
ARTICLE TEMPLATE

A User-guided Innovization-based Evolutionary Algorithm

Framework for Practical Multi-Objective Optimization Problems

Abhiroop Ghosh, Kalyanmoy Deb, Erik Goodman, and Ronald Averill

Michigan State University, East Lansing, MI 48824, USA
https://www.coin-lab.org

ARTICLE HISTORY

Compiled September 13, 2023

ABSTRACT
Knowledge of experienced users in solving real-world optimization problems can be
formulated as inter-variable relationships to guide an optimization algorithm towards
good solutions faster. Alternatively, such interactions can be learned algorithmically
during the optimization by analyzing good solutions – a process called innovization.
Any common pattern extracted from good solutions can be used as a repair oper-
ator to modify candidate solutions. The key aspect is to strike a balance between
the relevance of the pattern and the extent of its use in the repair operator. This
article proposes a multi-objective evolutionary algorithm (MOEA) framework that
combines problem-specific knowledge and online innovization approaches to solve
two real-world large-scale multi-objective problems: 879- and 1,479-variable truss
design and 544-variable solid fuel rocket design. Four repair operators suitable for
uncovering monotonic relations involving multiple decision variables are proposed.
Performance variations resulting from different combinations of initial user knowl-
edge and repair operators are also presented.

KEYWORDS
Multi-objective optimization, ‘innovization’, knowledge-based optimization.

1. Introduction

For practical multi-objective optimization problems (MOPs), researchers often ignore
existing qualitative user knowledge in devising an algorithm, anticipating ‘dilution’
of the overall study. However, for a practical problems, using such information can
be advantageous. Meaningful solutions to such problems usually come with physical
parameters that are related in certain ways. In a billion-variable resource allocation
problem (Deb and Myburgh 2017), the linearity of constraint structures allowed the
development of an efficient customized evolutionary algorithm. A customized micro-
genetic algorithm (GA) (Szollos, Šmı́d, and Hájek 2009) combining range-adaptation
and knowledge-based reinitialization is successfully applied on an airfoil optimization
problem. Other knowledge-incorporation techniques exist in the literature (Landa-
Becerra, Santana-Quintero, and Coello 2008). Another study used the concept of semi-
independent variables (Gandomi et al. 2019), in which a redefinition of variables is
proposed to handle user-specified monotonic relationships among variables.

CONTACT Abhiroop Ghosh. Author emails: {ghoshab1, kdeb, goodman, averillr}@msu.edu

COIN Report 2023015

Pre-specifying problem information is not the only way to provide guidance to
an optimization algorithm. Cultural algorithms (Galanti 2000) attempt to learn and
incorporate domain knowledge during the search process by encoding them inside a
belief space (Coello and Tapia 2021). Self-organizing maps (SOMs) have been used
to identify the relative importance of design variable clusters (Obayashi and Sasaki
2003). Recent innovization studies (Bandaru and Deb 2013; Gaur and Deb 2016)
have demonstrated faster convergence using problem information extracted from high-
performing solutions.

Integrating additional problem information raises several issues. How can qualita-
tive information be quantified? How can any learned information be validated to be
useful in speeding progress toward the optimal region? To what extent should such
information be used to avoid premature or false convergence?

This article addresses the issues mentioned above and proposes a generic knowledge-
based multi-objective evolutionary algorithm (MOEA) framework for solving practical
problems. Three possible ways to use problem knowledge in the form of a repair
operator are presented as an adaptive ensemble method. The possibility of imperfect
learned knowledge is also taken into account and the algorithm can adjust the extent
of influence of such information. The approach is demonstrated on two practical large-
scale multi-objective optimization problems (LSMOPs).

2. Proposed User-guided Innovization-based MOEA Framework
(MOEA/I)

The proposed framework combines initial user-provided guidance and online innoviza-
tion to perform a more efficient search. It also makes provisions for verifying the cor-
rectness of each piece of learned information, adjusting its influence on the optimiza-
tion process accordingly. This requires an optimization algorithm that is customizable.
Classical point-based methods do not offer such flexibility, making MOEAs such as
NSGA-II (Deb et al. 2002) a better choice. The major components are described be-
low, and a figure illustrating the entire framework is provided in the supplementary
document.

• Problem specification - As a first step in the optimization, the user specifies the
objective functions, the decision variables, the constraints, and the model to be
used. Any problem-specific information is also provided at this stage.

• Optimization strategy design - Here, the optimization algorithm designer chooses
or creates a suitable algorithm to be used for the problem. In addition, if in-
novization is to be performed, the corresponding procedure is specified here.

• User-guided innovization-based MOEA (MOEA/I) - This is the proposed frame-
work containing the following major components:

◦ Generating new solutions - Generates new solutions from the parent popu-
lation using reproduction operators such as crossover and mutation.

◦ Innovization - Analyze good solutions in the parent population and extract
patterns in the form of ‘innovization rules’.

◦ Repair - Modify new solutions according to the innovization rules learned
previously.

◦ Evaluation - Evaluate the objective functions for the repaired solution set.

The subsequent sections present the user knowledge specification procedure and
the four repair operators used in this article, three of which are an extension of the

2

operators proposed by Ghosh et al. (2021). Each repair operator functions differently
when explicit relations are specified compared to when only variable groups are spec-
ified without any explicit relation. In this article, the scope of the repair operators
is limited to inequality relations. However, if the problem demands it, custom repair
operators can be designed and used within the MOEA/I framework.

2.1. User knowledge specification

User knowledge can be of different types, relating two or more comparable1 variables
or relating some variables and objective or constraint functions in certain ways. This
information is in addition to the optimization problem formulation provided by the
user and perhaps acquired over many years of experience of the user in dealing with
past solutions of the problem.

An upper-diagonal relationship matrix U = [uij], where i, j ∈ [1, n], i < j is pro-
posed to store all user-provided pair-wise variable information:

uij =

0, if xi and xj are not likely to have any relationship,

1, if xi and xj have a relationship, but unknown,

2, if xi < xj ,

3, if xi > xj ,

4, if xi ≈ xj .

(1)

As mentioned before, all variable pairs for which the relationship index uij > 0 are
required to have the same scale and represent similar quantities. This is justified by
some practical considerations. Two variables representing totally different quantities,
such as length and weight, should not be expected to have any direct inequality rela-
tionship.

For LSMOPs, a large number of decision variables will make specifying all n(n−1)
2

relationships extremely cumbersome. However, in practical problems, variable patterns
can be specified or envisioned to have relationships in groups (or variable clusters). K
groups of variables can be specified (Gk, k = 1, 2, . . . ,K). An example of a 6-variable
Umatrix and 3 groups (G1-G3) is given in the supplementary document.

For the unknown relationship (uij = 1), it is expected that the optimization task
will analyze its best population members to try to discover an exact relationship
between variables xi and xj . For uij = 2 to 4, the optimization task is expected to
establish whether the specified relationship exists and utilize the relationship to fix
any population member that violates it. Thus, the qualitative relationships provided
at the start of the optimization task must first be validated and utilized to make
a faster convergence. As a by-product, the user also gets a quantitative version of
the relationships they provided. This repair-based quantification process is described
below.

2.2. Repair procedure

Every variable pair (i, j) in a group Gk is cross-checked with the relationship matrix
U to determine which variable pairs are designated by the user to be connected by an

1Comparable variables mean that they are of identical units and varying in similar range. For example, two

size-related variables varying within [a, b] are defined as comparable variables here.

3

unknown relationship (uij = 1). In order to learn the unknown relationships, the best
feasible designs found so far are used. For MOPs, the non-dominated solution set at
the end of every generation is a logical choice. A reference vector (xref), calculated
from the best solutions obtained so far, encodes the ‘average’ relationship between each
variable pair among good designs found so far. The calculation procedure varies among
different repair operators. A score pij is assigned equal to the proportion of the good
solution set that follow the relationship existing among variable pair (i, j), defined
using xref . This score represents how well (xref) reflects the set of good solutions and
also acts as the probability with which a particular offspring is repaired.

For every variable group, if an explicit relation is defined (uij > 1), the repair op-
erator ensures every offspring follows it. Otherwise, the relationships learned through
innovization (uij = 1) are applied with the probability calculated during the innoviza-
tion procedure.

The repair operators used in this article are outlined in Table 1. Each operator uses
the knowledge available during the optimization run to different extents. For example,
operator IR1 constrains the offspring the least, whereas operator IR3 constrains them
the most. In addition, an ensemble operator (I-ES) is also proposed that automatically
switches between IR1, IR2 and IR3 based on their individual performances. If no repair
operators are used, the algorithm is referred to as ‘Base MOEA’ in this article.

2.2.1. MOEA/IR1 Procedure

It is assumed that the user has already provided the relationship matrix U and vari-
able groups G. MOEA/IR1 computes the variable-wise average (xiavg

) from all non-
dominated (ND) solutions at the end of a generation and repairs a pair of variables of
an offspring solution (xi and xj) based on the supplied problem information uij . The
repaired variable values of xir for uij = 1, 2, and 3 are shown in Table 1. If uij = 0,
no repair is performed and a free-form evolution is allowed. If uij = 1, meaning that
a relation is expected, but is unknown, MOEA/IR1 attempts to learn the evolved
relationship between xi and xj present among the non-dominated (ND) solutions and
to enforce repair of both variable values. If xiavg

is smaller than xjavg
and xi is also

smaller than xj , the current (xi, xj) pair matches the relationship among ND solu-
tions and hence, the (xi, xj) pair is not modified. However, if xi ≥ xj , disagreeing
with the relationship found between their average ND values, the repaired (xir, xjr)
pair in Table 1 are closer to their (xiavg

, xjavg
) values. After the repair, the difference

|xiavg
−xir| = |xiavg

−0.5(xiavg
+xi)| = 0.5|xiavg

−xi| is smaller than the original differ-
ence |xiavg

− xi| by 50%. The same is true for repaired variable xjr . For uij = 2 and 3,
the xi and xj are repaired carefully (shown in Table 1) so that the supplied relation-
ship among the two variable is satisfied. For uij = 4, xir = xjr = random(xiavg

, xjavg
)

is assigned.

2.2.2. MOEA/IR2 Procedure

This repair operator follows a similar repair process to that of MOEA/IR1, except that
xiavg

is replaced with xiref , which uses a history of change of the average xi from the
past to the current generation, as shown in Table 1. The notable difference between
the IR1 and IR2 operators is the inclusion of a momentum parameter (γ), noting that
γ = 0 makes both methods identical. The parameter is intended to provide a boost to
the optimization algorithm toward a projected good solution. The average value xavg

of the variables under consideration reflects the approximate pattern followed by good

4

Table 1.: Repair operator description.

Relation Operator Repair equations

Unknown
Relationship
(uij = 1)

IR1

xir =

{
xiavg+xi

2 , for (xiavg
− xjavg

)(xi − xj) < 0,

xi, otherwise.

xjr =

{
xj+xjavg

2 , for (xiavg
− xjavg

)(xi − xj) < 0,

xj , otherwise.

IR2

xir =

{
xiref

+xi

2 , for (xiref − xjref)(xi − xj) < 0,

xi, otherwise.

xjr =

{
xj+xjref

2 , for (xiref − xjref)(xi − xj) < 0,

xj , otherwise.

where xiref (t) = xiavg
(t) + γ

(
xiavg

(t)− xiavg
(t− 1)

)
IR3

xir = U(xiref − σi, xiref + σi),

xjr = U(xjref − σj , xjref + σj),

where U(a, b) ≡ Uniform distribution between [a,b]

Direct
Relationship
(uij = [2, 3])

IR1

xir =

{
xijavg

− |xijavg−xiavg |
2 , for uij = 2,

xijavg +
|xijavg−xiavg |

2 , for uij = 3.

xjr =

{
xijavg

+
|xijavg−xjavg |

2 , for uij = 2,

xijavg − |xijavg−xjavg |
2 , for uij = 3.

where xijavg =
xiavg

+ xjavg

2
.

IR2 & IR3

xir =

{
xijref − |xijref

−xiref
|

2 , for uij = 2,

xijref +
|xijref

−xiref
|

2 , for uij = 3.

xjr =

{
xijref +

|xijref
−xjref

|
2 , for uij = 2,

xijref − |xijref
−xjref

|
2 , for uij = 3.

where xiref (t) = xiavg (t) + γ
(
xiavg (t)− xiavg (t− 1)

)

solutions in the current generation. It also allows the algorithm to avoid following xavg

too closely, thus, preserving diversity. This repair method is more trustworthy than
IR1, as an attempt is made to make the variable values close to historically agreeable
average values, rather than current average value alone. The update of variables for
uij = 4 is identical to that in IR1. A sensitivity analysis of parameter γ is provided in
the supplementary document.

2.2.3. MOEA/IR3 Procedure

This repair operator is similar to IR2 for uij = 2 and 3, but for uij = 1, the values are
repaired to be within one-sigma (σi is the standard deviation of the xi values among
ND solutions of the current generation) away from the historical average point. Thus,
this method trusts the observed relationships of xi and xj more closely than IR1 and
IR2. The update of variables for uij = 4 is identical to that in IR1 and IR2.

2.2.4. Ensembled MOEA/I-ES Procedure

Testing all repair operators designed for MOEA/I through separate experiments might
prove costly. A solution is to combine these operators into an ensemble. During the

5

optimization run, the performance of each repair operator is tracked, and the number of
solutions allowed to be repaired by each operator is based on the historical performance
of the offspring generated by each. The ensemble method also treats Base MOEA as
a repair operator, which represents the case when the offspring is not repaired. This
allows the optimization to remain relatively unaffected by bad repair operators. A
total of four repair operators are used in the ensemble process.

The performance of each offspring generated by the i-th repair operator is based
on its offspring survival rate (ris). Greater the survival rate of offsprings created by
an operator, greater is the probability of it being used to repair subsequent offsprings.

The probability (p̂ir) update operation for the i-th operator is described below:

pir(t+ 1) = max

(
pmin, α

ris∑
i r

i
s

+ (1− α)p̂ir(t)

)
, (2)

p̂ir(t+ 1) =
pir(t+ 1)∑
i
pir(t+ 1)

, (3)

where α is the learning rate, ris =
ni

s

noff
(ni

s and noff are the number of offsprings created
by the i-th operator that survive in generation t and the total number of offsprings
that survive in generation t, respectively). It is possible that at any point during
the optimization, no solution generated by one of the repair operators survives. This
might cause the corresponding selection probability to go down to zero without any
possibility of recovery. To have each repair operator available at every generation, the
probability update step ensures that a minimum selection probability (pmin) is always
assigned to each repair operator.

The learning rate (α) determines the rate of change of the repair probabilities.
A high α would increase the sensitivity, and can result in large changes in repair
probabilities over a short period of time. A low α exerts a damping effect which
causes the probability values to update slowly. Through trial and error, α = 0.5 and
pmin = 0.1 are found to be suitable to the problems of this study.

3. Truss Design Problem

A scalable 3D truss design problem (Ghosh et al. 2021) is considered, details of which
are provided in the supplementary document. There are two objective function to be
minimized: (a) weight, and (b) compliance. There are two types of design variables:
size variables, defined by member radii (r), and shape variables, defined by length of
the vertical members (Lv) parallel to the z-axis. The problem is scaled for 820 and
1,380 members to have different number of variables and constraints.

3.1. User-guided information

In this problem, the radii of members are comparable variables. The same is true for
the lengths of vertical members. Thus, a pair of variables (i, j) within each of these
classes (radii and lengths) can be be assigned a relationship index uij > 0. This, in
turn, can be mathematically expressed and integrated into the MOEA/I algorithm.
Two types of knowledge can be specified for this problem:

6

• Symmetry: Due to the symmetric nature of the loading and supports, it can
be expected that an optimal truss design will be symmetric in terms of shape
and weight distribution. For the truss under consideration, there can be two
planes of symmetry: (a) a plane parallel to the y-z plane and passing through
the midpoint of the truss in the x-direction, and, (b) a plane parallel to the x-z
plane and passing through the midpoint of the truss in the y-direction.

• Monotonicity: For an optimal truss, the length of vertical members will mono-
tonically increase while moving from the support to the middle. In addition,
for a simply-supported truss like the one considered here, it is known that the
bending moment monotonically increases from the support towards the middle.
So the radii of the corresponding members may also monotonically increase to
withstand the large bending moment.

The incorporation of this a priori user knowledge into the optimization process
requires defining the variable groups (G) and the relationship matrix (U) defining
the associated relationships. Four groups of variables are considered in this article –
length of vertical members (G1), radii of the top longitudinal members (G2), radii
of the bottom longitudinal members (G3), and radii of vertical members (G4). Each
group (Gi) is also divided into two or more subgroups (Gij , j being the subgroup
number) used for specifying symmetry relationships. Each group of size variables is
designed taking into account the physical location of the members corresponding to
those variables. For example, the members oriented in x-direction at the top of the
truss can be expected to be related to each other in some manner rather than to a
member with a different location and physical orientation. Detailed information about
the variable groups is provided in the supplementary document.

Based on the variable groups, eight different scenarios (S1 to S8) are created with
varying extents of user knowledge being supplied (details provided in supplementary
document). The first four scenarios from S1 to S4 do not enforce any symmetry, making
the optimization more challenging. The scenarios S5 to S8 enforce symmetry (uij = 4)
in the truss.

In scenario S1, no knowledge is provided by the user. This is the reference scenario
based on which the effectiveness of varying degrees of user knowledge coupled with
different innovization-based repair operators is evaluated.

In scenario S2, only group G1 is used. uij is set to 1 for all variable pairs within
subgroups G11 and G12. This signifies that the length of each vertical member is
expected to consistently follow a monotonically increasing or decreasing pattern, but
it is not known beforehand what the exact relationship would be. It is up to the
innovization process to determine the exact nature of the relationships among these
two groups of variables dictated by the ND solutions.

S3 extends S2 and applies uij = 1 among all variables within each subgroup in all
groups. Thus, relationships in both shape and size variables will now be obtained by
the innovization process and will be enforced by the proposed procedure to various
degrees dictated by the relative success of the three repair schemes.

Scenario S4 provides more problem information to the optimization algorithm by
specifying precise relationships among variables of each subgroup of the four groups.
For example, within the subgroup G11, variable pairs (xi, xi+1) are assigned a rela-
tionship (ui,i+1 = 2): xi ≤ xi+1 for i = 1 to |G11| − 1. For G12, (ui,i+1 = 3): xi ≥ xi+1

for i = 1 to |G12| − 1 is assigned.
Scenarios S5 to S8 use the same grouping as scenarios S1 to S4, respectively. The

only addition is the application of symmetry relations within the respective variables

7

of the subgroups in each group. Two planes of symmetry exist as mentioned earlier,
and for the corresponding variable pairs (i, j), uij is set as 4.

In this article, only inequality-based relationships are considered due to the nature
of the problems considered. However, it is possible to extend the scope to cover other
types of relations (such as power laws) as well. In order to test the robustness of the
proposed repair operators, different knowledge levels are considered. Experiments are
performed to determine how the algorithm performs in the most adverse conditions,
such as too little or too much information, and scenarios involving asymmetric trusses.

3.2. Experimental Settings

In this article, NSGA-II (Deb et al. 2002), a state-of-the-art MOEA, has been used
for the MOEA/I framework. However, other MOEAs can also be used with the pro-
posed framework. The original NSGA-II algorithm, without any modifications, will
be referred to as the base optimization case or Base NSGA-II. Four types of repair
methods, MOEA/IR1, MOEA/IR2, MOEA/IR3 and MOEA/I-ES, presented in Sec-
tions 2.2.1 to 2.2.4, are used, and are referred to as NSGA-II/IR1, NSGA-II/IR2,
NSGA-II/IR3 and NSGA-II/I-ES, respectively. For scenarios S4 and S8, additional
experiments are performed using semi-independent variables, referred to as NSGA-
II/SIV, described in the supplementary material.The parameter settings for NSGA-II
as well as for the repair operators are presented in the supplementary material. Two
truss cases, one with 820 members, and another with 1,380 members, are considered.
Different experiments are performed with multiple levels of user knowledge integra-
tion, which are described in Section 3.1. The number of decision variables for scenarios
S1-S8 are 879 and 1,479 for the 820 and 1,380-member trusses, respectively. For sce-
narios S5 to S8, Base NSGA-II takes into account the symmetry relations by evolving
only one of any pair of variables following a symmetry relation. Thus, the problems
are run with reduced dimensions for these cases only for Base NSGA-II. For the 820
member truss, the number of decision variables in that case would be 850 for S5-S6

(shape symmetry) and 450 for S7-S8 (shape and size symmetry). For the 1380 member
truss, the number of decision variables in that case would be 1,439 for S5-S6 and 750
for S7-S8. 20 runs are performed and for both truss cases, the maximum number of
function evaluations available is set at 2 million.

Hypervolume (HV) (Zitzler and Thiele 1998) is used as a performance metric. The
median HV of scenario S1 achieved by Base NSGA-II is set as the target hypervolume
(HVT). Over 20 runs, for each method, the mean and standard deviation of the number
of function evaluations taken to achieve HVT are recorded. The algorithm with the
lowest number of median function evaluations (FEmin

median) required for achieving HV T

is chosen as reference. Using this data, the Wilcoxon test is performed with 95%
significance level and the p-values are calculated. An algorithm with a p-value greater
than 0.05 means that there is not a statistically significant performance difference
with the algorithm having the lowest median function evaluations. Details about the
Wilcoxon test are provided in the supplementary document.

3.3. Results and Discussion

The optimization results for the 820 member truss case is given in the supplementary
document. The 1,380-member truss case results are presented in Table 2. Some addi-
tional details about the optimal designs found during the optimization, are included

8

in the supplementary document.

Table 2.: FEs required to reach target HVT = 0.80 for 1,380-member, 396-node truss
problem. Best performing algorithm for each scenario (S1 to S4 does not use symmetry
of any kind but more knowledge is supplied from S1 towards S4, and similar knowledge
embedding is done for S5 to S8, except that symmetry knowledge is used for these latter
scenarios) is marked in bold. Algorithms with performance not statistically different
from the best algorithm are marked in italics. N/A indicates ‘Not Applied’ when the
user-provided information is not used (Base NSGA-II), or used in specific instances
(NSGA-II/SIV). Wilcoxon test p-values are given in braces.

Scn. K Algorithm Used

Base

NSGA-II

NSGA-II

/IR1

NSGA-II

/IR2

NSGA-II

/IR3

NSGA-II

/I-ES

NSGA-II

/SIV

S1 0 2M N/A N/A N/A N/A N/A

S2 3.14e-03 2M

(p = 0.2347)

1.8M±42k

(p = 0.3212)

1.6M±48k 1.8M±9k

(p = 0.3205)

1.7M±25k

(p = 0.3153)

N/A

S3 4.70e-03 2M

(p = 0.0153)

1.6M±20k

(p = 0.1394)

1.4M±25k 1.9M±10k

(p = 0.0265)

1.5M±17k

(p = 0.1277)

N/A

S4 6.27e-03 2M 2M
(HV=0.31,

p = 0.0019)

2M
(HV=0.44,

p = 0.0058)

2M
(HV=0.57,

p = 0.0103)

2M
(HV=0.66),

p = 0.0216)

2M
(HV=0.30,

p = 0.0038)

S5 6.52e-03 1.6M±25k 1.7M±15k

(p = 0.3120)

1.7M±23k

(p = 0.2961)

1.8M±12k

(p = 0.1849)

1.7M±11k

(p = 0.2971)

N/A

S6 3.26e-02 1.6M±25k

(p = 0.0431)

1.3M±20k

(p = 0.0713)

1.0M±30k 1.5M±10k

(p = 0.0481)

1.1M±18k

(p = 0.0692)

N/A

S7 3.59e-02 1.4M±15k

(p = 0.0303)

1.2M±19k

(p = 0.0572)

0.90M±23k 1.2M±10k

(p = 0.0576)

1.0M±15k

(p = 0.0861)

N/A

S8 4.83e-02 1.4M±15k 2M
(HV=0.68,

p = 0.0422)

2M
(HV=0.73,

p = 0.0490)

2M
(HV=0.72,

p = 0.0481)

2M
(HV=0.71,

p = 0.0477)

2M
(HV=0.66,

p = 0.0302)

A metric (K) is proposed here which measures the extent of user-specified knowl-
edge, details of which are provided in the supplementary document. A higher value of
K implies a greater amount of user-specified knowledge. Scenarios S1 to S8 are designed
to show the results of the proposed MOEA/I approach (implemented as NSGA-II/I),
and also for NSGA-II paired with SIVs. In both the truss cases, the row for scenario
S1 is marked as N/A for all the algorithms except for Base NSGA-II. This is because
S1 is the no-knowledge case where all the elements in the matrix U are set to 0. Thus,
all the repair operators remain inactive, and the results are the same as Base NSGA-
II. For most of the cases, it is seen that NSGA-II/IR2 performs the best (marked
in bold), except for scenarios S5 and S8 (both cases), and S4 (only for 1380-member
truss). For S5, even though Base NSGA-II performs the best in terms of FEs, the other
algorithms give a statistically similar performance (p > 0.05). For S8, all the repair
operators and NSGA-II/SIV have a statistically worse performance (p < 0.05) com-
pared to Base NSGA-II. Table 2 show that a moderate usage of knowledge obtained
through innovization gives the optimal results. Like in the truss problems, too little or
too much knowledge is detrimental to the optimization performance. The performance
of the ensemble approach (NSGA-II/I-ES) is statistically similar to the best algorithm
in all scenarios except for S4 and S8. For example, with a Wilcoxon ranksum test, it is
observed that for S7 in Table 2, NSGA-II/I-ES has a statistically similar performance
(with p = 0.0861) to NSGA-II/IR2, the best-performing algorithm. The ensemble ap-
proach (NSGA-II/I-ES) has the advantage that the user does not need to think about
which repair operator to use, since it is handled automatically.

9

Proceeding row-wise from top to bottom, it is seen that performance generally
improves until a particular point (S3 and S7) and then drops (S4 and S8). Interestingly,
S4 and S8 are the ones which explicitly specify the relationships instead of letting the
IR operators determine it. A possible cause is that over-specification of knowledge
complicates the search process and constrains the algorithm efficiency. An interesting
comparison is the difference in performances between NSGA-II/IR approaches and
NSGA-II/SIV (Gandomi et al. 2019) (applicable to cases with uij = 2 or 3 only).
For the 1,380-member truss (Table 2), NSGA-II/SIV is not able to reach the desired
performance within 2M function evaluations for all the scenarios. This shows that
the SIV approach is still susceptible to knowledge overspecification for large-sized
problems.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Weight (kg) 1e5

0

2

4

6

8

10

12

Co
m
pl
ia
nc
e
(m
/N
)

Base NSGA-II
NSGA-II/IR1
NSGA-II/IR2

NSGA-II/IR3
NSGA-II/I-ES

(a) ND fronts.

0.0 0.5 1.0 1.5 2.0
Function Evaluations 1e6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Hy
pe
rv
ol
um

e
(H
V)

Base NSGA-II
NSGA-II/IR1
NSGA-II/IR2

NSGA-II/IR3
NSGA-II/I-ES
Repair Start Point

(b) Median hypervolume of 20 runs.

Figure 1.: Results for 1,380-member truss for scenario S7 (symmetry among subgroups,
unknown relationships within subgroups).

0 0.5 1 1.5 2

Function Evaluations 10 6

0

0.2

0.4

0.6

0.8

1

P
ro

b
a
b
ili

ty

 Repair begins

Base NSGA-II

NSGA-II/IR1

NSGA-II/IR2

NSGA-II/IR3

(a) 820-member truss.

0 0.5 1 1.5 2

Function Evaluations 10 6

0

0.2

0.4

0.6

0.8

1

P
ro

b
a
b
ili

ty

 Repair begins

Base NSGA-II

NSGA-II/IR1

NSGA-II/IR2

NSGA-II/IR3

(b) 1,380-member truss

Figure 2.: Repair probability variation for median run.

Results for scenario S7 are shown in Figure 1. The ND front plots (Figure 1a)
clearly show NSGA-II/IR2 as the better performer, providing higher quality solutions
than the others, with NSGA-II/I-ES following close behind. The median HV plots
(Figure 1b) show that NSGA-II/IR2 and NSGA-II/I-ES achieve a higher median HV,
faster, as shown previously in Table 2.

The NSGA-II/I-ES median repair probabilities plots (Figure 2) show the selection
probability of each repair operator as well as base NSGA-II for generating new solu-

10

tions in NSGA-II/I-ES. It is seen that in both truss cases, a high probability is assigned
to IR2 compared to others. Probabilities of IR1 and IR3 are reduced to the minimum
level very early on, and new solution generation is controlled mostly by IR2 and the
base NSGA-II. This clearly indicates the ability of the proposed ensembled method
(I-ES) to pick the most successful operator on the fly for solving a problem efficiently.

It is interesting from Table 2 that with more information (K) being provided, the
performance of all algorithms does not improve monotonically. This means that there
exists an optimal amount of problem information for every problem below or above
which there is under- or over-specification of information provided. When less than
necessary information is provided, an algorithm needs to work its way to find relevant
building blocks for solving the problem, thereby requiring more solution evaluations.
On the other hand, if more than necessary information is provided, even if the in-
formation is correct, the algorithm may get restricted in searching for other required
information needed to solve the problem. For both trusses, the S7 scenario provided
the right amount of additional problem information. Combining it with the NSGA-
II/IR2 algorithm which uses the right amount of available knowledge, the problem can
be solved with at most 22% and 45% of the median number of solution evaluations
required by the base NSGA-II procedure, for the 820- and 1,380-member problems, re-
spectively. NSGA-II/I-ES provides a statistically comparable performance, thus negat-
ing the need to know the appropriate repair operator in advance.

4. Solid Rocket Design Problem

Solid rocket motor design can be formulated as an optimization problem as proposed
in Ghosh et al. (2020). The variable vector x specifies each type of propellant in each
layer of each segment, thickness of each layer, and geometry of core (finocyl) propellant
arrangement. Two objectives are minimized: (i) squared difference between obtained
and target thrust profile with time and (ii) sum of mean and standard deviation of
segment residues at the end of burn. The pressure inside the rocket is restricted within
a lower and upper bound. Details of the rocket optimization problem are provided in
the supplementary document.

4.1. User Knowledge

This problem is intended to demonstrate the effectiveness of the proposed approach
on a new and less-analyzed practical problem. Due to the lack of previous knowledge,
most of the supplied user knowledge cases analyzed here will not specify any exact
relationships, but rather, leave it to the innovization process to figure them out. A
logical way to define variable groups is to do it segment-wise. Groups Gr1-Gr3 repre-
sent the star shape for the three star segments. Gr4-Gr9 represent the propellants for
each cylindrical segment. Gr10-Gr15 represent the layer thicknesses for each cylindrical
segment.

Five scenarios (C1-C5) can be designed based on different levels of user knowledge
extent, detailed description of which is provided in the supplementary document.

11

4.2. Results and Discussion

The experimental settings are same as those for the truss design problem described in
Section 3.2, with only the maximum generations increased to 100,000. For scenario C5

consisting of explicitly-specified information, NSGA-II/SIV is also compared to the
other repair operators (IR1, IR2, IR3 and I-ES).

The optimization results are presented Table 3. The extent of supplied information
increases row-wise from scenario C1 to C5 as can be seen from the values of K. For
the no-knowledge case C1, all the elements of matrix U are set as 0. Thus, all repair
operators remain inactive, so apart from base NSGA-II, all the other cells are marked
as N/A. It is seen that in all of the cases except for C5, NSGA-II/IR2 is the best
performing algorithm (marked in bold), with NSGA-II/I-ES showing a comparable
performance. Scenario C4 combined with the NSGA-II/IR2 operator gives the best
performance overall. This shows that for both the amount of user-supplied knowledge
and the extent of online knowledge usage, an optimal level exists. Interestingly, for C5

the relationships between the propellants in the cylindrical layers are explicitly defined.
But this seems to constrain the algorithm and degrades its performance to below that
of Base NSGA-II. A possible cause could be the lack of a direct relation between the
thrust and the individual layer propellants. The same thrust value can be produced by
a lot of different propellant combinations across all segments, and simple monotonic
relationships may not exist. Due to the problem not being very well-studied, the exact
nature of such relationships is not known beforehand. The supplementary document
shows some more results.

In terms of final HV obtained, NSGA-II/IR2 provides the fastest convergence,
demonstrated by the low number of function evaluations taken to reach the target
HV, with NSGA-II/I-ES following closely. Base NSGA-II always performs the worst
in scenarios C2 to C4. For C5, the perceived knowledge uij = 3 for Gr4-Gr9 is found
to be not correct and they harm the performance of NSGA-II/IR methods.

Table 3.: FEs required to reach target HVT = 0.93 for 544-variable solid fuel rocket
design.

Scn. K Algorithm Used

Base

NSGA-II

NSGA-

II/IR1

NSGA-

II/IR2

NSGA-

II/IR3

NSGA-II/I-

ES

NSGA-

II/SIV

C1 0 50.0M N/A N/A N/A N/A N/A

C2 1.5e-04 50.0M

(p = 0.0053)

32.0M±2.0M

(p = 0.1205)

30.5M±1.5M 36.0M±3.0M

(p = 0.0104)

31.5M±1.0M

(p = 0.1516)

N/A

C3 4.0e-03 50.0M

(p = 0.0061)

28.0M±3.0M

(p = 0.0998)

25.0M±4.0M 32.0M±1.0M

(p = 0.0051)

26.0M±1.0M

(p = 0.1336)

N/A

C4 7.8e-03 50.0M

(p = 0.0029)

19.0M±5.0M

(p = 0.0350)

12.0M±5.0M 22.0M±4.0M

(p = 0.0154)

13.0M±2.0M

(p = 0.7710)

N/A

C5 9.8e-03 50.0M 50.0M

(HV=0.74,
p = 0.0233)

50.0M

(HV=0.78,
p = 0.0135)

50.0M

(HV=0.66,
p = 0.0104)

50.0M

(HV=0.84,
p = 0.0157)

50.0M

(HV=0.69,
p = 0.0119)

5. Summary of Results

For each scenario in all the three case studies (879- and 1,479-variable truss designs
and 544-variable rocket design), the five algorithms (base NSGA-II, three innovized
repair based NSGA-IIs, and the ensembled NSGA-II) are ranked based on the median

12

FEs (over 20 runs) needed by each to reach a target HV. More details are included
in the supplementary material. The final row of Table 4 indicates that NSGA-II/IR2
performs the best, followed by NSGA-II/I-ES. The base NSGA-II and NSGA-II/IR1
are tied in third place. NSGA-II/IR3 is ranked last, showing that an aggressive use
of available and potentially imperfect information performs the worst. Interestingly,
even though a single balance of problem information and its use within NSGA-II
(IR2) performs the best for these problems, with all repair methods being included,
the proposed ensembled NSGA-II performs the second best.

Table 4.: Ranking of different NSGA-IIs on three case studies. A scenario-wise break-
down is provided in the supplementary material.

Problem Base IR1 IR2 IR3 I-ES
879-variable Truss Design 4 3 1 5 2
1,479-variable Truss Design 3 5 1 4 2
544-variable Rocket Design 4 3 1 5 2

Final Rank 3 3 1 4 2

6. Conclusions and future work

In this article, a framework is proposed in which guidance from experienced users in
terms of additional problem information is sought to enable repair-based algorithms
to focus on identified variable combinations. The following observations can be made
from the systematic study presented in this article:

• Amount of additional problem information provided to an algorithm is crucial
to achieve the best performance.

• Too little or too much utilization of the supplied information within an opti-
mization algorithm is also found to be harmful.

• Since the ideal amount of problem information and its utilization are not known
a priori for a problem, an adaptive ensemble-based method has been proposed,
which is found to provide a good overall compromise.

• Adequate additional problem information and its adequate utilization within an
MOEA allows a faster convergence (requiring only 22% to 45% overall function
evaluations in the current tests) compared to the baseline MOEA in solving
the two large-scale problems with 544 to 1,479 real and integer variables, and
involving time-consuming evaluation procedures.

This study has demonstrated a path towards achieving a truly interactive optimiza-
tion algorithm, but further investigation is needed to include more generic relationships
(such as, power laws, decision trees, periodic relations, and combinations thereof) in-
termittently guided by experienced users and automatically detected and validated by
machine learning based optimization algorithms.

Data availability statement

The data that support the findings of this study are available from the corresponding
author upon request.

13

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

The support for Abhiroop Ghosh is provided by Koenig Endowed Chair funding to
Kalyanmoy Deb under MSU Grant RT083557.

References

Bandaru, Sunith, and Kalyanmoy Deb. 2013. “Higher and lower-level knowledge discovery from
Pareto-optimal sets.” In Journal of Global Optimization, Vol. 57, oct, 281–298. Springer.

Coello, Carlos Artemio Coello, and Ma Guadalupe Castillo Tapia. 2021. “Cultural Algorithms
for Optimization.” In Handbook of AI-based Metaheuristics, 219–238. CRC Press.

Deb, K., and C. Myburgh. 2017. “A Population-Based Fast Algorithm for a Billion-Dimensional
Resource Allocation Problem with Integer Variables.” European Journal of Operational Re-
search 261 (2): 460–474.

Deb, Kalyanmoy, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. 2002. “A fast and elitist
multiobjective genetic algorithm: NSGA-II.” IEEE Transactions on Evolutionary Compu-
tation 6 (2): 182–197.

Galanti, Geri Ann. 2000. “An introduction to cultural differences.” In Western Journal of
Medicine, edited by Anthony V. Sebald and Lawrence J. Fogel, Vol. 172, 335–336. World
Scientific Press.

Gandomi, Amir H., Kalyanmoy Deb, Ronald C. Averill, Shahryar Rahnamayan, and Mo-
hammad Nabi Omidvar. 2019. “Using semi-independent variables to enhance optimization
search.” Expert Systems with Applications 120: 279–297.

Gaur, Abhinav, and Kalyanmoy Deb. 2016. “Adaptive use of innovization principles for a
faster convergence of evolutionary multi-objective optimization algorithms.” In GECCO
2016 Companion - Proceedings of the 2016 Genetic and Evolutionary Computation Confer-
ence, 75–76. Association for Computing Machinery, Inc.

Ghosh, Abhiroop, Kalyanmoy Deb, Ronald Averill, and Erik Goodman. 2021. “Combining
User Knowledge and Online Innovization for Faster Solution to Multi-objective Design
Optimization Problems.” In Evolutionary Multi-Criterion Optimization, Cham, 102–114.
Springer International Publishing.

Ghosh, Abhiroop, Erik Goodman, Kalyanmoy Deb, Ronald Averill, and Alejandro Diaz. 2020.
“A Large-scale Bi-objective Optimization of Solid Rocket Motors Using Innovization.” 2020
IEEE Congress on Evolutionary Computation (CEC) 1–8.

Landa-Becerra, Ricardo, Luis V. Santana-Quintero, and Carlos A. Coello. 2008. “Knowledge
incorporation in multi-objective evolutionary algorithms.” Studies in Computational Intel-
ligence 98: 23–46.

Obayashi, Shigeru, and Daisuke Sasaki. 2003. “Visualization and data mining of Pareto solu-
tions using Self-Organizing Map.” Lecture Notes in Computer Science 2632: 796–809.

Szollos, András, Miroslav Šmı́d, and Jaroslav Hájek. 2009. “Aerodynamic optimization via
multi-objective micro-genetic algorithm with range adaptation, knowledge-based reinitial-
ization, crowding and ϵ-dominance.” Advances in Engineering Software 40 (6): 419–430.

Zitzler, Eckart, and Lothar Thiele. 1998. “Multiobjective optimization using evolutionary al-
gorithms - A comparative case study.” In Lecture Notes in Computer Science, Vol. 1498
LNCS, 292–301. Springer Verlag.

14

