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Abstract—Experienced users often have useful knowledge
and intuition in solving real-world optimization problems. User
knowledge can be formulated as inter-variable relationships to
assist an optimization algorithm in finding good solutions faster.
Such inter-variable interactions can also be automatically learned
from high-performing solutions discovered at intermediate itera-
tions in an optimization run – a process called innovization. These
relations, if vetted by the users, can be enforced among newly
generated solutions to steer the optimization algorithm towards
practically promising regions in the search space. Challenges
arise for large-scale problems where the number of such variable
relationships may be high. This paper proposes an interactive
knowledge-based evolutionary multi-objective optimization (IK-
EMO) framework that extracts hidden variable-wise relation-
ships as knowledge from evolving high-performing solutions,
shares them with users to receive feedback, and applies them
back to the optimization process to improve its effectiveness. The
knowledge extraction process uses a systematic and elegant graph
analysis method which scales well with number of variables. The
working of the proposed IK-EMO is demonstrated on three large-
scale real-world engineering design problems. The simplicity
and elegance of the proposed knowledge extraction process and
achievement of high-performing solutions quickly indicate the
power of the proposed framework. The results presented should
motivate further such interaction-based optimization studies for
their routine use in practice.

Index Terms—Knowledge extraction, ‘innovization’, interac-
tive optimization, repair, multi-objective optimization.

I. INTRODUCTION

FOR practical multi-objective optimization problems
(MOPs), additional knowledge may often be available

from the users who have years of knowledge and experience
in solving such problems. However, such information is often
ignored by researchers while developing an algorithm due
to concerns regarding loss of generality. But computational
resources for design problems may be limited in time, cost
or availability. Thus, in many cases, it may be important to
use any available information that may help an optimization
algorithm in finding good solutions.

For complex single-objective practical problems, evolution-
ary algorithms (EAs) with generic recombination and mutation
operators [1], [2] may be too slow to lead to high-performing
regions of the search space. Good performance of an algorithm
in solving benchmark problems such as ZDT [3], DTLZ [4],
and WFG [5] does not always translate to good performance

Authors are with Michigan State University, East Lansing, MI 48824, USA,
e-mail: {ghoshab1, kdeb, goodman, averillr}@msu.edu (see https://www.coin-
lab.org).

on practical problems. For such cases, creating customized
algorithms leveraging additional problem information is neces-
sary. Deb and Myburgh [6] proposed a customized evolution-
ary algorithm that exploited the linearity of constraint struc-
tures to solve a billion-variable resource allocation problem. A
micro-genetic algorithm [7] combining range-adaptation and
knowledge-based re-initialization was applied to an airfoil
optimization problem. Semi-independent variables [8] can be
used to handle user-specified monotonic relationships among
variables in the form of xi ≤ xi+1 ≤ xi+2 ≤ . . . ≤ xj .
Some techniques for combining EAs with problem knowledge
are given in [9]. Domain knowledge can also be semantically
annotated and injected into an optimization process [10].

Alternatives to pre-specifying problem information exist,
such as cultural algorithms which encode domain knowledge
inside a belief space [11]. Self-organizing maps (SOMs) can
provide information about important design variable clusters
[12]. Recent innovization studies [13]–[15] aim to extract ad-
ditional problem information from high-performing solutions
during the optimization process in the form of functional
relationships between variables, objectives, and constraints.

Interactive optimization is when the user, referred to as the
decision maker (DM), provides guidance during the optimiza-
tion [16]. Multiple ways to interactively specify information
exist, such as aspiration levels [17], importance of individual
objectives [18], etc.

Using additional problem information comes with a set
of challenges. An effective knowledge representation method
needs to be designed which can be used effectively by an
optimization algorithm. At the same time, it should also
be comprehensible to the user. Validating any user-provided
knowledge is necessary since the quality of supplied informa-
tion may vary. This reduces the possibility of a premature or
false convergence. The user may wish to periodically monitor
and review optimization progress as well as any learned
information. If necessary, the user can also supply information
in a collaborative fashion [19]. However, care needs to be
taken to ensure that any user feedback does not lead the
search process towards sub-optimal solutions. For large-scale
problems resulting in a potentially huge rule set, how do we
efficiently encode the rule information? How do we ensure
that enforcing one rule does not violate one or more of the
other rules? How can maximum rule compliance among new
solutions be achieved?

This paper aims to address the issues mentioned above
by proposing a generic knowledge-based evolutionary multi-
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objective optimization (EMO) framework with user interactiv-
ity (IK-EMO) for solving practical constrained multi-objective
optimization problems. Users can provide a preference among
the learned relationships. The possibility of learned and user-
provided knowledge being imperfect is also taken into account
and the algorithm can adjust the extent of their influence
accordingly. IK-EMO performance is demonstrated on three
practical constrained MOPs, and is also compared to three
other EMO algorithms.

II. VARIABLE RELATIONSHIPS AS KNOWLEDGE IN AN
OPTIMIZATION TASK

Knowledge is a generic term and can be interpreted in many
different ways depending on the context. For an optimization
task, here, we restrict the definition of knowledge to be addi-
tional information provided or extracted about the optimization
problem itself. In this paper, we are interested in variable-
variable relationships that commonly exist in high-performing
solutions of the problem. However, the definition of knowledge
can be extended to include the objective and constraint func-
tions too. A practical optimization task minimizes a number
of objectives and satisfies a number of constraints, all stated
as functions of one or more variables. Thus, understanding
the variable-to-variable relationships which are common to
feasible solutions (each represented by a variable vector) with
small objective values is critically important. A supply of such
knowledge a priori by the users, in addition to the optimization
problem description, or a discovery process of such knowledge
from the evolving high-performing optimization solutions, can
be directly utilized by the optimization algorithm to speed up
its search process. Moreover, if such knowledge is discovered
during the optimization process, users will benefit from having
this knowledge in addition to the optimal solutions of the
problem.

A. Past studies

Innovization is the process of extracting commonalities
among Pareto-optimal solutions, first proposed by Deb and
Srinivasan [13]. The basic principle of innovization is to gen-
erate rules representing inter-variable relationships in simple
forms such as power laws (xix

b
j = c). In [20], the authors

have proposed a method which is able to express relation-
ships involving operators like summation (+), difference (−),
product (×), etc.

Bandaru and Deb [14] introduced the concept of higher-
and lower-level innovization. A genetic programming-based
innovization framework was proposed in [20] and was applied
on an inventory management problem. An MOEA combined
with a local search procedure was employed in [21] to ensure
faster convergence. A combination of innovization and data
mining approaches were used in [22] to achieve faster conver-
gence. Gaur and Deb [15] proposed an adaptive innovization
method that treats the innovization process as a machine
learning problem and repairs the solutions directly, based
on the learned model. A combination of user guidance and
inequality relation-based online innovization [23], [24] was
used to solve three practical problems.

B. Structure of rules considered in this study

For an interactive knowledge-based optimization algorithm
to work, a standard form of knowledge representation is
necessary which is simple enough for users to understand
but has enough complexity to capture problem knowledge
accurately. Using algebraic expressions or ‘rules’ is one way
of representing knowledge and has been extensively used in
the ‘innovization’ literature [13], [15]. A rule can take the
form of an equality or an inequality, as shown below:

ϕ(x) = 0, (1)
ψ(x) ≤ 0. (2)

Any arbitrary form of rules involving many variables from
a decision variable vector (x) and complicated mathematical
structures of functions ϕ or ψ may be considered, but such
rules would not only be difficult to learn, they would also be
difficult to interpret by the user. In this study, we restrict the
rules to have simple structures involving a maximum of two
variables, as discussed below.

1) Constant rule: This type of rule involves only one
variable taking a constant value (xi = κi). In terms of
Equation 1, for the i-th variable, the structure of the rule
becomes ϕi(x) = xi − κi. This type of rule can occur if
multiple high-performing solutions are expected to have in
common a fixed value of a specific variable [25].

2) Power law rule: Power law rules [13] for two variables
xi and xj can be represented by Equation 1 as ϕij(x) =
xix

b
j−c, where b and c are constants. This form makes power

laws versatile enough to encode a wide variety of rules, such as
proportionate or inversely proportionate relationships among
two variables. Interestingly, an inequality power law using a
ψ function can also be implemented, but such a rule may
represent a relationship loosely and we do not consider it here.

3) Equality rule: This type of rule can express the equal-
ity principle of two variables xi and xj observed in high-
performing solutions. In terms of Equation 1, ϕij(x) = xi−xj
is the rule’s structure.

4) Inequality rule: This type of rule can represent relational
properties of two variables xi and xj as xi ≤ xj or xi ≥ xj .
In terms of Equation 2, ψij(x) = xi−xj or ψij(x) = xj −xi
are the respective rules. For example, the radius of two beams
in a truss [23] might be related via this type of rule.

After describing the chosen rule structures, we are now
ready to discuss the procedures of extracting such rules from
high-performing variable vectors and applying the extracted
rules to the optimization algorithm. A summary of their
representations and use in our analysis are provided in Table I.

III. PROPOSED INTERACTIVE KNOWLEDGE-BASED
IK-EMO FRAMEWORK

In this study, we restrict our discussions to multi-objective
optimization problems, so high-performing solutions refer to
the entire non-dominated (ND) solution set discovered by the
optimization algorithm from the start of the run to the current
iteration. Figure 1 shows the proposed IK-EMO framework.

The framework starts with a description of the multi-
objective optimization problem, as shown in the top-left box in
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Fig. 1: Interactive knowledge-based EMO framework (IK-EMO) showing user interaction, learning and repair agents. Blue
blocks represent a normal EMO. Green blocks represent the components responsible for knowledge extraction and application,
as well as user interaction.

the figure. In addition, if any additional problem information
is available, that is also specified. The penultimate step before
starting the optimization is to select a suitable EMO and
methods to algorithmically extract and apply any problem
knowledge. The subsequent sections describe the various com-
ponents in more detail.

A. User knowledge
Before the start of the optimization, the user may provide

some initial information which will affect how the framework
operates, details of which are given below.

1) Variable grouping: For a problem with n variables,
there can be n(n−1)

2 pairwise variable interactions. For any
reasonable-sized problem, such a huge number of meaningful
relationships may not exist. In practice, the user may be inter-
ested in only a handful of relationships that relate some critical
decision variables. In order to reduce the complexity, variables
can be divided into different groups Gk for k = 1, 2, ..., ng .
Each group consists of variables that the user thinks are likely
to be related. Group information is specified prior to the
optimization. If the user does not know how to construct the
groups, he/she can put all n variables into a single group. It
is then up to the algorithm to figure out which variables are
related. Inter-group relationships are not discoverable under
this scheme. Variables that are not part of any group are
assumed not to be related to other variables. For example,
assume there are two variable groups G1 = {2, 3, 5} and
G2 = {1, 4, 7} for an 8-variable problem. For G1 all pairwise
combinations (x2, x3), (x2, x5), and (x3, x5) will be checked
for the existence of any possible relationships. A similar pro-
cess is repeated for G2. Since inter-group relationships are not
explored, combinations like (x3, x7) will not be considered.
Variables x6, and x8 are not part of any group, hence they
are assumed not to be related to the other variables in any
meaningful way.

2) Rule hierarchy: In the proposed framework we consider
four types of rules as presented in Section II. The user may
be interested in more than one type of rule and have some
preferences among them. In that case, the user can define
a hierarchy of multiple rule types ranked according to user
preference. The existence of a particular rule type for one or
more variables is checked rank-wise. For example, if constant
rules are ranked 1, followed by power laws (rank 2) and
inequalities (rank 3), then the variables in every group will be
checked for constant rules first. The variables which do not
exhibit constant rules will then be checked for power laws, and
so on. For relations having equal ranking, a scoring criterion
needs to be used to determine which rule better represents the
non-dominated (ND) front and will be used by the algorithm.

B. Learning agent

A learning agent is a procedure used to identify different
innovization rules present in the ND solutions in a population.
The rules involve a single variable or a pair of variables, as
required by a rule’s description. Each type of rule (inequality,
power law, etc.) requires a different rule satisfaction condition.
A score (within [0,1], as presented in Table I) is assigned to
each rule to quantify how well the rule represents the ND set.
Different learning agents applicable to the rule types covered
in Section II are presented below. A summary of the various
rules, their scoring procedures and satisfaction conditions are
provided in Table I.

1) Constant rule: In order to learn constant rules, we have
to analyze the values of the variable under consideration for
every ND solution and check if one or more of them converge
to specific values. Since variables can be of different scales
and units, we need a generalized criterion to determine if a
variable is taking on a constant value. First, the median (x̃i)
is calculated. The proportion of ND solutions which satisfy
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TABLE I: Rule types and the corresponding mathematical representation. X represents the set of ND solutions. xi and xj
refer to the i-th and j-th variables, respectively, of a ND solution x ∈ X . The corresponding variables in a new solution xr

to be repaired are labeled as xir and xjr, respectively. Normalized variables are represented by a hat (x̂i, x̂j). Higher ranked
rules are preferred while performing repair. The score (s) is a measure of how well X follows the rule in the representation
column. Satisfaction condition dictates whether xr follows the respective rule.

Rule type Representation Score Satisfaction condition

Constant ϕi(x) = xi − κi = 0 sϕi
=

|Ai|
|X| , where Ai = {1 : ∀x ∈ X , |xi − κi| ≤ ρi}, κi = x̃i |xir − κi| ≤ ρi

Power law ϕij(x) = x̂ix̂
b
j − c = 0 sϕij

= R2 score of linear regression shown in Equation 4
(
x̂jr −

(
c
x̂ir

) 1
b

)2

≤ emin
ij

Equality ϕij(x) = xi − xj = 0 sϕij
=

|Bij |
|X| , where Bij = {1 : ∀x ∈ X , |xi − xj | ≤ εij} |xir − xjr| ≤ εij

Inequality (≤) ψij(x) = (xi − xj) ≤ 0 sψij
=

|Cij |
|X| , where Cij = {1 : ∀x ∈ X , xi ≤ xj} (xir − xjr) ≤ 0

Inequality (≥) ψij(x) = (xj − xi) ≤ 0 sψij
=

|Dij |
|X| , where Dij = {1 : ∀x ∈ X , xi ≥ xj} (xjr − xir) ≤ 0

|xi− x̃i| ≤ ρi is said to be the score (sϕi
) of the constant rule

xi = κi = x̃i. ρi is a small tolerance used for determining
whether variable xi’s value is in the neighborhood of x̃i. It
must be defined separately for each variable. An alternative
option is to normalize the variables and define a singular ρ
for the normalized variable space. To check whether a new
solution (xr) follows xir = κi, we check whether xir lies in
the neighborhood of κi using the condition: |xir − κi| ≤ ρi.

2) Power law rule: In order to learn power laws (xixbj = c)
we use the method proposed in [26] with a modification. Each
variable is initially normalized to [1, 2]. A training dataset
is created from the ND solution set with the logarithms of
normalized variables x̂i and x̂j as features, leading to Eqn. 4:

x̂ix̂
b
j = c, (3)

⇒ log x̂i = β log x̂j + ϵ, (4)

where β = −b is the weight and ϵ = log c is the intercept.
Normalization prevents 0 or negative values from appearing
in the logarithm terms. Then we apply ordinary least squares
linear regression to the logarithm of x̂i and x̂j . Linear re-
gression finds the best-fit line for the training data defined by
the parameters β and ϵ. In order to evaluate the quality of
the fit, we use the coefficient of determination (R2) metric.
A new solution (xr) follows the power law given in Equation
3 if the difference between the actual value (xir or xjr) and
the predicted value (x̂ir or x̂jr) is lower than a pre-defined
threshold error (emin

ij ). Table I shows the formulation for the
satisfaction condition.

3) Equality rule: Two variables can be considered equal
if |xi − xj | ≤ εij with εij being a tolerance parameter
for variable pair xi and xj . The proportion of ND solutions
following this condition is the score (sϕij

) of the equality rule.
The need to define εij for every variable pair can be avoided
if normalized variables are used.

4) Inequality rule: Inequality rules can be of the form xi ≤
xj or xi ≥ xj . The proportion of ND solutions satisfying
either condition is the score of the respective rules.

After the learning agent identifies specific rules from a set
of ND solutions, the rules can be used to repair offspring
solutions of the next generation. The repair mechanism for
each rule is described next.

C. Repair agent
Once the rules are learned from the current ND solutions by

the learning agent, the next task is to use these rules to repair
the offspring solutions for the next few generations. There are
two questions to ponder. First, how many rules should we use
in the repair process? Second, how closely should we adhere
to each rule while repairing? A small fraction of learned rules
may not embed requisite properties present in the ND solutions
in offspring solutions. But the usage of too many rules may
reduce the effect of each rule. Similarly, a tight adherence
to observed rules may encourage premature convergence to a
non-optimal solution, while a loose adherence may not pass on
properties of ND solutions to the offspring. We propose four
different rule usage schemes (10% (RU1) to 100% (RU4)) and
three rule adherence schemes (RA1 (tight) to RA3 (loose)) for
power law and inequality rules.

1) Constant rule: To apply a constant rule xi = κi to a
particular offspring solution x(k), the variable x(k)i is simply
set to κi, thereby implementing the learned rule from previous
ND solutions to the current offspring solutions. Constant
rules are always included in the rule set and used with tight
adherence.

2) Power law rule: For a power law rule x̂ix̂jb = c, one
variable is selected as the base (independent) variable and the
other variable is set according to the rule. For example, for
a particular offspring solution x(k), if x̂i(k) is selected as the
base variable, x̂(k)j is set as follows: x̂(k)j = ( c

x̂i
)

1
b . Despite

theoretically being able to represent constant relationships by
having b = 0, in practice, extremely low values of b can cause
the repaired variable x̂

(k)
j to have a large value outside the

variable range. Hence, in this study, we first check whether
a variable follows constant rules, and if it does, then that
variable’s involvement in a power law rule is ignored.

A repair of a power law rule is followed with three dif-
ferent confidence levels by adjusting to an updated c-value:
x̂ix̂j

b = cr. PL-RA1 uses cr = c (tight adherence); PL-
RA2 uses cr ∈ N (c, σc) (medium adherence), and PL-RA3
uses cr ∈ N (c, 2σc) (loose adherence), where σc is the
standard deviation of c-values for the power law observed
among the ND solutions during learning process. PL-RA1 puts
the greatest trust into the learned power law rule, whereas
PL-RA3 has the least amount of trust and provides the most
flexibility in the repair process.
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3) Inequality and equality rules: In order to repair an
offspring solution x(k), we have to select one variable (x(k)i ) as
the base variable and the other (x(k)j ) as the dependent variable
to be repaired. The generalized inequality repair operation is
shown below:

x
(k)
j = x

(k)
i + νr1(x

U
i − x

(k)
i ), for x(k)i ≤ x

(k)
j , (5)

x
(k)
j =

x
(k)
i − νr2x

U
i

1− νr2
, for x(k)i ≥ x

(k)
j . (6)

Three different rule adherence (RA) schemes are considered.
IQ-RA1 uses νr1 = µν1 and νr2 = µν2 (tight adherence with
no standard deviation), which are computed as the means of
ν1 and ν2 from ND solutions during the learning process, as
follows:

ν1 =
xj − xi
xUi − xi

, ν2 =
xi − xj
xUi − xj

.

For IQ-RA2, νr1 ∈ N (µν1, σν1) and νr2 ∈ N (µν2, σν2)
(medium adherence with one standard deviation) are used,
where σν1

and σν2
are standard deviations of ν1 and ν2,

respectively. Both νr1 and νr2 are set to zero, if they come
out to be negative. For IQ-RA3, νr1, νr2 ∈ U(0, 1) (loose
adherence with a uniform distribution) are used.

D. Ensemble repair agent

Both power law and inequality/equality rules have three rule
adherence options for repair. For a new problem, it is not
clear which option will work the best, so we also propose
an ensemble approach (PL-RA-E and IQ-RA-E) in which all
three options are allowed, but based on the success of each
option, more probability is assigned to each. The ensemble
method also considers a fourth option in which no repair to an
offspring is made. The survival rate (ris) of offspring generated
by the i-th repair operator is a measure of its quality. The
greater the survival rate of the offspring created by an operator
is, the higher is the probability of its being used in subsequent
offspring generation. The probability (p̂ir) update operation for
the i-th operator is presented below:

pir(t+ 1) = max

(
pmin, α

ris∑
i r

i
s

+ (1− α)p̂ir(t)

)
, (7)

p̂ir(t+ 1) =
pir(t+ 1)∑
i

pir(t+ 1)
, (8)

where α is the learning rate, ris =
ni
s

noff
, where nis and noff

are the number of offspring created by the i-th operator that
survive in generation t and the total number of offspring
that survive in generation t, respectively. It is possible that
at any point during the optimization, no solution generated
by one of the repair operators survives. This might cause the
corresponding selection probability to go down to zero without
any possibility of recovery. To prevent this, in Equation 7,
the probability update step ensures that a minimum selection
probability (pmin) is always assigned to each repair operator
present in the ensemble. Equation 8 normalizes the probability
values for each operator so that their total sum is one.

The learning rate (α) determines the rate of change of the
repair probabilities. A high α would increase the sensitivity,

and can result in large changes in repair probabilities over a
short period of time. A low α exerts a damping effect which
causes the probability values to update slowly. Through trial
and error, α = 0.5 and pmin = 0.1 are found to be suitable
for the problems of this study.

E. Mixed rule repair agent

A mixed rule repair agent is designed to work on two
or more different types of rules. Since multiple rules (for
example, an inequality rule and a power law rule) can show
up for the same variable pair, a rule hierarchy needs to exist as
defined in Section III-A2. Table II shows the rule hierarchical
rank used for all the repair agents in this study.

TABLE II: Rule hierarchy by rank for each repair agent.

Repair agent Rule type Rank

PL-RA1, PL-RA2, PL-RA3, PL-RA-E Constant 1
Power law 2

IQ-RA1, IQ-RA2, IQ-RA3, IQ-RA-E

Constant 1
Equality 2

Inequality (≤) 3
Inequality (≥) 3

Mixed (Power law and inequality)

Constant 1
Power law 2
Equality 2

Inequality (≤) 2
Inequality (≥) 2

F. User’s ranking of rules

The user forms the basis of the interactivity of the IK-EMO
framework. At any point during the optimization, the user
has the option to review the optimization results and provide
feedback to the optimization algorithm in one or more of the
following ways:

• Rule ranking: The user may provide a ranking of rules
(rank 1 is most preferred) provided by the algorithm. The
algorithm will then try to implement the rules in the rank
order provided by the user.

• Rule exclusion: The user may select to remove certain
rules provided by the algorithm, based on their knowledge
of the problem.

• Rule specificity: The user may specify details for consid-
ering a rule further. For example, the user may specify
that only variables having a correlation above a specified
value should be considered. Another criterion could be
to select all rules having a score greater than a threshold
as rank 1 and exclude the others.

In this paper, the proposed rule usage schemes (RU1-RU4) can
also be considered as artificial users [27] who select a certain
percentage of the learned rules every few generations. This
systematically illustrates the interactive ability of IK-EMO
while showing the effect of different numbers of rules used
for repair on the performance.

In the subsequent experiments, it is assumed that the user
instantaneously provides their feedback. However, in the real
world, this may not be the case. The user may require some
finite time to adequately process the results and gather their
feedback. Pausing the optimization algorithm during the user’s
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analysis process can result in losing out on useful function
evaluations that could have been completed during this overall
allocated time period. An experimental analysis of this issue
is provided in the supplementary document.

G. Variable relation graph (VRG)

The possible number of pair-wise relations among n vari-
ables is n(n−1)

2 or O(n2). Thus, for a large number of
variables, the amount of bookkeeping required to track in-
dividual pairwise relations is large. Moreover, the observed
relationships should not contradict each other. For example,
for inequality rules xi ≤ xj and xj ≤ xk, the transitive
property can be maintained by choosing to repair xj based on
xi, followed by repairing xk based on xj using Equation 5. But
repairing both xj and xk separately based on xi can potentially
contradict the rule xj ≤ xk. To solve these two challenges,
we propose using a graph-based data structure, called variable
relation graph (VRG), to encode and track relationships ob-
served between multiple variable pairs. A customized graph-
traversal algorithm ensures that all repairs are performed with
minimal or no contradictions. In the following sections, steps
1 to 5 show the process of using learning agents to construct
a VRG (learning phase). A learning interval (TL) is defined as
the number of generations or function evaluations (FEs) after
which a new learning phase begins. Step 6 shows the process
of applying the VRG to repair an offspring solution using one
or more repair agents (repair phase). A repair interval (TR) is
defined as the number of generations or FEs between any two
repair phases.

1) Create a complete VRG: A vertex (or node) of a VRG
represents a variable and an edge connecting two nodes indi-
cates the existence of a relationship between the corresponding
variables. For every group Gk of variables, all pairwise vari-
able combinations are connected by an edge. This will result
in a complete graph where every pair of vertices is connected
by a unique undirected edge. An example with two variable
groups (G1 = {1, 2, 3, 6, 8} and G2 = {4, 5, 7, 9, 10}) having
five variables each is illustrated in Figure 2.

(a) Group G1. (b) Group G2.

Fig. 2: Ten variables in two non-interacting groups are repre-
sented in complete graphs. Each node represents a variable.
An edge i–j represents the existence of a relationship between
decision variables xi and xj .

2) Rule selection: In this step, learned rules are used to
modify the VRGs according to two selection criteria. First,

all rules having a score (defined in Table I) above a certain
threshold (smin) are considered. Second, they are applied in
the order of user’s preference ranking. A connection may be
removed if it does not satisfy the selection criteria. If a single-
variable (constant) rule satisfies the selection criterion, then
the corresponding node is removed from the VRG and that
rule will be implemented separately. If no two-variable rule
involving xi and xj satisfies the minimum score criterion,
the corresponding VRG edge (i-j) is removed. An example
is shown in Figure 3, which uses the rule hierarchy for mixed
rule repair operators (third row) shown in Table II, except
that inequalities are ranked 3 for illustration here. A blue or
brown edge represents a power law rule or an inequality rule,
respectively. An edge ranking is also assigned based on the
rule hierarchy. In this case, edges representing power laws and
inequalities will be ranked 1 and 2 by default, unless overruled
by the user. Both graphs have a reduced number of edges after
the rule selection process is complete. Node 8 in Figure 3a
(marked in red) is found to have a constant rule associated
with it and hence removed. In Figure 3b, variables (x5, x9)
and (x9, x10) are not related by power laws having a score
greater than smin. However, they are found to follow inequality
relationships with a score greater than smin. Hence, they are
connected by brown edges. The rest of the edges represent
power law rules and are marked by blue. The approach to set
the direction of the edges is discussed next.

(a) Group G1. (b) Group G2.

Fig. 3: A blue edge represents that a corresponding power law
relation has a score greater than smin. A brown edge represents
a corresponding inequality relation having a high score. If the
scores for both types of relations are low, the corresponding
edge is removed. If this results in a node having no edges,
then it is removed, such as node 8 in Figure 3a.

3) Create a directed acyclic VRG: In order to apply a repair
agent to the VRG, it needs to be converted to a directed
acyclic graph (DAG). This step ensures graph traversal is
possible without getting stuck in loops. The members of every
group Gk are randomly permuted to create a sequence Dk.
If i appears before j in Dk, an undirected edge between
nodes i and j is converted to a directed edge from i to j.
In the example shown in Figure 4, two random sequences
D1 = (2, 1, 3, 6) and D2 = (10, 4, 5, 9, 7) are created for
groups G1 and G2, respectively. Since node 2 appears before
node 1 in D1, a blue arrow goes from node 2 to node 1,
as shown in the figure. This process is repeated for every
population member so as to create diverse VRGs.
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(a) Group G1. (b) Group G2.

Fig. 4: A random sequence of the nodes is created for each
group. An edge i → j is created from an undirected edge
if i appears before j in the sequence. This creates a directed
acyclic variable relation graph.

4) Transitive reduction: Next, a transitive reduction [28]
is performed on the VRG corresponding to each variable
group. For VRGs having both power law and inequality edges,
transitive reduction is performed on subgraphs consisting only
of the edges of the same type. This step eliminates redundant
directed edges between two different rule types. An example
of eliminating an arrow from node 2 to node 6 is shown in
Figure 5a.

(a) Group G1. (b) Group G2.

Fig. 5: Transitive reduction is performed to remove redundant
directed edges. In Figure 5a, since edges 2 → 3 → 6 exists,
edge 2 → 6 is considered redundant and is removed.

5) Modify VRG according to user’s feedback: A user can
provide feedback in the form of a ranking, or select only a
subset of the available rules. In the former case, the VRG
edge rankings are updated to reflect the user’s choice. Edges
corresponding to the rules discarded by the user are removed.
Figure 6a shows an example where the rule involving x1 and
x6 are ranked 1 (marked by arrows with a red border) and x2
and x3 are ranked 2 (marked by arrows with a dark yellow
border). The gray edges represent the rules discarded by the
user. Figure 6b shows a similar ranking process.

6) Repair new offspring solutions: For every new solu-
tion, the corresponding VRGs are traversed. From a starting
node, the algorithm moves forward via the outgoing edges
and repairs the connected nodes recursively in a depth-first
fashion. This is repeated for all ranks. Algorithm 1 presents
the pseudocode of the repair process. In the pseudocode, the
VRG data structure has the attributes Nodes and Edges. The

(a) Group G1. (b) Group G2.

Fig. 6: User can provide feedback by adding, removing, or
ranking the rules. Ranking divides an existing variable relation
graph into multiple sub-graphs. Edges with a red border
represent rank 1 relations. Edges with a dark yellow border
represent rank 2 relations. Gray edges represent relations that
the user wants to remove.

Edges attribute representing an edge (i, j) has multiple sub-
attributes: StartVertex (i in this case), EndVertex (j in this
case), EdgeType (rule type and correspdonding repair agent),
EdgeRank (rank of an edge). A function TraverseGraph is
used which recursively traverses the VRG from a random
start node for a particular rule rank. The function Repair
called by TraverseGraph calls the correct repair agent based
on EdgeType.

Algorithm 1 VRG traversal and repair pseudocode.

Require: New solution set (Xr), variable groups (G), VRGs for
every solution and group, rule hierarchy.

Ensure: Repaired solution set Xr .
1: function TRAVERSEGRAPH(x, Graph, CurrentNode, Previ-

ousNode, NodesVisited, CurrentRank)
2: if CurrentNode in NodesVisited then return
3: end if
4: CurrentEdges ← Graph.Edges[CurrentNode];
5: for each outgoing edge (e) in CurrentEdges do
6: NextNode ← e.EndVertex;
7: if NextNode not in NodesVisited then
8: EdgeType ← e.EdgeType;
9: EdgeRank ← e.EdgeRank;

10: if EdgeRank = CurrentRank then
11: Repair(x, CurrentNode, NextNode, EdgeType,

EdgeRank);
12: end if
13: TraverseGraph(x, Graph, NextNode, CurrentNode,

NodesVisited);
14: end if
15: end for
16: Add CurrentNode to NodesVisited;
17: end function
18: for each group Gk in G do ▷ Repair procedure begins
19: for each solution x in Xr do
20: CurrentGraph ← VRG assigned to x for Gk;
21: for CurrentRank = 1, 2, ..., nranks do
22: StartNode ← Select the first node having atleast one

edge of rank CurrentRank from a random sequence;
23: TraverseGraph(x, CurrentGraph, StartNode, NULL,

[], CurrentRank);
24: end for
25: end for
26: end for
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TABLE III: Number of decision variables and constraints for 39 and 59-segment stepped beams.

nseg σmax(MPa) δmax(m) Width (bi) Height (hi) Aspect ratio (ai) Variables Constraints
39 20 0.04 [0.1, 40] [0.1, 40] [0.5, 2] 78 41
59 20 0.06 [0.1, 60] [0.1, 60] [0.5, 2] 118 61

IV. SIMPLY-SUPPORTED STEPPED BEAM DESIGN

Beam design problems are common in the literature [8],
[29] and can be used to benchmark an optimization algorithm.
In this paper, we consider a simply-supported stepped beam
design with multiple segments having a rectangular cross-
section. An example with five segments is shown in Figure 7.
A vertical load of 2 kN is applied at the middle of the

Fig. 7: Simply-supported stepped beam with five segments.

beam. All nseg segments are of equal length. The area of
the rectangular cross-section is determined by its width (bi)
and height (hi) for the i-th segment, where i ∈ [1, nseg], The
volume (V ) and maximum deflection (∆) are to be minimized
by finding an optimal width bi and height hi of each segment,
totalling 2nseg variables. The maximum stress σi(x) of i-th
member and deflection δj(x) at j-th node need to be kept
below strength of the material σmax and a specified limit
δmax, respectively. The aspect ratio (ratio of height to width)
of each segment is also restricted within a particular range
(in [aL, aU ]), as constraints. The MOP formulation is shown
below:

Minimize V (x) =

nseg∑
i=1

bihili, (9)

Minimize ∆(x) =
nseg

max
i=1

δi(x), (10)

Subject to
nseg

max
i=1

σi(x) ≤ σmax, (11)
nseg

max
j=1

δj(x) ≤ δmax, (12)

aL ≤ ai ≤ aU , for i = 1, . . . , nseg. (13)

Here, two cases with 39 and 59 segments are considered.
Problem parameters are described in Table III.

A. Experimental settings

NSGA-II [30], a state-of-the-art MOEA, is applied with
the proposed IK-EMO procedure to solve both cases. This
problem is intended to demonstrate the performance of our
proposed algorithm with minimal initial user knowledge. Thus,
all variables are put into a single group. IK-EMO is combined
separately with each repair agent described in Section III-C.
In addition, there are two cases where mixed relationships are
used: the first case with PL-RA2 and IQ-RA2, and the second
case with PL-RA-E and I-ES. The rule hierarchy is described
in Table II.

Four rule usage schemes RU1, RU2, RU3 and RU4 select
the top 10%, 20%, 50% and 100% of the learned rules sorted
according to their scores. They also act as artificial users with a
consistent behavior. Each rule usage scheme is paired with one
or more repair agents. Eight cases with a single repair agent are
considered: PL-RA1, PL-RA2, PL-RA3, PL-RA-E, IQ-RA1,
IQ-RA2, IQ-RA3, IQ-RA-E. Two cases with a combination of
repair agents are considered: one with PL-RA2 and IQ-RA2,
and the other with PL-RA-E and IQ-RA-E. From Table I, ρi
is set to be 0.1, εij is set as 0.1, and emin

ij is set to 0.01.
Table IV shows the parameter settings for this problem.

For each combination of a repair agent and user, 20 runs
are performed and the Hypervolume (HV) [31] values are
recorded at the end of each generation. The Wilcoxon rank-
sum test [32] is used to compare the statistical performance of
the algorithms tested here with respect to the best performing
algorithm for each scenario. As an example, let p1 and p2
represent the performance metric values for two algorithms
A1 and A2. For each simulation run, p1 and p2 exist as paired
observations. Here, the null hypothesis states that there is
no statistically significant difference between p1 and p2. The
hypothesis is tested with 95% significance level and the p-
values are recorded. A p-value less than 0.05 means that there
is a statistically significant performance difference between
A1 and A2. The median number of FEs taken to achieve a
target hypervolume (HVT ) is used as a performance metric
for the Wilcoxon test. HVT is set to be the final median HV
achieved by base NSGA-II when the run is terminated. In order
to make the problem challenging for the proposed approach,
a small population size of 40 is used and a maximum number
of generations of 500 is set, thereby allowing a maximum
computational budget of 20,000 FEs for each run.

TABLE IV: Parameter settings of IK-EMO.

Parameter Value
Population size Problem-specific
Maximum generations Problem-specific
Mutation operator Polynomial mutation [33]
Mutation probability (pm) and index (ηm) 1/nvar , 50
Crossover operator SBX [1]
Crossover probability (pc) and index (ηc) 0.9, 30
Minimum rule score, smin 0.7
Learning interval (TL, in generations) 10
Repair interval (TR, in generations) 10
α and pmin in Equation 7 0.5, 0.1
Rule parameters ρi, εij , emin

ij Problem-specific

B. Experimental results and discussion

Tables V and VI show the optimization results for the 39
and 59-segment stepped beam problems, respectively. Base
NSGA-II results without any rule extraction and repair are
shown in the first row. The best performance case in each
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TABLE V: FEs required to achieve HVT = 0.95 for 39-segment beams. Best performing algorithm for row is marked in bold.
Best performing algorithm in each column is marked by a shaded gray box. Algorithms with statistically similar performance
to the best algorithm column-wise are marked in italics. The corresponding Wilcoxon p-values are given in braces.

Rule Type Repair agent RU1 RU2 RU3 RU4
None None (base) 20.0k (p=0.0144) 20.0k (p=0.0124) 20.0k (p=0.0255) 20.0k (p=0.0421)

Power
law rule

PL-RA1 16.7k ± 0.5k (p=0.0224) 15.6k ± 1.1k (p=0.0660) 15.8k ± 0.7k (p=0.0421) 17.9k ± 1.2k (p=0.0309)
PL-RA2 16.1k ± 1.8k (p=0.0199) 16.0k ± 2.1k (p=0.0615) 15.5k ± 1.5k (p=0.0710) 17.3k ± 1.0k (p=0.0189)
PL-RA3 19.8k ± 0.4k (p=0.0011) 19.4k ± 1.2k (p=0.0405) 19.5k ± 1.3k (p=0.0300) 19.5k ± 1.2k (p=0.0405)
PL-RA-E 14.7k ± 2.0k 14.6k ± 0.1k 14.7k ± 1.9k 15.1k ± 1.8k

Inequality
rule

IQ-RA1 17.6k ± 0.6k (p=0.0022) 17.5k ± 1.2k (p=0.0473) 17.7k ± 0.9k(p=0.0467) 17.8k ± 1.0k (p=0.0309)
IQ-RA2 17.2k ± 1.0k (p=0.0135) 17.3k ± 1.2k (p=0.0265) 17.3k ± 0.8k(p=0.0488) 17.7k ± 1.2k (p=0.0202)
IQ-RA3 19.8k ± 1.2k (p=0.0481) 19.6k ± 1.0k(p=0.0341) 19.5k ± 1.1k (p=0.0322) 19.7k ± 1.1k (p=0.0249)
IQ-RA-E 17.6k ± 0.8k (p=0.0413) 17.5k ± 0.9k (p=0.0217) 17.6k ± 1.2k(p=0.0335) 17.6k ± 1.5k (p=0.0185)

Mixed
rule

PL-RA2+IQ-RA2 15.0k ± 0.9k (p=0.0511) 14.9k ± 1.1k (p=0.0993) 15.3k ± 1.1k (p=0.0686) 15.4k ± 0.8k (p=0.0720)
PL-RA-E+IQ-RA-E 14.9k ± 1.0k (p=0.0921) 14.8k ± 0.7k (p=0.0766) 15.0k ± 0.7k (p=0.0718) 15.2k ± 0.7k (p=0.0512)

TABLE VI: FEs required to achieve HVT = 0.76 for 59-segment beams.

Rule Type Repair agent RU1 RU2 RU3 RU4
None None (base) 20.0k (p=0.0112) 20.0k (p=0.0018) 20.0k (p=0.0011) 20.0k (p=0.0025)

Power
law rule

PL-RA1 15.8k ± 0.5k (p=0.0106) 14.6k ± 2.2k 15.8k ± 0.5k (p=0.0365) 16.4k ± 0.8k (p=0.0381)
PL-RA2 15.0k ± 1.6k 15.1k ± 1.9k (p=0.0640) 14.6k ± 2.8k (p=0.1010) 15.7k ± 1.7k (p=0.0512)
PL-RA3 16.5k ± 2.0k (p=0.0045) 16.0k ± 1.5k (p=0.0218) 16.8k ± 1.4k (p=0.0220) 17.3k ± 2.6k (p=0.0433)
PL-RA-E 15.1k ± 1.1k (p=0.1261) 14.7k ± 0.3k (p=0.0911) 14.5k ± 1.0k 15.2k ± 1.7k

Inequality
rule

IQ-RA1 16.7k ± 4.0k (p=0.0214) 16.4k ± 2.5k (p=0.0411) 16.9k ± 2.1k (p=0.0185) 18.5k ± 2.2k (p=0.0321)
IQ-RA2 16.9k ± 4.3k (p=0.0201) 16.0k ± 2.9k (p=0.0389) 17.2k ± 3.3k (p=0.0169) 18.0k ± 2.6k(p=0.0342)
IQ-RA3 16.5k ± 4.3k (p=0.0311) 17.4k ± 3.0k (p=0.0341) 17.7k ± 3.2k (p=0.0163) 18.2k ± 2.4k(p=0.0253)
IQ-RA-E 16.7k ± 3.3k (p=0.0291) 16.6k ± 4.4k (p=0.0282) 17.3k ± 2.4k (p=0.0305) 18.4k ± 1.9k(p=0.0244)

Mixed
rule

PL-RA2+IQ-RA2 15.3k ± 3.1k (p=0.0585) 14.8k ± 3.0k (p=0.0910) 14.7k ± 3.0k (p=0.0723) 15.5k ± 2.5k (p=0.0699)
PL-RA-E+IQ-RA-E 15.1k ± 2.4k (p=0.0923) 14.7k ± 2.7k (p=0.0623) 14.7k ± 2.6k (p=0.0720) 15.4k ± 2.1k (p=0.0511)
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(b) HV plot over 20 runs.

Fig. 8: ND fronts and hypervolume plots obtained by IK-EMO with RU2 and power law repair agents for 59-segment stepped
beam problem.

row is marked in bold. For every column, the best performing
algorithm is marked with a shaded gray box. The Wilcoxon
p-values show the relative performance of each algorithm
with the column-wise best performance. Algorithms with a
statistically similar performance to the column-wise best are
shown in italics. The ND front obtained in a particular run
using the power law repair operators for RU2 are shown in
Figure 8a for the 59-segment case. The corresponding median
HV plot over the course of the optimization run are shown
in Figure 8b. Similar behaviors are observed for 39-segment
case (see supplementary materials).

The results show many interesting observations as stated
below.

1) General observations: Statistically base NSGA-II does
not perform well compared to knowledge-based NSGA-II
methods for both 39- and 59-segment problems. A positive
aspect of the proposed algorithm is that it is still able to
achieve a good performance with significantly low population
size. For problems with expensive evaluation functions, this
may stay beneficial for saving computational time.

2) Power law vs inequality rules: As can be seen from the
table, for both 39- and 59-segment problems, the power law
repair operators generally perform better than inequality-based
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repair operators except for PL-RA3. One possible reason could
be the greater versatility of power laws in modeling complex
relationships compared to simple inequality rules.

3) Best performing algorithm for each rule usage scheme:
In the 39-segment case, PL-RA-E is the best performer for
RU1 to RU4, with PL-RA-2 and the mixed repair operators
offering statistically similar performance for RU1 to RU3. This
shows that the ensemble method can be used to get good
performance without the need for selecting a proper repair
process. For the 59-segment case, PL-RA2 and PL-RA1 are
the best performers for RU1 and RU2, respectively. PL-RA-E
offers a statistically similar performance in both cases. In the
cases of RU3 and RU4, PL-RA-E gives the best performance,
with PL-RA2 having a comparable performance. PL-RA3
performs significantly worse than the other PL operators for
all the cases. For PL-RA1, adhering closely to the learned
power law rules constrains NSGA-II in finding good solutions.
PL-RA3 introduces a large amount of variance which is detri-
mental to the optimization process. A compromise between
these two extremes, provided by PL-RA2 or PL-RA-E, is the
logical step.

Figure 8 illustrates the results when RU2 is combined with
the power law repair operators for both problem cases. The
difference in the quality of solutions obtained after 20,000 FEs
is prominent in the 59-segment ND front. In the median HV
plots it is seen that the FEs required to reach HVT for PL-RA-
E is close to the number needed by the best performing repair
agent. Base NSGA-II and the repair operators all give good
quality solutions at the end of the run for the 39-segment case.
However, for the 59-segment case, base NSGA-II performs
significantly worse.

4) Relative performance of each rule usage scheme: It can
be seen from Tables V and VI that RU2 produces the best
performance in 7 out of 10 cases for the 39-segment case,
and 6 out of 10 cases for the 59-segment case. This shows
that in terms of rule usage, using too few or too many of
the learned rules is not effective in improving the algorithm’s
performance.

5) Mixed relation repair agents: The mixed relation repair
agents (PL-RA2+IQ-RA2) and (PL-RA-E+IQ-RA-E), have
statistically similar performance to the best algorithm for
each user and both problem cases. Even though inequality
repair operators perform worse than power law repair operators
individually, their presence in the mixed repair agents do not
hinder the performance, since only the high-performing rules
are added to the VRG during creation. The proposed frame-
work is robust enough to give good performance irrespective
of the number of repair agents and type of rules.

V. OPTIMAL POWER FLOW PROBLEM

Optimal power flow (OPF) is a common problem in power
system engineering with MOEAs being used to solve the
problem [34], [35]. The following objective functions are
minimized: fuel cost, emissions, voltage deviation, and real
power loss. In many cases, one or more of these objectives are
considered in the literature, with the rest being kept as con-
straints. In this study, we consider two objectives: minimizing

fuel cost and reducing fossil fuel emissions. Voltage deviation
and power loss are kept as constraints. This version of the
OPF problem is also known as the environmental economic
dispatch (EED) problem [35].

Minimize CF (PG,VG) =

NG∑
i=1

(
ai + biPGi + ciP

2
Gi

)
, (14)

Minimize CE(PG,VG) =

NG∑
i=1

(
αi + βiPGi + γiP

2
Gi + ζie

(λiPGi)
)
,

(15)

Subject to
Nbus∑
i=1

(Pi − PD − PL) = 0, (16)

V Dmin ≤ V D ≤ V Dmax, PLmin ≤ PL ≤ PLmax,

QGimin ≤ QGi ≤ QGimax, Psmin ≤ Ps ≤ Psmax,

Vsmin ≤ Vs ≤ Vsmax, VPQimin ≤ VPQi ≤ VPQimax,

where CF is the fuel cost, CE is the emission cost, NG is the
number of generators, PGi is the real power output and VGi

is the voltage output of the ith generator, (ai, bi, ci) are the
fuel cost coefficients, (αi, βi, γi, ζi, λi) are the emission cost
coefficients. V D is the total voltage deviation of all the load
buses, PL is the total real power loss, QGi is the reactive power
output of the ith generator, Ps is the real power output and Vs
is the voltage output of the slack bus, VPQi is the voltage at
the ith load/P-Q bus. PD is the power demand and Nbus is the
total number of buses. A load flow analysis must be performed
to satisfy the equality constraint. We use MATPOWER [36] as
the load flow solver. We consider IEEE 118-bus and 300-bus
systems in this study.

A. Experimental settings

The bus details, along with the numbers of decision vari-
ables and constraints, are given in Table VII. The types of
decision variables and their corresponding ranges are given in
Table VIII.

TABLE VII: IEEE bus system specifications.

System Generators Transformers Load
bus

Decision
variables

Constraints

IEEE 118-bus 54 11 64 115 240
IEEE 300-bus 69 107 231 243 604

TABLE VIII: OPF decision variable types and ranges.

Variable Range
Generator power output (PGi) [30, 100]

Generator voltage (VGi) [0.95, 1.05]
Transformer tap ratio (Ti) [0.9, 1.1]

Experimental settings are the same as in the stepped beam
problem except that the population size is set to be 50 and the
maximum number of generations is set as 400 for both IEEE
118 and 300-bus systems. From Table I, ρi and εij are set as
1, and emin

ij is set to 0.01. Two variable groups are defined
and shown in Table IX.
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Fig. 9: ND front and hypervolume plots obtained with RU2 and power law repair agents for IEEE 300-bus OPF problem.

TABLE IX: OPF variable groups.

Group Variable Type Variable Indices
118-bus 300-bus

Gopf1 Generator power and voltage [1-104] [1-136]
Gopf2 Transformer tap ratio [105-115] [137-243]

B. Experimental results and discussion

Tables X and XI show the optimization results for the IEEE
118- and 300-bus systems, respectively. The ND front obtained
in a single run using four power law repair methods for RU2
are shown in Figure 9a for the IEEE 300-bus system. The
corresponding median HV plots over the course of the opti-
mization are shown in Figure 9b. Similar behavior is observed
for the 118-bus system (see supplementary document).

1) General observations: Base NSGA-II is outperformed
by both the power law and inequality-based repair agents.
Good performance with low population size is obtainable by
IK-EMO, making it the better choice for this problem.

2) Power law vs inequality rules: For both problem cases,
a power law repair operator is the best performer for each user,
as in the stepped beam problem. Inequality-rule-based repair
operators in general result in worse performance compared
to power-law-based repair operators. This, as in the stepped
beam problem, is a result of the power laws being able to
more accurately model the inter-variable relationships.

3) Best performing algorithm for each user: For both the
118 and 300-bus problems, PL-RA-E performance is the best
or statistically similar to the best for all the cases. Thus,
an ensemble repair agent is a good choice for automatically
selecting the best repair agent according to the situation.

Figure 9 illustrates the results with RU2 combined with the
power law repair operators for the IEEE 300-bus case. The
difference in the quality of solutions obtained after 20,000
FEs is prominent in the IEEE 300-bus case. In the median
HV plots it is seen that the number of FEs required to reach
HVT for PL-RA-E is the least, followed by PL-RA-2.

4) Relative performance of each rule usage scheme: It can
be seen from Tables X and XI that RU2 produces the best
performance in 9 out of 10 cases for the IEEE 118-bus case,

and 8 out of 10 cases for the IEEE 300-bus case. This shows
that in terms of rule usage, using too few or too many of the
learned rules is detrimental to the optimization performance
in general, which is similar to the conclusions made in the
stepped beam design problems.

5) Mixed relation repair agents: The mixed relation re-
pair agent PL-RA-E+IQ-RA-E, has statistically similar perfor-
mance to the best algorithm for each user and both problem
cases. As in the stepped beam problems, the worse perfor-
mance of the inequality repair operators does not hinder the
performance of the mixed relation operators.

VI. TRUSS DESIGN PROBLEM

Finally, we consider a commonly-used truss design problem
involving two objectives, and 1,416 highly nonlinear con-
straints. The truss has 1,100 members and 316 nodes, making
a total of 1,179 variables, making it a large-scale problem.
The details of the problem description are provided in the
supplementary document.

Experimental settings are similar to those of the previous
problems. Population size is set to 100 and the maximum
number of generations is set as 10,000. Thus, the total compu-
tational budget comes out to be 1 million FEs. From Table I,
ρi and εij are set as 0.1, and emin

ij is set to 0.01. Multiple
variable groups are defined for this problem based on the
relative location and alignment of the beams as shown in
Table XII.

A. Experimental results and discussion

Results are presented in Table XIII. Base NSGA-II is
outperformed by most repair operators. As in the previous two
problems, power-law-based approaches perform better than
inequality-based approaches, but the ensemble-based approach
performs overall the best with an intermediate use of repair
(RU2). More information are put in supplementary document.

VII. SUMMARY OF RESULTS

For every problem we have a total of 11 different algorithms
including base NSGA-II and 10 repair schemes. For each
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TABLE X: FEs required to achieve HVT = 0.90 for IEEE 118-bus system.

Rule Type Repair agent RU1 RU2 RU3 RU4
None None (base) 20k (p=0.0350) 20k (p=0.0322) 20k (p=0.0310) 20k (p=0.0430)

Power
law rule

PL-RA1 17.6k ± 0.2k (p=0.0101) 17.1k ± 0.9k (p=0.0417) 17.8k ± 0.5k (p=0.0119) 18.0k ± 0.2k (p=0.0313)
PL-RA2 17.4k ± 0.4k (p=0.0180) 17.1k ± 0.4k (p=0.0205) 17.4k ± 0.2k (p=0.0156) 17.6k ± 0.3k
PL-RA3 18.0k ± 0.5k (p=0.0152) 17.6k ± 0.7k (p=0.0398) 18.0k ± 0.4k (p=0.0117) 18.2k ± 0.6k (p=0.0086)
PL-RA-E 16.1k ± 0.4k 15.9k ± 0.5k 16.4k ± 0.3k 17.9k ± 0.2k (p=0.0727)

Inequality
rule

IQ-RA1 18.6k ± 0.4k (p=0.00119) 18.9k ± 0.7k (p=0.0255) 19.1k ± 0.1k (p=0.0341) 19.1k ± 0.5k (p=0.0338)
IQ-RA2 18.2k ± 0.2k (p=0.0065) 18.1k ± 0.5k (p=0.0021) 18.8k ± 0.3k (p=0.0279) 19.0k ± 0.1k (p=0.0332)
IQ-RA3 19.3k ± 0.4k (p=0.0138) 19.2k ± 0.2k (p=0.0018) 19.5k ± 0.3k (p=0.0275) 19.5k ± 0.4k(p=0.0320)
IQ-RA-E 18.5k ± 0.1k (p=0.0129) 18.4k ± 0.4k (p=0.0121) 18.8k ± 0.3k (p=0.0116) 18.9k ± 0.2k (p=0.0112)

Mixed
rule

PL-RA2 + IQ-RA2 17.8k ± 0.3k (p=0.0422) 17.5k ± 0.4k (p=0.0113) 17.8k ± 0.5k (p=0.0241) 18.8k ± 0.1k (p=0.0348)
PL-RA-E + IQ-RA-E 16.4k ± 0.1k (p=0.0903) 16.2k ± 0.2k (p=0.0667) 16.7k ± 0.2k (p=0.0744) 17.8k ± 0.2k (p=0.0919)

TABLE XI: FEs required to achieve HVT = 0.79 for IEEE 300-bus system.

Rule Type Repair agent RU1 RU2 RU3 RU4
None None (base) 20k (p=0.0141) 20k (p=0.0221) 20k (p=0.0316) 20k (p=0.0031)

Power
law rule

PL-RA1 19.4k ± 0.3k (p=0.0178) 19.1k ± 0.1k (p=0.0110) 19.2k ± 0.2k (p=0.0035) 19.8k ± 0.1k (p=0.0063)
PL-RA2 18.3k ± 0.4k (p=0.0653) 18.0k ± 0.1k (p=0.0318) 18.4k ± 0.3k (p=0.0239) 18.9k ± 0.4k (p=0.0157)
PL-RA3 19.6k ± 0.3k (p=0.0413) 19.3k ± 0.2k (p=0.0212) 19.4k ± 0.1k (p=0.0181) 19.4k ± 0.3k (p=0.0025)
PL-RA-E 17.5k ± 0.5k 16.4k ± 0.7k 17.7k ± 0.6k 18.0k ± 0.4k

Inequality
rule

IQ-RA1 19.7k ± 0.2k (p=0.0315) 19.5k ± 0.1k (p=0.0033) 19.7k ± 0.1k (p=0.0059) 19.8k ± 0.1k (p=0.0024)
IQ-RA2 19.6k ± 0.1k (p=0.0122) 19.5k ± 0.2k (p=0.0015) 19.5k ± 0.1k (p=0.0073) 19.7k ± 0.2k (p=0.0022)
IQ-RA3 19.7k ± 0.2k (p=0.0286) 19.8k ± 0.1k (p=0.0074) 19.6k ± 0.2k (p=0.0012) 19.8k ± 0.1k (p=0.0016)
IQ-RA-E 18.9k ± 0.3k (p=0.0252) 18.2k ± 0.2k (p=0.0104) 19.0k ± 0.1k (p=0.0076) 19.2k ± 0.2k (p=0.0032)

Mixed
rule

PL-RA2 + IQ-RA2 18.0k ± 0.4k (p=0.0991) 17.8k ± 0.6k (p=0.0136) 18.0k ± 0.4k (p=0.0503) 18.4k ± 0.2k (p=0.0528)
PL-RA-E + IQ-RA-E 17.7k ± 0.3k (p=0.1013) 16.7k ± 0.9k (p=0.0811) 17.8k ± 0.3k (p=0.0713) 18.2k ± 0.3k (p=0.661)
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Fig. 10: ND fronts and hypervolume plots obtained by IK-EMO with RU2 and power law repair agents for 1,100-member
truss design problem.

TABLE XII: Variable groups for the 1,100-member truss cases.
Each group has comparable variables having identical units
and scales.

Group Variable Type Variable Indices
Gt1 li of vertical members [1101− 1179]
Gt2 ri of top longitudinal members [79− 156], [235− 312]
Gt3 ri of bottom longitudinal members [1− 78], [157− 234]
Gt4 ri of vertical members [313− 391]

problem, ranking based on FEs to achieve the target HV
for four users is summarized in Table XIV. An algorithm
with statistically similar performance to the best performing
algorithm is assigned a rank of 1. More details are presented
in the supplementary document. It is seen that the top ranked

algorithm is PL-RA-E followed by the mixed PL-RA-E+IQ-
RA-E, highlighting the superiority of the ensemble approach.
PL-RA2 comes in the third place, showing that a moderate
level of rule adherence provides the optimal performance.

VIII. COMPARISON WITH OTHER MOEAS

In the previous sections, the performance enhancement of
NSGA-II with IK-EMO is investigated. A more complete
analysis requires comparison with other learning based EMO
algorithms which have attempted to learn and use the features
of the search space or the fitness landscape properties [37].
Any such algorithm used for a performance comparison with
IK-EMO-based NSGA-II should also be able to handle con-
strained and multi-objective optimization problems. Based on
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TABLE XIII: FEs required to achieve HVT = 0.80 for 1,100-member truss.

Rule Type Repair agent RU1 RU2 RU3 RU4
None Base 1.0M (p=0.0083) 1.0M (p=0.0016) 1.0M (p=0.0101) 1.0M (p=0.0094)

Power law
rule

PL-RA1 878.2k ± 8.4k (p=0.0061) 856.4k ± 8.6k (p=0.0131) 886.2k ± 13.4k (p=0.0130) 889.2k ± 6.0k (p=0.0025)
PL-RA2 856.0k ± 11.2k (p=0.0132) 730.2k ± 15.4k (p=0.0270) 788.2k ± 10.4k 803.2k ± 17.8k
PL-RA3 963.6k ± 21.0k (p=0.0023) >1.0M >1.0M >1.0M
PL-RA-E 703.6k ± 9.0k 684.4k ± 18.8k 793.0k ± 16.2k (p=0.1024) 810.0k ± 24.0k (p=0.1151)

Inequality
rule

IQ-RA1 963.0k ± 15.2k (p=0.0060) 886.0k ± 20.2k (p=0.0140) 872.0k ± 23.0k (p=0.0154) 899.2k ± 8.2k (p=0.0313)
IQ-RA2 934.4k ± 12.4k (p=0.0038) 842.4k ± 19.6k (p=0.0243) 853.2k ± 18.4k (p=0.0469) 902.0k ± 6.0k (p=0.0339)
IQ-RA3 >1.0M 979.0k ± 29.0k (p=0.0212) >1.0M >1.0M
IQ-RA-E 862.2k ± 27.0k (p=0.0056) 853.2k ± 22.2k (p=0.0319) 831.4k ± 13.2k (p=0.0323) 854.4k ± 11.8k (p=0.0215)

Mixed rule PL-RA2 + IQ-RA2 712.4k ± 10.8k (p=0.0689) 695.2k ± 14.8k (p=0.0819) 802.0k ± 12.4k (p=0.0776) 816k ± 10.4k (p=0.0529)
PL-RA-E + IQ-RA-E 705.2k ± 9.4k (p=0.0722) 691.4k ± 12.2k (p=0.0822) 797k ± 13.0k (p=0.0613) 810.4k ± 23.0k (p=0.0690)

TABLE XIV: Ranking of different repair agents on multiple problems. A detailed breakdown is provided in the supplementary
material.

Problem Base PL-RA1 PL-RA2 PL-RA3 PL-RA-E IQ-RA1 IQ-RA2 IQ-RA3 IQ-RA-E PL-RA2
+IQ-RA2

PL-RA-E
+IQ-RA-E

Beam 78-var 11 5 4 9 1 8 6 10 7 3 2
Beam 118-var 11 5 3 6 1 8 7 9 10 4 2
Power 115-var 11 4 3 6 1 9 7 10 8 5 2
Power 243-var 11 6 4 7 1 9 8 10 5 3 2
Truss 1179-var 9 7 2 10 1 8 6 10 5 4 2

Final Rank 11 5 3 8 1 9 6 10 7 4 2

these requirements, we have chosen three recently-proposed
algorithms: RVEA [38], AGE-MOEA [39], and BiCo [40].
These algorithms use some form of adaptation methods to
execute a more efficient search. PlatEMO [41], which provides
a MATLAB implementation of these algorithms, is used here.

For IK-EMO, the parameters are kept the same as the pre-
vious experiments. PL-RA-E with RU2 is chosen as the repair
scheme for IK-EMO, with NSGA-II as the core optimization
algorithm. HVT is set as the final median HV obtained by
base NSGA-II.

Table XV shows the FEs required to achieve HVT by all
the algorithms for each problem. It is seen that IK-EMO
with PL-RA-E statistically outperforms most of the other
algorithms by reaching the HVT faster. AGE-MOEA and BiCo
are able to statistically match the IK-EMO’s performance for
only 78-variable beam and 115-variable OPF problems. The
performance difference between IK-EMO and other methods
is more significant for the large-scale 1,179-variable truss
problem. It should be noted that the other algorithms have
a better performance than the base NSGA-II on almost all
problems. Thus, the superior performance of IK-EMO is not
a product of the underlying NSGA-II alone, but of the effective
VRG-based learning and repair methods as well. In addition,
the user also has knowledge of functional relationships among
design variables which can be used for different variants of
the same problem. Thus, IK-EMO is a better choice over the
other algorithms if knowledge interpretability and re-usability
are desired and stays as a modular concept which can be
embedded easily to other EMO/EMaO methods.

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed the IK-EMO framework
which interleaves interactive optimization with knowledge
augmentation to obtain better quality solutions faster. Power

law, inequality, and mixed rules are extracted, together with
their degrees of statistical adherence, from the ND solutions
at a regular interval of generations. A computationally effi-
cient graph data structure-based (VRG) knowledge processing
method has been proposed to store and process multiple pair-
wise variable interactions. A user is then expected to provide
a ranking of the learned rules based on his/her perception of
the validity of the rules. A repair agent has been proposed to
utilize the VRG with user-supplied ranking to repair offspring
solutions. The study has created six repair schemes with
three different degrees — tight, medium, and loose – of rule
adherence. A mixed power law and inequality based repair has
also been used. Finally, three ensemble-based repair schemes
which adaptively use power law, inequality or both have been
proposed. These 10 repair schemes have been implemented
with four different rule usage schemes RU1-RU4, using 10%
(conservative), to 100% (liberal) of the learned rules.

The proposed framework has been applied to three con-
strained large-scale two-objective practical problems: 78- and
118-variable stepped beam design problems, 115- and 243-
variable optimal power flow problems, and a 1,179-variable
truss design problem.

Experimental results on all problems have consistently
shown that (i) usage of a moderate number of rules (20%)
combined with a moderate degree of rule adherence produces
a better performance compared to other individual repair
operators, and (ii) power law rules, individually, produce better
performance than inequality rules. Moreover, ensemble-based
repair operators provide the best performance overall. Use of
ensembles eliminates the need to experiment to find the right
rule adherence for a new problem. IK-EMO is also able to
work with very low population sizes, even for a large-scale
problem. IK-EMO has also shown superior performance over
other EMOs which adapt to the nature of the decision space
or fitness landscape. IK-EMO can also help users learn about
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TABLE XV: FEs required to achieve the HVT for all the practical problems over 20 runs. HVT is set as the final median HV
of base NSGA-II. Problem-wise best-performing algorithm is marked in bold. Algorithms with statistically similar performance
to the best algorithm for each problem are marked in italics. The corresponding Wilcoxon p-values are given in braces.

Problem HVT NSGA-II IK-EMO+PL-RA-E RVEA AGE-MOEA BiCo
Beam 78-var 0.95 20.0k (p=0.0011) 14.6k ± 0.1k 18.7k ± 0.8k (p=0.0146) 14.8k ± 0.5k (p=0.0701) 14.8k ± 0.3k (p=0.0614)
Beam 118-var 0.76 20.0k (p=0.00121) 14.7k ± 0.3k 19.3k ± 0.4k (p=0.0210) 15.4k ± 0.2k (p=0.0113) 15.2k ± 0.4k (p=0.0405)
Power 115-var 0.90 20.0k (p=0.0013) 15.9k ± 0.5k 19.6k ± 0.8k (p=0.0098) 16.3k ± 0.3k (p=0.0563) 16.4k± 0.2k (p=0.0561)
Power 243-var 0.79 20.0k (p=0.0056) 16.4k ± 0.7k >20k 18.1k ± 0.5k (p=0.0297) 18.3k ± 0.1k (p=0.0381)
Truss 1179-var 0.80 1.0M (p=0.0115) 684.4k ± 18.8k 903.0k ± 12k (p=0.0013) 723.0k ± 22k (p=0.0021) 717.4 ± 12k (p=0.0488)

unknown relations between the decision variables.
This study opens up a number of avenues for future work.

The scope of knowledge can be increased to include the
objective and constraint functions as well, in line with existing
innovization literature. Studies can be performed using rule
types other than the ones considered here. For EMO algorithms
using some form of adaptation mechanisms, repair methods
can interfere with the natural evolution of optimal solutions.
Studies need to be performed to understand how the repair
agents affect the operation of adaptation-based algorithms. In
this work, the learning and repair intervals are kept fixed. The
effect of these parameters need to be studied more closely.
In many problems, a rule may not stay valid across the entire
Pareto-optimal front. Locally present rules may exist in certain
parts of the Pareto-optimal front [42]. Ways to extract local
rules and repair a MOEA’s offspring population members
accordingly will introduce additional challenges but may result
in faster convergence. The interactive and knowledge-based
approach should also be implemented to other EMO/EMaO
algorithms to observe its effect in improving convergence
speed.

Traditional user preference information including, but not
limited to, relative importance of objective functions and
preferred regions of the Pareto-optimal front, can also poten-
tially be integrated into this type of framework. Nevertheless,
this study has clearly demonstrated a viable way to extract
variable interaction knowledge from intermediate optimization
iterations and to use relevant and vetted knowledge back in
the optimization algorithm for updating offspring solutions to
constitute a computationally fast search process. More such
practice-oriented studies must now accompany evolutionary
optimization applications to make them more worthy for
practical problem solving tasks.
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