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ABSTRACT 
This paper describes the GA model using a new selection method inspired by 
predator-prey interactions. In this model, prey, which represents the decision 
space vector, will be placed on the vertices of a two-dimensional lattice. 
Predator, which deals with objective functions, will also be placed on the 
same lattice randomly. Basic algorithm proposed by Professor Hans-Paul 
Schwefel and reported in Laumanns et al. (1998) and the modifications on it 
are discussed here. Thereafter, we propose a number of modifications to the 
basic model and apply the final algorithm to standard two and three-objective 
optimization problems.  The predator and prey approach is also used to find 
preferred Pareto-optimal solutions (preys) corresponding to user-supplied 
reference points (treated as predators). This study should encourage further 
use of predator-prey approaches to multi-objective optimization.  
 
Keywords: Evolutionary algorithms; predator-prey algorithm; Evolutionary 
multi-objective optimization, reference point approach. 

 
1. INTRODUCTION:  
 
Over the past decade, evolutionary algorithms have been extensively used and applied to 
solve multi-objective optimization problems [1,2]. The main advantage of the 
evolutionary multi-objective optimization (EMO) procedures is that they can be used to 
find a set of Pareto-optimal solutions, instead of a single solution. In the presence of 
multiple trade-off solutions, (i) decision-makers and designers can make a better decision 
of choosing a solution [1,3] and (ii) designers can understand their problems better by 
deciphering salient inter-relationships among variables and objectives [4,5]. EMO 
methodologies are also being used for solving other kinds of optimization problems (such 
as constrained handling, reducing bloating in a genetic programming, and introducing 
adequate diversity thorough the use of an additional objective) [6,7]. 
 



Most EMO algorithms used a standard population-based EA with following three 
operators: (i) emphasizing non-dominated solutions for achieving convergence towards 
the Pareto-optimal front, (ii) emphasizing less-crowded solutions for achieving a well-
diverse set of solutions, and (iii) an elite-preservation operator for making a faster and 
reliable convergence. Some of the popular EMO methodologies are elitist non-dominated 
sorting GA or NSGA-II [8], strength Pareto EA or SPEA2 [9] and others. Some of these 
algorithms are also available in commercial softwares (such as ISIGHT from Engeneous 
Inc. and mode FRONTIER from ESTICHO). Moreover, freely downloadable softwares 
are also available from various sites [10,11]. 
 
Although an extension of a standard EA procedure for multi-objective optimization is 
natural, Prof. Hans-Paul Schwefel of University of Dortmund, Germany had a slightly 
different and more natural concept in mind. In 1998, he and his coauthors proposed a 
predator-prey model for finding multiple Pareto-optimal solutions in a unique way [12]. 
In their proposed predator-prey algorithm (which we refer here as the `original model’), a 
new selection method was used which was inspired by predator-prey interactions. Here 
each prey represents one decision space vector, and each predator deals with one 
objective function. The algorithm imitates the natural phenomenon that a predator 
swallows the weakest prey, meaning that a predator eliminates the worst prey in its 
neighborhood, which corresponds to the worst value of the objective in which the 
predator specializes. To implement such an idea, they proposed a toroidal grid (shown in 
Figure 1), in which a prey is randomly initialized in every node and one (or more) 
predator per objective was placed randomly on nodes. Thereafter, every predator 
considers all preys (solutions) in the neighborhood and deletes the prey corresponding to 
the worst objective value. Then, a random prey from the neighborhood is chosen and 
mutated. The mutated child solution is then placed to the deleted prey. The predator then 
takes a random walk to one of its neighboring nodes. This procedure is continued for all 
predators one at a time. By the way of deleting worst solutions with respect to all 
objectives, the algorithm emphasizes the best solutions and preliminary simulation results 
have shown to take the initial random population towards the Pareto-optimal front [12]. 
 

 
Figure 1: Placement of predators and preys on a toroidal grid (original model). 



 
In this paper, we investigate the potential of such a predator-prey model in multi-
objective optimization problem-solving by first outlining the reported extensions of the 
original model and then suggesting a number of new methodologies for an efficient 
solution of multi-objective optimization problems. 
 
2. PAST METHODOLOGIES: 
 
In the following, we describe the original model of Laumanns et al. [12] in a step-by-step 
manner: 

Step 1: Initialize set of preys randomly between the variable limits. 
Step 2: Place these preys on the vertices of undirected connected graph. 
Step 3: Place predators randomly on the vertices of the graph. 
Step 4: Assign each predator with one objective function in a manner so that each 
objective is assigned to at least one predator. 
Step 5: Evaluate preys around each predator and select the worst prey. (For example, in a 
minimization problem, the worst prey will be the one which is having the largest value of 
the objective function which was assigned to that predator.) 
Step 6: The selected preys will be swallowed by the predators, meaning that the worst 
prey will be deleted and will be replaced by an offspring. 
Step 7: Create an offspring by mutating a randomly picked prey around the worst prey 
which was chosen by the predator. 
Step 8: Then predators will now take a random walk to the vertex which is a neighbor of 
the current position of the predator. 
Step 9: This completes one generation of the predator-prey algorithm. Repeat Steps 5 to 8 
for the next generation. 
 
With more generations, the prey population is hoped to reach near the true Pareto-optimal 
front. To illustrate the efficiency of this algorithm, we code the procedure and apply it to 
solve the following two-objective test problem: 
 
Test-Problem 1 (TP1): 
Minimize f1(X) = x1

2, 
Minimize f2(X) = (1+x2

2)/x1
2, 

Subject to �0.1 � x1 � 1, 0 � x2 � �5. 
 
Figure 2 shows the final population of 
50 preys obtained after 200 generations. 
In this approach, one predator per 
objective function is used, thereby 
having only 2 predators in the entire grid 
of size 10 X 50. As can be seen from the 
figure, the convergence to the true 
Pareto-optimal front is not good.    
 

 
 
 
 
 
 
 

Figure 2: Original Predator-Prey model with 
one predator per objective function. 

 



 
Next, we use 10 predators per objective, thereby using a total of 20 predators in the grid. 
Figure 3 shows the final population of 50 preys obtained after 200 generations. The 
convergence was still not good, because as the number of predators is increased, some 
well-converged preys may be deleted if placed in the neighborhood of some other 
predators. 

 
 
 
 
 
 
 
 
 
 
 
 
 

       Figure 3: Original Predator-Prey model                  Figure 4: Modifications suggested in 
       with 10 predators per objective.                              Deb (2001) with predators working with 
                         weighted sum of objectives. 10 predators 
                                                                                        per objective are chosen.         
 
The first author suggested some modifications to the original algorithm in his 2001 book 
[1].  

1. Predators assigned with weight vectors, instead of individual objective function. 
These predators will deal with the weighted sum of objective function values. 

2. Offspring will be created by mutating the best prey around the worst prey, instead 
of random one. 

3. Predator will move to the best prey position among its neighboring preys, instead 
of random move. 

 
By these modifications the algorithm improved in such a manner that the convergence 
rate was good, but still elite-preservation was not introduced. Because of this as more 
predators are considered, it is likely that the some converged points may be taken out by 
other predators. Figure 4 shows the final population of 50 preys after 200 generations. 21 
predators with weight vectors uniformly distributed between [0,1] to [1,0] are used.  

 
Li [13] revised the original predator-prey algorithm and suggested that preys and 
predators be placed in the blocks of lattice (Figure 5), but need not completely fill the 
whole toroidal grid. All preys and predators will take random walks to their neighboring 
blocks which are empty. Predators will move faster than preys, meaning that the predator 
will move multiple times before a prey is moved. If the predator moves on to a prey 
position, that prey will be killed. All preys that get a chance to move will create 
offsprings. Since the preys are moved in a random fashion, the rate of convergence was 
found to be poor and the procedure took many iterations to come close to the Pareto-



optimal frontier. Another study [14] also used this idea to evolve neural network for a 
blast furnace modeling problem. 

 
                 Figure 5: Predator-prey model proposed by Li [13]. 

 
3. PROPOSED MODIFICATIONS: 
  
The present study modifies the original model systematically by introducing the 
following features one at a time: 
1. Elite-preservation. 
2. Recombination operator. 
3. Diversity preservation mechanism.  
We discuss the effect of each of the above features in the following subsections.  
 
3.1 Introducing Elite-Preservation Operator:  
Elite-preservation means preserving good solutions. Elitism can be implemented by 
comparing worst preys with newly created offspring. If only an offspring is found to be 
better than the worst prey, the worst prey will be replaced. The evaluation will be based 
on the domination criteria. If the offspring weakly dominates (best in at least one 
objective function) all existing preys, thereby meaning that no prey in the existing 
population strongly dominates (best in all objective functions) the offspring, then that 
offspring is fit for that population. If the created offspring is fit, then the worst prey will 
be replaced by the offspring. When the offspring is not found to be fit, the worst prey will 
remain in the population and the predator will take a random walk. By this way, we can 
introduce elitism. The random move of the predator among the entire vertices helps in 
maintaining the diversity somewhat. This situation happens only when the neighboring 
worst prey is better than the created offspring, thereby indicating that the region covered 
by this predator is good and a move by the predator may help find a region which may 
require finding better solutions. After creating the offspring, predator moves to the worst 
prey position instead of moving to the best prey position, as suggested by Deb [1]. This 
change is found to produce better results. 
 
Figure 6 shows 50 preys obtained after 200 generations of this proposed elite-
preservation procedure. Once again 21 predators with weight vectors uniformly 



distributed between [0,1] to [1,0] are used. The figure shows that a much better 
converged set of solutions is obtained by the modified procedure. 

 
 

3.2 Faster Convergence Using a Recombination Operation: 
 
Crossover and mutation are introduced into the above modified predator-prey algorithm. 
Two offspring are created by applying a crossover between the best and the second best 
solutions around the worst prey. Thereafter, a mutation operator is applied on one of the 
selected offsprings at random. Figure 7 shows 50 preys after 200 generations. 21 
predators are used with weighted sum of objectives as their evaluation measures. 
Although the convergence is good, a proper distribution is missing.   

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Elite-preservation is introduced.                 Figure 7: Crossover operation among 
                         preys is introduced. 

 
If the newly created offspring is not found to be fit compared to the worst prey, we 
recreate a new offspring and again compare it with the worst prey. This process is 
continued at most 10 times. We do not show the results of this study, but this process is 
found to increase the convergence rate of the proposed algorithm. However, this 
extension is added in the procedure discussed in the next subsection. 
 
3.3 Ensuring Adequate Distribution: 
 
In this final modification, each prey is assumed to have an influencing region which is 
defined by a hyper-cube around it on the objective space. The offspring is not accepted if 
it is created within the influencing region of any existing prey. This is similar to the 
epsilon-dominance concept used elsewhere [15]. This explicit diversity-preserving 
procedure forces a good distribution of preys to exist on the Pareto-optimal front. 
Although the procedure demands the user to suggest the window sizes for the influencing 
box, in practice they are desired and can be set according to the required precision in the 
objective values. Figure 8 shows the final population with identical parameter setting as 
before. The window sizes used in this simulation are 0.01 for both first and second 
objectives. The figure clearly shows the efficacy of the combined proposed procedure. 



Both the convergence to the true Pareto-optimal front and the obtained diversity are 
better than any of the procedures discussed before.  
 

 
Figure 8: Proposed methodology with combined crossover, elite-preservation and 

diversity preservation. 
 
 

3.4 Proposed Predator-Prey Algorithm: 
 
Thus the combined predator-prey procedure has the following step-by-step procedure: 

Step 1: Initialize set of preys randomly between the variable limits. 
Step 2: Place these preys on the vertices of undirected connected graph. 
Step 3: Place predators randomly on the vertices of the graph. 
Step 4: Assign each predator with a distinct weighted sum of objectives uniformly 
created within [0,1]x[0,1]x…x[0,1], so that the sum of weights is one.  
Step 5: Evaluate preys around each predator and select the worst prey.  
Step 6: Create two offspring by applying a crossover operation between the first and the 
second best preys in the neighborhood of the worst prey. Randomly choose one of the 
two offspring and mutate it to create the child solution. 
Step 7: Child acceptance criteria: 

Step 7a: If the child solution weakly dominates all existing preys or child solution 
is non-dominated with all existing preys, child becomes a candidate to replace the 
worst prey. If the child is not within the influencing region of any existing prey, it 
replaces the worst prey. Predator also moves to the position of the worst prey.  
Step 7b: Else if the child solution is dominated by any existing prey or the child is 
within the influencing region of any existing prey, the child is not accepted and a 
new child is created by Step 6. The creation of new child and its acceptance test 
are continued a maximum of 10 iterations, after which the worst prey is retained. 
In this case, predator takes a random walk to any position in the grid. 

Step 8: This completes one generation of the predator-prey algorithm. Repeat Steps 5 to 7 
for the next generation. 
 
 
 



The salient features of the proposed algorithms are as follows: 
1. A weighted-sum of objectives per predator is used as a criterion for deleting the worst 

prey. 
2. A crossover between two good solutions and a subsequent mutation are used to create 

a child solution. 
3. The elite preservation and diversity maintenance are ensured by accepting a newly 

created child only when it weakly dominates all existing preys and it is not within a 
predefined region from existing preys.    

 
4. MODIFIED ALGORITHM TESTED ON STANDARD TEST PROBLEMS: 
 
First, we apply the modified procedure to two-objective ZDT test problems [1] and later 
apply to a three-objective DTLZ problem [16]. In all ZDT problems, we have used 21 
predators with weighted-sum of objectives uniformed placed within [0,1] and [1,0]. 100 
preys and a window size of 0.01 in each objective are always used. In ZDT1 to ZDT4 
problems, we have run the procedure till 1,000 generations but for ZDT6 problem we run 
it till 2,500 generations. Figures 9 till 13 show the final population on the 10-dimensional 
ZDT problems.  

 
 
 
 
 
 
 
 
 
 
 
 
 

          Figure 9: Proposed methodology on                Figure 10: Proposed methodology on  
          10-variable ZDT1.                 10-variable ZDT2. 

   
The proposed methodology finds almost a uniformly distributed set of solutions for 
ZDT1 and ZDT2. The convexity of the Pareto-optimal front does not seem to matter to 
the proposed procedure.  Similarly, the disconnectedness of Pareto-optimal frontiers in 
ZDT3 does not also cause any difficulty to the proposed procedure.  However, as can be 
seen from Figure 12, the approach is not able to overcome all the locally Pareto-optimal 
fronts present in ZDT4. The procedure gets stuck to one of the locally-optimal front. 
ZDT6 introduces non-uniformity in solutions along the frontier with more dense 
solutions towards larger f1 values. Figure 13 shows that the proposed procedure finds a 
non-uniform distribution of solutions on the Pareto-optimal front. 

 
 
 
 



 
 
 
 
 
 
 
 
 
 

   
 
 
 

Figure 11: Proposed methodology on          Figure 12: Proposed methodology on 
10-variable ZDT3.              10-variable ZDT4. 

   
 
 
 
 
 
 
 
 

   
 
 
 
 

Figure 13: Proposed methodology on                  Figure 14: Proposed methodology on 
10-variable ZDT6.                                                12-variable DTLZ2. 
 
Figure 14 shows the final population on DTLZ2 with 12 variables. Here, 150 preys and 
15 predators are used and the procedure is run for 1,000 generations. It can be observed 
that the population after 1,000 generations did not quite reach the true Pareto-optimal 
front. It is also observed that with an increase in generations, the convergence towards the 
Pareto-optimal front is slow. This aspect needs further investigation. However, the 
maintenance of a good distribution of solutions is a hallmark of the proposed procedure. 

 
5.  FINDING PREFERRED OPTIMAL SOLUTIONS: 
 
The predator-prey procedure may be better utilized for a different and more pragmatic 
task in multi-objective problem solving. Instead of finding the complete Pareto-optimal 
set, a decision-maker may be interested in finding a solution which is on the Pareto-
optimal and is closer to a preferred reference objective vector. In such cases, we can use 
the proposed predator-prey methodology in a unique manner. Let us consider a general 
case in which preferred Pareto-optimal solutions are to be found for a set of reference 



points. The user supplies these reference points in the objective space. For this task, we 
modify the proposed predator-prey approach in the following manner: 
 
1. Each predator is assigned to one of the preferred points. Multiple predator assignment 

to a single reference point is also allowed and is recommended.  
2. All neighboring preys are divided into two classes: (i) one which dominates the 

predator and (ii) the remaining prey solutions.  
3. If the second set is empty, we declare the prey having the smallest Euclidean distance 

as the worst prey. Otherwise, we find the prey in the second set having largest 
Euclidean distance and declare it as the worst prey. 

4. The creation of offspring is identical to the proposed methodology. However, if only 
the created offspring is within a critical distance from any reference point, this 
offspring can be considered as a candidate for inclusion in the grid. If the offspring is 
not within the critical distance of any reference point, it is simply discarded.  

 
With these modifications, we apply the procedure to a number of scenarios on the two-
objective five-variable ZDT1 test problem. All these results are taken for 300 
generations. The number of preys is chosen in proportion to the number of reference 
points (25 times the number of reference points). In all cases, 10 predators are considered 
for each reference point.  
 
Figure 15 to 18 show the final population of preys for different scenarios. In each case, 
the predators (or reference points) are shown using a red `+’. It is interesting to observe 
how the proposed methodology is able to find a concentrated set of Pareto-optimal 
solutions near each of the reference points. It is also interesting to note that the procedure 
works equally well whether the reference point lies insider the feasible objective space or 
not.  

   
 
 
 
 
 
 
 
 
 
 

Figure 15: Preferred solutions with an infeasible       Figure 16: Preferred solutions with a feasible 
reference point.            reference point. 
 

 
   

 
 
 
 



 
 
 
 
 
 
 
 
 

   
 

 
Figure 17: Preferred solutions with two                    Figure 18: Preferred solutions with two  
infeasible reference points.          infeasible and one feasible reference points. 

 
 

6.  CONCLUSIONS: 
 
In this paper, we have revisited the predator-prey algorithm originally proposed by a 
Prof. Hans-Paul Schwefel and his coauthors at the Collaborative Research Laboratory at 
the University of Dortmund, Germany. The idea of different predators hunting for 
particular preys based on a different objective function (or goal) was well thought as a 
candidate multi-objective optimization tool. However, the simplistic implementation was 
reported to be slow in the past by some researchers. In this paper, we have made a 
systematic study by first reviewing the past efforts and by suggesting a viable 
methodology. Although the proposed method may not have a straightforward natural 
appeal as that in the original model, the proposed procedure is able to find a well-
converged and well-distributed set of near Pareto-optimal solutions quickly.  
 
Moreover, the concept of predator and prey interactions has also been utilized well in 
finding preferred Pareto-optimal solutions near a supplied set of reference points on the 
objective space. We hope that the methodologies proposed in this paper should motivate 
other researchers and practitioners to pay more attention to the predator-prey approach of 
solving multi-objective optimization problems.  In the future, the proposed procedure can 
be extended to solve constrained optimization problems. A hybrid strategy of using the 
predator-prey approach with another local hill-climbing strategy can also be tried. 
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