2 + 12(x9 − 8)2 − 7x10 ≤ 0,
g8+i(x) ≡ −10 − xi ≤ 0, (i = 1, . . . , 10),
g18+i(x) ≡ xi − 10 ≤ 0, (i = 1, . . . , 10).

(27)

The RGA run converges within a Euclidean distance of 0.0298 from the reported minima. At
the manually appended best-known solution (with f̄ = 24.3062), the KKT-proximity measure is
obtained to be zero (Figure 13), thereby confirming that the best-known solution is a KKT point.
Six constraints g1, g2, g3, g4, g5, and g6 are active at the KKT point. This problems remains to
be another problem in which the specific RGA cannot locate the KKT point.

4.2.8 Problem g09

The following problem, g09 from [10], is a seven-variable, 18-constraint problem.
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Figure 13: KKT-proximity measure for problem g07.

Minimize f(x) = (x1 − 10)2 + 5(x2 − 12)2 + x4
3 + 3(x4 − 11)2+

10x6
5 + 7x2

6 + x4
7 − 4x6x7 − 10x6 − 8x7,

subject to g1(x) ≡ −127 + 2x2
1 + 3x4

2 + x3 + 4x2
4 + 5x5 ≤ 0,

g2(x) ≡ −282 + 7x1 + 3x2 + 10x2
3 + x4 − x5 ≤ 0,

g3(x) ≡ −196 + 23x1 + x2
2 + 6x2

6 − 8x7 ≤ 0,
g4(x) ≡ 4x2

1 + x2
2 − 3x1x2 + 2x2

3 + 5x6 − 11x7 ≤ 0,
g4+i(x) ≡ −10 − xi ≤ 0, (i = 1, . . . , 7),
g11+i(x) ≡ xi − 10 ≤ 0, (i = 1, . . . , 7).

(28)

The RGA converges within a Euclidean distance of 0.0641 from the best-reported solution.
The KKT-proximity measure reduces with iterates, as shown in Figure 14 and is zero at the
best-reported solution. Two constraints g1 and g4 are active at the reported solution. Again, the
specific RGA could not locate the KKT point for this problem.

4.2.9 Problem g10

The following problem, g10 from [10], is an eight-variable, 22-constraint problem.

26



 0

 2000

 4000

 6000

 8000

 10000

 12000

 0  20  40  60  80  100  120

K
K

T
-E

rr
or

Generations

Problem g09

"Scheme3_g09.error"

Figure 14: KKT-proximity measure for problem g09.

Minimize f(x) = x1 + x2 + x3,

subject to g1(x) ≡ −1 + 0.0025(x4 + x6) ≤ 0,
g2(x) ≡ −1 + 0.0025(x5 + x7 − x4) ≤ 0,
g3(x) ≡ −1 + 0.01(x8 − x5) ≤ 0,
g4(x) ≡ −x1x6 + 833.33252x4

+100x1 − 83333.333 ≤ 0,
g5(x) ≡ −x2x7 + 1250x5 + x2x4 − 1250x4 ≤ 0,
g6(x) ≡ −x3x8 + 1250000 + x3x5 − 2500x5 ≤ 0,
g7(x) ≡ 100 − x1 ≤ 0,
g8(x) ≡ 1000 − x2 ≤ 0,
g9(x) ≡ 1000 − x3 ≤ 0,
g6+i(x) ≡ 10 − xi ≤ 0, (i = 4, . . . , 8),
g14+i(x) ≡ xi − 10000 ≤ 0, (i = 1, 2, 3),
g14+i(x) ≡ xi − 1000 ≤ 0, (i = 4, . . . , 8).

(29)

The RGA doesn’t converge to the optimum in this problem as well. The best solution comes
within an Euclidean distance of 1405.0 from the reported best solution for this problem. The
KKT-proximity measure at the reported solution (having f̄ = 7049.24802) is found to be exactly
zero (Figure 15), thereby indicating that the reported solution is truly a KKT point. All six
constraints are found to be active, contrary to that in the previous study [10] which reported
constraints g1, g2 and g3 as active.

We have not emphasized enough here that one of the advantages of finding the KKT-proximity
measure is that the process also finds the Lagrange multiplier values of all active constraints at
the KKT point. As shown in Table 2, for this problem, the first three constraints have Lagrange
multipliers that are about six orders of magnitude higher than that of the next three constraints.
This indicates that there is a scaling issue among the constraint values, which can be somewhat
alleviated by re-scaling the constraint functions by the Lagrange multiplier values. We belabor
this task for another study.
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Figure 15: KKT-proximity measure for problem g10.

4.2.10 Problem g18

The following problem, g18 from [10], is a 9 variable, 31 constraint problem.

Minimize f(x) = −0.5(x1x4 − x2x3 + x3x9 − x5x9 + x5x8 − x6x7),
subject to g1(x) ≡ x2

3 + x2
4 − 1 ≤ 0,

g2(x) ≡ x2
9 − 1 ≤ 0,

g3(x) ≡ x2
5 + x2

6 − 1 ≤ 0,
g4(x) ≡ x2

1 + (x2 − x9)
2 − 1 ≤ 0,

g5(x) ≡ (x1 − x5)
2 + (x2 − x6)

2 − 1 ≤ 0,
g6(x) ≡ (x1 − x7)

2 + (x2 − x8)
2 − 1 ≤ 0,

g7(x) ≡ (x3 − x5)
2 + (x4 − x6)

2 − 1 ≤ 0,
g8(x) ≡ (x3 − x7)

2 + (x4 − x8)
2 − 1 ≤ 0,

g9(x) ≡ x2
7 + (x8 − x9)

2 − 1 ≤ 0,
g10(x) ≡ x2x3 − x1x4 ≤ 0,
g11(x) ≡ −x3x9 ≤ 0,
g12(x) ≡ x5x9 ≤ 0,
g13(x) ≡ x6x7 − x5x8 ≤ 0,
g13+i(x) ≡ −10 − xi ≤ 0 (i = 1, . . . , 8),
g22+i(x) ≡ xi − 10 ≤ 0 (i = 1, . . . , 8),
g22(x) ≡ −x9 ≤ 0,
g31(x) ≡ x9 − 20 ≤ 0,

(30)

The RGA run converges to the KKT point for this problem, as the KKT-proximity mea-
sure plotted in Figure 16, shows that it reduces to zero after certain generations. After initial
fluctuations, the KKT-proximity measure converges to zero. At this solution, the constraints,
g1, g3, g4, g6, g7 and g9 are active.

A summary of the problems, the corresponding KKT points, and the associated Lagrange
multipliers of the active constraints are tabulated in Table 2 in the appendix. Having shown the
working of our proposed KKT-proximity measure on standard smooth problems, we now consider
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Figure 16: KKT-proximity measure for problem g18.

one non-smooth problem.

4.3 Numerical Results: Non-smooth Problems

In this subsection, we consider a modified Freudenstein-Roth function [7].

Minimize f(x) = |c1(x)| + |c2(x)|,
subject to g1(x) ≡ (9 − x1)

2 + (−0.5 − x2)
2 − 6.516 ≤ 0,

where c1(x) = x1 − x3
2 + 5x2

2 − 2x2 − 13,
c2(x) = x1 + x3

2 + x2
2 − 14x2 − 29.

(31)

We take the iterates along c1(x) = 0, where the objective function at every point is non-
differentiable (due to the modulus function). The KKT-proximity measure is computed by solving
the following optimization problem in which (ǫk, x̂k, ρ,u) is the variable vector for the iterate xk

at every generation and x̂k ∈ ℜ2, ρ ∈ ∂of(x̂k):

Minimize ǫk

Subject to
∥

∥ρ +
∑m

i=1 ui∇gi(x̂k)
∥

∥ ≤ √
ǫk,

∑m
i=1 uigi(xk) ≥ − ǫk,

‖x̂k − xk‖ ≤ √
ǫk,

ui ≥ 0, ∀ i,

ρ ∈ ∂of(x̂k).

(32)

Figure 17 shows the contour plot of the modified Freudenstein-Roth function. The iterates xk are
placed on c1(x) = 0 curve, as shown in the figure. The corresponding x̂k points are also marked
in the figure. Iterate A corresponds to the the approximate point A’ shown in the figure. As
the iterates approach the minimum point (point O), the approximate points (x̂k) approach the
minimum point as well and when the minimum point is chosen as the iterate, the approximate
point is identical to the minimum point.

As iterates go past the optimum point O, the approximate points are identical to the iterates.
Figure 18 shows the KKT-proximity measure (ǫk) from point A to B via O. It is clear that when
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Figure 17: Freudenstein-Roth Function

iterates approach the minimum point O, the KKT-proximity measure reduces to zero and as it
crosses past the minimum point, the KKT-proximity measure increases.

5 Commercial Optimization Algorithms and Approximate KKT

Error

KKT conditions are used as stopping criterion in commercially available softwares like MatLab
[12] and Knitro [15]. Knitro, a widely used package integrates two powerful and complemen-
tary algorithmic approaches for non-linear optimization viz. the interior-point approach and the
active-set approach, employing conjugate gradient iteration in the step computation. It uses the
first-order KKT conditions to identify a locally optimal solution, and therefore as a terminating
criterion [3].

For the problem (P), Knitro defines the feasibility error (FeasErr) at a point xk as the
maximum violation of the constraints:

FeasErr = max
i=1,...,m

{

0, gi(xk)
}

,

and the optimality error (OptErr) as,

OptErr = max
{

∥

∥∇f(xk) +

m
∑

j=1

uj∇gj(xk)
∥

∥

∞, − max
i=1,...,m

uigi(xk)
}

,

with ui ≥ 0 enforced explicitly throughout the optimization. Lagrange multipliers uis are com-
puted by solving equilibrium equation alone in the least-square sense at every iterate xk. Fur-
thermore, FeasErr and OptErr are scaled using

τ1 = max
i=1,...,m

{

1, gi(x0)
}

,

τ2 = max
{

1, ‖∇f(xk)‖∞
}

,
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where x0 represents the initial point. Based on constants defined by the user options feastol

and opttol, Knitro declares a locally optimal solution if and only if the following conditions are
true:

FeasErr ≤ τ1 ∗ feastol,
OptErr ≤ τ2 ∗ opttol.

However, it is interesting to note that at no point in time in the algorithm, the Lagrange multi-
pliers u are compute to estimate OptErr. These Lagrange multipliers are obtained by additional
computation of the approximate solution to the quadratic model which is performed in every
iteration of a Sequential Quadratic Programming (SQP) method with trust-region approach [2].

Matlab’s fmincon() routine uses a similar approach for termination, Additionally, it checks
on relative change in x-vector, function value and constraint values between two consecutive
iterations for termination. For more information on the first-order KKT optimality conditions,
please see [13].

Our methodology is different from the approaches adopted in these commercial softwares. We
form and solve an optimization problem balancing the violations in equilibrium equation and
complementary slackness conditions to find the Lagrange multiplier vector at every iterate. The
process provides us with a proximity measure which can be utilized as a termination condition
of an optimization algorithm. Moreover, our proposed theorems support the concept that if the
proximity measure reduces to zero for a sequence of iterates, with the satisfaction of certain
constraint qualification conditions, the limiting iterate is a KKT point. Our approach is more
direct and the simulation results on smooth as well as non-smooth problems suggest the simplicity
and efficacy of the proposed methods.

5.1 Comparison of KKT-Error Between Knitro and Proposed Procedure

As discussed above, the Knitro software package computes the Lagrange multipliers in every
iteration of its optimization routines, and computes a KKT-proximity measure of its own, which
it uses as the terminating condition. Please note that like our method, the Lagrange multipliers
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in Knitro are a by-product of its internal routines and no explicit mechanism is provided for
computing them at any arbitrary iterate of an optimization problem. Nonetheless, we conduct a
comparative study on the problem given below.

Minimize: f(x) = 100(x2 − x2
1)

2 + (1 − x1)
2,

Subject To: g1(x) = 1 − x1x2 ≤ 0,

g2(x) = −x1 − x2
2 ≤ 0,

g3(x) = x1 − 0.5 ≤ 0.

First, we apply Knitro to the above problem with a starting point x0 = (0.35, 10000)T . We
record the intermediate iterates and corresponding OptErr values calculated by Knitro. These
values are shown in Table 1 and are plotted in Figure 19.. We observe that OptErr reduces
with iteration. Next, we use the same set of iterates and apply our approach to compute KKT-
proximity measure. The table tabulates the values and the figure also plots these values. Although
our KKT-proximity measure values are of different orders of magnitude, the measure reduces to
zero with iteration smoothly. This confirms the accuracy of our approach vis-a-vis Knitro software.

Table 1: Comparison of Knitro’s OptErr measure and the proposed KKT-proximity measure
values. For the first iterates, the fmincon procedure used to solve the optimization problem did
not converge after several minutes of simulation.

No. xk Our Scheme KNitro
k x1 x2 Feasible Prox. Measure OptErr

1 0.350000 10000.0 Yes - -
2 0.392786 5025.00 Yes - 37.750
3 0.487528 2525.060 Yes - 12.920
4 0.494462 1268.840 Yes - 3.6280
5 0.498565 637.59400 Yes 3.8655e+07 0.936300
6 0.499620 320.39000 Yes 1.1828e+07 0.925500
7 0.499902 160.99500 Yes 2.4617e+06 0.961900
8 0.499975 80.898700 Yes 6.2062e+05 0.961900
9 0.499994 40.648500 Yes 1.5623e+05 0.986600
10 0.499998 20.419800 Yes 3.9212e+04 0.986600
11 0.499999 10.248700 Yes 9.7868e+03 0.517800
12 0.499997 5.125720 Yes 2.4183e+03 0.129300
13 0.499984 2.527150 Yes 232.0659 0.032160
14 0.483281 2.086940 Yes 38.7791 0.019330
15 0.499916 2.018170 Yes 6.4107 0.001846
16 0.500000 2.000080 Yes 0.0280 0.0000393
17 0.500000 2.000000 Yes 0.0000 0.0000

6 Conclusions

This work is one of the few studies aimed at exploiting KKT conditions in optimization algorithm
design. It has been observed that the extent of violation of KKT conditions in the vicinity of the
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KKT point is not smooth and hence a naive KKT-error measure is not suitable as a termination
condition for an optimization algorithm. Based on the concept of an ǫ-KKT point, we have relaxed
the complimentary slackness and equilibrium KKT conditions and proven theorems to guide as
suggest a KKT-proximity measure that smoothly reduces to zero, as the iterates approach to the
KKT point. We have considered both smooth and non-smooth problems for this purpose.

In addition to the theoretical developments on ǫ-KKT points, we have also done extensive
simulations on a number of standard constrained test problems (smooth and non-smooth) to
demonstrate the working of our procedures.

We have also compared our one-step optimization procedure of computing the KKT-proximity
measure with a commercial software’s (Knitro) internal OptErr on an identical set of iterates. The
trend in reduction of both measures have been found to be similar.

The results presented in this study indicate that the proposed KKT-proximity measure can
be effectively used as a termination condition in an optimization algorithm. For evolutionary
optimization algorithms (EAs) which do not have a convergence proof, the evidence of its best
generation-wise iterates approaching the KKT point on a number of optimization problems, as
demonstrated in this paper, makes EAs worthy of more attention.

Further work should be aimed at exploiting the KKT-proximity measure in heuristic algo-
rithms and integration of the same in designing better optimization algorithms.
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A Obtained Lagrange Multipliers for Test Problems

Here, we tabulate the Lagrange multipliers obtained as a by-product of solving the optimization
problem for finding the KKT-proximity measure for the KKT point. Table 2 tabulate the KKT
solution and Lagrange multipliers for each problem. Lagrange multipliers for active constraints
are shown.
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Table 2: Test problems, their best-reported solutions, and obtained Lagrange multiplier values at
the best-reported solutions.
No. Problem Optima Lagrange Multipliers

1 g01 [ 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 3.0
3.0 3.0 1.0 ]

u1 = 0.49986960, u2 = 0.49986960,
u3 = 0.49995217 , u7 = 0.00062179,
u8 = 0.00036150, u9 = 0.00036151,

u23 = 3.00034711, u24 = 3.00025284,
u25 = 3.00025284, u26 = 5.00107578,
u27 = 1.00055454, u28 = 1.00063755,
u29 = 1.00031322, u30 = 1.00063756,
u31 = 1.00031323 , u35 = 0.99998890

2 hs23 [ 1.0 1.0 ] u4 = 2.00046030, u5 = 2.00060355

3 hs45 [ 1.0 2.0 3.0 4.0 5.0 ] u6 = 0.99951173, u7 = 0.49975586,
u8 = 0.33317057, u9 = 0.24987793,

u10 = 0.19990234

4 g02 [ 3.16246061 3.128331428 3.09479212
3.061450595 3.0279292, 2.99382607,

2.95866871, 2.92184227,
0.494825115, 0.48835711, 0.4823164,
0.47664476, 0.4712955, 0.46623099,

0.46142, 0.4568366, 0.4524588,
0.448267622, 0.444247, 0.44038285 ]

u1 = 0.04689694

5 g04 [ 78.0 33.0 29.995256 45.0 36.775813 ] u1 = 403.27022000, u6 =
809.42360424, u7 = 48.92768703, u8

= 84.32381214, u15 = 26.63967450

6 g06 [ 14.095 0.842960789 ] u1 = 1097.11096525, u2 =
1229.53332532, u4 = 0.00006220

7 g07 [ 2.171996 2.363683 8.773926
5.095984 0.990655 1.430574 1.321644

9.828726 8.280092 8.375927 ]

u1 = 1.71648886, u2 = 0.47450184,
u3 = 1.37590841, u4 = 0.02054950,
u5 = 0.31202935, u6 = 0.28707154

8 g09 [ 2.3305084590 1.9513700830
-0.477418650 4.3657261380
-0.624486980 1.0381346830

1.5942188960 ]

u1 = 1.13972466, u4 = 0.36850490

9 g10 [ 579.306685 1359.970678
5109.970657 182.017699 295.601173
217.982300 286.416525 395.601173 ]

u1 = 1966.52920083, u2 =
5217.30343e838, u3 =

5116.48814974, u4 = 0.00848649, u5

= 0.00959083, u6 = 0.01001275

10 g18 [ -0.657776192 -0.153418773
0.323413872 -0.946257612
-0.657776192 -0.753213435
0.323413874 -0.346462948

0.599794663 ]

u1 = 0.14409510, u3 = 0.14409508,
u4 = 0.14462060, u6 = 0.14425899,
u7 = 0.14445993, u9 = 0.14408119
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