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Abstract—Evolutionary multi-objective and many-objective
optimization (EMO and EMaO) algorithms are increasingly
being used to identify the true shape and location of the Pareto-
optimal front using a few representative well-converged and well-
distributed solutions. The reason for their popularity is due
to their ability to provide a better understanding of objective
relationships for optimal solutions, and also to facilitate the
choice of a preferred solution using an interactive or post-
optimal multi-criterion decision analysis. However, since EMO
and EMaO algorithms are stochastic, a single application may
not provide a true representative set with a desired number of
Pareto solutions reliably in repetitive runs and importantly with a
well-distributed set of solutions. In this paper, we propose a multi-
stage framework involving reference-vector based evolutionary
multi- and many-objective algorithms (MuSt-EMO and MuSt-
EMaO) that attempts to recursively rectify shortcomings of
previous stages by careful executions of subsequent stages so
that a prescribed number of well-distributed and well-converged
solutions are achieved at the end. The proposed multi-stage
approach is implemented to a number of popular reference vector
based EMO/EMaO algorithms and is applied on various multi-
and many-objective test and real-world problems.

Index Terms—Multi-objective optimization, evolutionary algo-
rithms, Pareto front, Gap-filling method.

I. INTRODUCTION

EVOLUTIONARY algorithms (EAs) are regularly being
used to find a set of trade-off Pareto solutions for multi-

and many-objective optimization (EMO and EMaO) problems.
However, there are a number of known shortcomings of EMO
and EMaO algorithms which have been recognized in the
literature in achieving adequate convergence and distribution
of non-dominated solutions, but still stay as open issues
required to be resolved using systematic approaches.

First, since EMO and EMaO algorithms are stochastic
in nature, a single application may not always produce a
reproducible well-distributed and well-converged set of non-
dominated (ND) solutions (Pareto or near-Pareto solutions)
over multiple applications. EMO researchers often use mul-
tiple runs, each starting with a different initial population and
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Cláudio Lúcio V. Lopes is with Postgraduate Program in Mathemat-
ical and Computational Modeling, CEFET-MG, Brazil (email: claudiolu-
cio@gmail.com)

Flávio V. C. Martins is with the Computer Department at the Centro
Federal de Educação Tecnológica de Minas Gerais, 30510-000 Brazil (e-mail:
flaviocruzeiro@cefetmg.br).

Elizabeth F. Wanner is with the Computer Department at the Centro
Federal de Educação Tecnológica de Minas Gerais, 30510-000 Brazil (e-mail:
efwanner@cefetmg.br).

present a median or average performing result. This is achieved
by presenting the ND set obtained by the median or mean-
performing hypervolume (HV) or inverse generational distance
(IGD) run, or by using a more sophisticated attainment surface
method [1].

Second, EMO and EMaO algorithms are expected to pro-
duce a prescribed number of ND solutions, usually dictated
by the chosen population size N (and/or number of reference
vectors R) [2], [3], although the number of solutions needed
to adequately represent a ND set may not be known a priori.
But every EMO or EMaO run may not produce the exact
number of ND points as desired. This can be mainly due to
two reasons. First, the stochasticity involved in an algorithm’s
operators may have failed to find an ND solution for every
specified reference vector (RV). Second and more likely, since
the exact location and shape of the Pareto front are not known
before a run, all specified reference vectors may not associate
with an Pareto solution, thereby causing less than |R| ND
solutions to be found at the end of the run. These issues
make a comparison between two sets of ND solutions difficult.
For example, a reliable comparison using the HV metric or
any uniformity measure expects both sets to have an identical
number of ND solutions. Moreover, since a RV-based EMO or
EMaO algorithm is designed to process |R| (usually equal to
the population size N ) reference vectors, fewer ND solutions
in a population cause a waste of overall computational effort
and memory. Third, a set of ND solutions may indicate certain
gaps in the apparent ND front discovered by an EMO or EMaO
algorithm. A gap in the ND front may artificially arise from
discovering fewer points in a certain area of the Pareto front
or a gap may truly exist in the Pareto front. Usually, a gap-
confirming method [4] with a focused EMO [5] or focused
EMaO [6] is employed to confirm the true existence of a
gap. However, if the true or artificial existence of gaps can
be confirmed and repaired during the optimization process,
and not as a post-optimal process, the resulting EMO/EMaO
application is expected to be more efficient and reliable.

Thus, although these known shortcomings are addressed
with certain other additional execution of specific tasks, it
would be desired if the EMO/EMaO algorithms are able to
find a more reliable and reproducible ND set having exactly
the desired number of a uniformly distributed set of points on
the entire Pareto front with a clear indication of true gaps and
holes, if any.

In the recent past, EMO researchers have emphasized mak-
ing a balance between convergence and diversity in finding
final ND solutions and proposed multi-phase EMO and EMaO
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algorithms. Balanced NSGA-III (B-NSGA-III) [7] approach
identified one of the three possible stages – extreme point
identification phase, uniform diversity enforcement phase, and
local improvement phase. A recent study [8] has followed
three different distinct phases – convergence phase, diversity
preservation phase, and convergence-diversity phase. These
approaches focus on identifying gaps and holes within their
obtained ND front either explicitly or through their innovative
diversity evaluation metrics. But, none of these methods has
focused on finding a pre-specified number of ND solutions,
which are evaluated during the optimization process to possess
the convergence and diversity properties without any artificial
holes or gaps as a collection of final solutions with a given
number of solution evaluations.

Recent archive-based EMO/EMaO methods propose to save
all ND solutions from every generation from the start to the
end of a run in an archive and then choose the desired number
of ND solutions from the archive as the outcome of the overall
algorithm [9], [10]. Expecting that the archive will grow into
a huge set, selection of a few solutions from it will be time-
consuming. While it may be useful for practical problems
requiring to utilize a small budget of solution evaluations,
such a strategy does not demand a careful balance between
convergence and diversity among population members to be
carried out at every iteration, making EMO/EMaO methods
less appealing in an algorithmic sense.

In this paper, we attempt to address these issues by propos-
ing a three-stage framework to improve the performance of
existing evolutionary multi and many-objective optimization
algorithms. The first stage attempts to find a set of ND
solutions roughly on the entire Pareto front by using a standard
EMO or EMaO algorithm. Based on the achieved distribution
of solutions, the second stage focuses on to fill the apparent
gaps and holes not covered by the first stage. In the third
stage, solutions from both stages are combined, and a final
EMO/EMaO algorithm is run in two iterations with a well-
estimated number of RVs to arrive at the exact desired number
of final ND solutions having a better convergence and unifor-
mity. Later stages use populations obtained at the previous
stages to maintain continuity and also to reduce overall com-
putational complexity. Moreover, repeated emphases at critical
regions of the search space ensure that the obtained solutions
are reliably close to the true Pareto front.

In the remainder of the paper, we briefly review of the
main focus in EMaO algorithms and motivate the need for a
multi-stage framework involving EMaO algorithms for reliably
finding a specific number of ND solutions in Section II. The
multi-stage framework is presented in detail next in Section III
with the help of a constrained test problem and a unconstrained
practical problem. Results on a number of three to 10-objective
problems are presented in Section IV. A parametric study of a
single hyper-parameter of the proposed framework is presented
in Section V. Finally, conclusions of this extensive study are
summarized in Section VI.

II. EXISTING EVOLUTIONARY ALGORITHMS AND
MOTIVATION FOR THIS STUDY

Evolutionary algorithms have a clear niche in finding mul-
tiple Pareto solutions for multi- (having two or three objec-
tives) and many-objective (having more than three objectives)
optimization problems in a single run [11], [12] compared to
their traditional counterparts which mostly work by finding
a single Pareto solution in a generational manner [13]. In
EMO and EMaO algorithms, usually an emphasis for non-
dominated solutions to achieve convergence and an emphasis
for diverse objective solutions to achieve a uniform distribu-
tion are established either hierarchically or simultaneously.
In EMaO algorithms, a set of pre-specified normalized RVs
are used to help achieve a better distribution of solutions.
Despite their ever-increasing popularity in both developmental
and application studies, there are a few shortcomings which
we highlight here, handling of which becomes the main
motivation of this paper.

A. Reliable Convergence and Uniform Distribution of Solu-
tions

EMO and EMaO algorithms start with an initial population
and use stochastic search operators to iteratively improve
two aspects – convergence towards the Pareto front and
maintain a uniform distribution of solutions in the objective
space. Convergence aspect is achieved mostly by providing
more selection pressure for non-dominated solutions. Diver-
sity of solutions is achieved by various means, including a
crowding measure estimating the number of solutions in the
neighborhood. Original MOEA/D [14] proposed the diversity
maintenance through a pre-defined uniform set of reference
vectors1 in the objective space originating from the ideal point
and preferring solutions that are close to RVs and also close to
the ideal point. This revolutionary idea has been particularly
found to work well for many-objective problems.

While two aspects – convergence and diversity – are
undoubtedly the main emphasis of any EMO and EMaO
algorithms, their order and extent of use within an algorithm
are not yet settled. Some algorithms (such as, NSGA-II [16],
NSGA-III [2], SPEA2 [17] and others) use a hierarchical
‘convergence first, diversity second’ strategy, whereas recent
studies have raised questions about this strategy [18]. Too
much focus on convergence early on may lead to a loss of
diversity in population members, thereby making a diversity
enhancement difficult in certain problems. It is clear that
a ‘diversity first, convergence second’ strategy may not be
that useful, as although a well-distributed set of solutions is
possible to achieve early on the search space far away from
the Pareto front, it may be difficult to maintain the diversity
all along towards the convergence phase of the algorithm at
the latter part of the run. However, a number of studies have
proposed the need to strike a balance between convergence
and diversity from start to finish during a run.

The two-archive evolutionary algorithm for constrained
multi-objective optimization, C-TAEA, proposed in [19], tries

1Recent studies suggested non-uniform distribution of reference vectors
based on Pareto front shapes [15].
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to balance convergence and uniformity of solutions in a two-
archive procedure that simultaneously maintains two popula-
tions: the convergence archive (CA) and the diversity archive
(DA). The former supports the convergence and feasibility in
the evolutionary process while the latter explores areas that the
convergence archive has not exploited yet. In this algorithm,
the reference lines are also used in the update mechanism
of the CA and DA. We use this RV-based algorithm as a
potential method for improvement by our proposed multi-stage
framework.

The MOEA/D-AWA [20] uses a two-stage strategy to deal
with the generation of the weight vectors. In the first stage,
pre-determined weight vectors are used until the population is
considered converged. Then, in the second stage, some weight
vectors are adjusted based on deleting the overcrowded sub-
problems and inserting new ones in the sparse areas. However,
such insertion may not satisfactorily adapt to the problems
with disconnected Pareto fronts.

In [7], B-NSGA-III is presented as a multiphased many-
objective evolutionary optimization algorithm capable of au-
tomatically balancing convergence and diversity of population
members. The algorithm uses three phases dynamically. In
phase 1, it looks for extreme points. In phase 2, it tries to cover
gaps and extend extreme points found in the non-dominated
front. And finally, in phase 3, it concentrates the efforts
towards helping poorly converged non-dominated solutions.
The algorithm can interchange from one phase to another if
population properties trigger for such a change. Results show
superior performance when compared to several state-of-the-
art algorithms in a set of benchmark problems. However, this
approach requires an internal local search method, making the
overall algorithm not easy to compare with pure evolutionary
algorithms for a fixed budget of solution evaluations.

In [21], a multi-stage constrained multi-objective evolu-
tionary algorithm, CMOEA-MS, is proposed. The algorithm
exclusively focuses on constrained problems and balances ob-
jective optimization and constraint satisfaction, giving different
priorities in each phase. The first phase indicates that most
solutions are infeasible, and these solutions can support the
population to leave the infeasible regions. The second phase
points out that most solutions are feasible, so more feasible
solutions can be found to help the population spread along
the feasible boundaries. The general strategy uses different
priorities of objectives and constraints in the two stages. The
work presents some experiments based on constrained problem
sets. It does not mainly address the diversity/uniformity of
solution sets.

A many-objective evolutionary algorithm, dubbed as CLIA,
combining two interacting processes, Cascade Clustering (CC)
and Reference Point Incremental Learning, is proposed in
[22]. The cascade clustering (CC) uses the non-dominated
and dominated solutions to create clusters, sort, and select
solutions for a better convergence and diversity. CC uses
reference lines to create and sort the solutions. In the second
process, a support vector machine (SVM) model is applied
in an incremental learning approach, classifying the refer-
ence points as active/inactive and creating denser reference
lines (generated on the unit simplex) and is used in the

optimization process. The incremental SVM model adjusts
the RVs during the evolution process. By hybridizing an
evolutionary approach with SVM, an adaptive adjustment of
RVs provides a better distribution of ND solutions. We also
integrate this algorithm with our multi-stage framework to
improve its performance. RVRL-EA [23] also adapts reference
vectors using reinforcement learning. However, it does not
use a multi-stage framework and can only be integrated with
decomposition-based algorithms. Experiments have shown that
the algorithm was competitive compared to CLIA.

MSEA [8], a multistage EMaO algorithm, is designed for
improving the diversity performance of EMaO. In Stage 1, the
population is assessed based on a convergence metric. Then, in
Stage 2, the diversity is assessed again; a particular selection
algorithm generates offspring to replace one solution in the
population. Finally, in stage 3, there is a mating selection for
a parent with good convergence and diversity. The authors
present results for multi-objective problems only, and the
method presents a cubic computational complexity related to
the number of solutions. The algorithm’s extension to many-
objective problems were not demonstrated and also MSEA
does not use any RV. Thus, we exclude its comparison with
our proposed framework.

These existing multi-stage EMaO algorithms attempt to
stress convergence, diversity, or both, whenever needed during
the evolutionary process, but lack significant actions towards
reinforcing the true convergence and diversity of evolving
solutions. In the single-objective evolutionary algorithm litera-
ture, restarts are often employed to help an algorithm to escape
from premature convergence and also to reinforce convergence
to true optimal solutions. However, due to multi-faceted goals
in multi-objective optimization, restarts must have different
goals. From a prematurely stuck existing ND solution set, how
would a restart be initiated so that convergence, diversity, or
both can be achieved in the next phase, depending on what
is lacking in the stuck set of population members? Such a
restart strategy should not only be disruptive to the previous
stuck phase and, if done properly, must address various aspects
of multi-objective problem solving in a systematic manner
and help produce a more reliable set of ND solutions. Our
proposed multi-stage framework is a step toward this effort.

B. Fewer than Expected Number of Solutions

In an EMO or EMaO, we usually target a set (say N )
of well-distributed and well-converged ND solutions. The
parameter N is user-supplied. If a run produces less than N
ND solutions at the end, there are at least two difficulties.
First, it does not fulfill the stated requirement and second, it
may be difficult to compare or statistically come up with a
single performance measure for two or more competing such
sets having different number of points. No existing method
guarantees this aspect and most often, solutions from a big
archive are chosen to extract exactly N solutions [24]. Since
an archive is not usually directly used in the evolutionary
process, this may not produce the best possible distribution
achievable with N ND points and, moreover, dilutes the spirit
of algorithmic search for N well-distributed solutions.
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C. Gaps in the Obtained Non-dominated Front

Some algorithms were proposed to identify apparent gaps
in obtained Pareto front and employ additional tasks to �ll
the gaps. In [4], a three-step algorithm was proposed to deal
with identifying and �lling gaps in obtained ND fronts. In
the �rst step, a well-distributed and converged solution set is
obtained (using an EMO/EMaO algorithm). The second step
tries to identify whether there are real gaps (based on inner
problem characteristics) or not. Two metrics are proposed to
help in this step. The third step attempts to �ll the gap based
on the outcome of the second step. This study only attempted
to �nd and �ll gaps, but did not focus on �nding a pre-de�ned
number of ND points, nor did the study make the steps use
points from previous steps to make the overall approach more
computationally ef�cient.

Based on the above discussions, we set our goal of arriving
at a multi-stage framework involving an EMO/EMaO algo-
rithm having the following properties:

1) A coherent and seamless three-stage algorithmic frame-
work with a possibility of skipping latter stages based on
the number of well-distributed ND solutions achieved,

2) A multi-stage framework that attempts to �nd as close to
the desired number of ND points and having as uniformly
distributed as possible on the entire feasible Pareto front,

3) A multi-stage framework that repeats its search among
critical parts of the search space to ensure a reliable set
of well-converged and well-distributed ND points, and

4) A multi-stage framework which is pragmatic in using
existing seed solutions, implementable with any existing
reference vector based EMO/EMaO algorithm, executed
for a budget of solution evaluations, and controlled with
a single well-tuned parameter.

III. PROPOSEDMULTI -STAGE FRAMEWORK

Our proposal is a multi-stage framework that improves the
performance of a speci�c reference vector based EMO/EMaO
algorithm (such as, NSGA-III [2] or MOEA/D [14]) to �nd
a prescribed number of repeatable, well-converged and well-
distributed set of Pareto solutions (N ). The chosen RV-based
EMaO algorithm uses a set of reference vectors (R ) usually
equal to the population sizeN , an initial seed population
P seed of any size, and the preset number of solution evalua-
tions (SEs)T, and produces a set of non-dominated solution
set S of size N . Note also that the size of the supplied
initial populationP seed need not be same asN or jR j. The
initial population generation operator creates exactlyN =
jR j population members at the �rst generation by the EMaO
algorithm's operators fromP seed . The proposed MuSt-EMaO
uses three stages, dividingT SEs among them satisfying
T = T1 + T2 + T3, whereTi is the number of SEs for the
i -th stage. The pseudo-code of the proposed MuSt-EMaO is
presented in Algorithm 1.

Stage 1 of MuSt-EMaO framework makes the �rst attempt
to generate an evenly distributed ND solution set using an
existing reference vector based approach (the baseline EMaO
algorithm). We apply the Riesz s-energy method to create
exactlyN reference lines (R 1 ) by GenerateReferenceVectors

Algorithm 1: MuSt-EMaO Framework.
Input: EMaO (optimization algorithm),N (desired number

of solutions),T = ( T1 ; T2 ; T3) (number of solution
evaluations),P seed (initial population)

Output: S (a reliable and well-distributed ND solution set)
1 // Stage 1
2 R 1  GenerateReferenceVectors(N );
3 S1  EMaO(R 1 , P seed , T1);
4 [ST 1

1c , R 1c ]  Classify(R 1 , S1 );
5 if jST 1

1c j < N then
6 // Stage 2
7 S2  EMaO(R 1c , S1 , T2);
8 S12  NonDominance(ST 1

1c [ S2 );
9 [S0

3c , R 12 c ]  Classify(R 1 , S12 );
10 else
11 S2 = ; , S0

3c = ST 1
1c ;

12 T3  T2 + T3 ;
13 end
14 // Stage 3
15 S0

3  S1 [ S2 ;
16 N3 = N ;
17 for i = 1:2 do

18 N3  int
�

N (N3=jS i � 1
3c j )

�
;

19 R i
3  GenerateReferenceVectors(N3);

20 S i
3  EMaO(R i

3 , S i � 1
3 , T3=2);

21 S i
3  NonDominance(S i � 1

3 [ S i
3 );

22 [S i
3 c , R i

3 c ]  Classify(R i
3 , S i

3 );
23 end
24 if jS2

3c j < N then
25 S2

3c  NonDominance(S1
3c [ S2

3c );
26 end
27 S  Reduce(S2

3c , N );

operator in Line 2. The procedure �rst createsN points
on the unit-simplex using thereduction method outlined in
[25] and then each point is adjusted using the Riesz-energy
minimization through projected gradient-descent method, a
code of which is available atpymoo distribution [26]. Then,
we execute the EMaO algorithm for a maximum ofT1 SEs
(Line 3). EMaO starts by creating an initial population of size
N from the suppliedP seed of any size. Applying the baseline
EMaO algorithm, we obtain the �rst non-dominated solution
set (S1 of size N1 (� N )). The next task in Stage 1 is to
classify the reference vector setR 1 into two classes: (i) active
reference vector (ARV) set and inactive reference vector (IRV)
set by using the proposedClassifyoperator. This operator �rst
associates every member ofS1 with a reference line based on
the shortest normalized Euclidean distance (identical to thed2

operator in MOEA/D [3] or NSGA-III [2]). Then, all reference
vectors for which there is an associated member from setS1

are saved in the ARV set. Let us say that the solution setST 1
1c

(� S1 ) is associated with the ARV setR 1c . The remaining
ND solutions ofS1 are saved asS1c = S1 n ST 1

1c and the
corresponding reference vectors are saved in the IRV set as
R 1c = R 1 n R 1c . Note that the IRV set indicates the region
on the unit simplex for which no ND solutions are found in
Stage 1.

If the cardinality of ST 1
1c is less than the number of de-

sired solutions (N ), then the MuSt-EMaO framework goes to
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f 1 f 2

f 3

(a) RV setR1 for Stage 1

R1c: ARVs R1c: IRVs

f 1 f 2

f 3

(b) Stage 1 ND set

ST1
1c solution set

Figure 1: Stage 1 of MuSt-EMaO framework is illustrated on
C2-DTLZ2 problem. OfjR 1 j = 100 RVs, 65 ND points are
obtained withT1 = 5 ; 000 SEs in Stage 1.

Stage 2 (Line 5), in which a separate EMaO is run to �nd ND
solutions for IRVs from the Stage 1 usingR1c. Solutions from
Stages 1 and 2 are then combined,NonDominanceoperator
�nds the ND set in Line 8, and the resulting ND set is classi�ed
to �nd associated points for the originalR1 RVs, generating
S0

3c .

On the other hand, if Stage 1 is able to �nd an associated
point for eachR1 RV, Stage 2 is omitted, and remainingT2

andT3 SEs are allocated to Stage 3.

Next, the MuSt-EMaO framework moves to Stage 3, irre-
spective of whether the total number of ND points obtained
from combined Stages 1 and 2 is still less thanN , or equal
to N . In case of former, Stage 3 creates new ND points by
increasing the number of RVs beyondN , so thatN points are
found by Stage 3 EMaO execution. In case of latter, Stage 3
uses the remaining SEs (T3) with N RVs to improve the
obtained solutions. The �rst task in Stage 3 is to estimate
the number of required reference lines for this purpose. We
suggest linearly scaling the population size by making the
argument that ifN reference vectors have producedS0

3c ND
points in the combined Stages 1 and 2, how many reference
vectors are needed to produceN ND points? We calculate
this estimate asN3 in Line 18. The �rst iteration of Stage 3
applies the same EMaO algorithm with a combined population
S1 andS2 of all ND solutions found in Stages 1 and 2 as an
initial population. The EMaO algorithm is run forN3 number
of reference vectors (setR 1

3 created in Line 19) for half of
the allocated SEs for Stage 3. This produces a new ND set
S1

3 in Line 20. The associated ND points are saved in set
S1

3c . In order to not leave out any previously obtained better
distributed ND points,S1

3c is combined withS0
3c , and a better

setS1
3 of size ofjR 1

3 j is chosen in Lines 21-22. Since at least
N RVs are used in Stage 3, it is likely that two iterations will
�nd N or more ND points at the end of Stage 3.

There is still a remote possibility that we are not able to
have more than or equalN points. Line 24-25 treats this case.
Solutions fromS1

3c andS2
3c are combined, theNonDominance

operator is used, generating a newS2
3c .

Finally, S2
3c set is then reduced to have exactlyN �nal

points in Line 27. TheReduceoperator eliminates the most
crowded solution according to the Riesz S-energy one by one
until N solutions remain.

A. An Illustration

We illustrate the working of the proposed MuSt-EMaO
framework with NSGA-III through a simulation on three-
objective C2-DTLZ2 constrained problem. Figure 1(a) shows
the active reference point set on the unit simplex by `+ ' that
have an associated ND point from the �nal population of
NSGA-III algorithm run withN = jR j = 100 reference points
and other standard parameter settings [2]. The respective ND
objective vectors are shown with circles in Figure 1(b). A total
budget of solution evaluations ofT = 20; 000 is divided as
T1 = T2 = 5 ; 000 and T3 = 10; 000. It is clear that each
ARV has at least one ND solution assigned to it. For this
problem, Stage 1 is able to �ndjST 1

1c j = 65 ND solutions.
Each RV in the IRV set (35 RVs represented with a `� ') does
not have an ND solution associated with it in Stage 1. This
can be a failure on the part of the NSGA-III algorithm or the
C2-DTLZ2 problem does not possess any true Pareto solution
associated with the IRVs. This is intended to be veri�ed at
Stage 2 by executing NSGA-III again with a special focus in
attempting to �nd Pareto solutions corresponding to the IRV
set only. This makes the MuSt-EMaO framework more reliable
than a single algorithmic run with a focus on all RVs on the
entire unit simplex.

f 1 f 2

f 3

(a) RV setR1 for Stage 2

R1c: ARVs R1c: IRVs

f 1 f 2

f 3

(b) Stage 2 ND set

ST1
1c solution set S2 solution set

Figure 2: Stage 2 of MuSt-EMaO framework is illustrated on
C2-DTLZ2 problem. 11 new ND points are found in Stage 2,
making a total of 76 points (out of 100 original RVs) obtained
with T1 + T2 = 10; 000 SEs.

In Stage 2, the same EMaO algorithm is applied with the
Stage 1 ND setS1 as the initial population, but only with
the inactive reference vector setR 1c . This allows to focus the
search on the part of the Pareto front left out at Stage 1 and
�nds a new ND setS2 in Line 7. In the illustrative problem,
jR 1c j = 35. Stage 2 NSGA-III execution �ndsjS2 j = 11
new ND points that were not found in Stage 1, as shown
in Figure 2. The non-dominated solutions of the ND sets of
Stages 1 and 2 (ST 1

1c andS2 ) are identi�ed and stored inS12

in Line 8. 65 and 11 (orjS12 j = 76) ND solutions are shown
in Figure 2(b) with solid and open circles, respectively. The
respective ARV points (for Stage 2 solutions are shown in
Figure 2(a) with a +̀ ' symbol. This ND set is then classi�ed
using the original entire reference setR 1 to identify the
associated pointsS0

3c and the IRV setR 12 c in Line 9. An
explicit focus in undiscovered region provides the reliability
of the proposed framework, as depicted in the �gure. The total
number of ND points found after Stages 1 and 2 arejS0

3c j =
76 for the C2-DTLZ2 example.
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f 1 f 2

f 3

(a) RV setR1
3 for Stage 3-1,N3 = 131

R1
3c: ARVs R1

3c: IRVs

f 1 f 2

f 3

(b) Stage 3-1 ND set

S1
3c solution set

f 1 f 2

f 3

(c) RV setR2
3 for Stage 3-2,N3 = 136

R2
3c: ARVs R2

3c: IRVs

f 1 f 2

f 3

(d) Stage 3-2 ND set

S2
3c solution set

Figure 3: Two iterations of Stage 3 of MuSt-EMaO framework
are illustrated on the C2-DTLZ2 problem. 20 more ND points
are found on Stage 3, Iteration 1 ((a) and (b)), making a total
of 96 points, and, �nally, 4 more points are found on Stage 3,
Iteration 2 ((c) and (d)), making 100 points at the end. Both
iterations of Stage 3 useT3 = 10; 000 SEs.

The �rst iteration of Stage 3 estimates thatN3 =
int (100(100=76)) = 131 reference vectors are needed. Fig-
ures 3(a) and (b) show that 96 ND solutions are found. These
points are denser but are all within the feasible region of the
Pareto front. However, the number of obtained points is close,
but still not equal to the desired numberN = 100.

The above linear estimation procedure for an increased num-
ber of reference vectorsR 1

3 does not require any complicated
information on the region where more RVs are required to be
added, as proposed in the adaptive NSGA-III procedure [27].
More RVs are simply placed on the entire unit simplex. In the
second iteration, the required number of RVs is estimated to
be N3 = int (100(131=96)) = 136. Figures 3(c) and (d) show
the obtained 100 ND points (equal to the desired number of
N = 100 points), which are slightly more packed compared
to iteration 1 of Stage 3. It is clear that without the iterative
process, it would have been dif�cult to predict exactly how
many RVs were required to be chosen the desired number of
Pareto solutions.

One can argue that instead of going through two iterations
within Stage 3, one can double or triple the number of RVs
and make a single iteration in Stage 3 and then use the reduce
operator to adjust the �nal ND points toN . This alternate
approach is not viable in a few ways. First, as argued above,
it is dif�cult to know beforehand how many RVs are needed
to produceN well-distributed ND points. Second, there is
waste of computational effort in dealing with unnecessarily
large RVs. Our two-iteration approach in Stage 3 makes a
good compromise among the naive larger-than-required RV
approach and many meticulous iterations to slowly reach the
desired number of RVs.

Note that the proposed MuSt-EMaO framework does not
demand too many critical parameters. TheN is the desired
number of ND solutions and is not a parameter. The total
SEs, T, is also not a parameter, but two of the three SEs:
T1, T2, andT3 are the only required parameters to be set. In
this sense, we intend to have only one parameter:
 , which is
the proportion ofT to be set forT3: T3 = 
T . We assume
T1 = T2 = 1� 


2 T. We perform a parametric study in Section V
to suggest a suitable value of
 .

IV. RESULTS

In this section, �rst, computational tests are designed aim-
ing to assess the performance of the proposed multi-stage
framework with NSGA-III [2] as an EMaO algorithm. In
this case, well-known quality indicators are employed, and
the MuSt-NSGA-III is compared with the baseline NSGA-
III approach on a set of benchmark problems. Thereafter, the
general applicability of the proposed MuSt-EMaO approach
is tested on other EMaO algorithms. In this case, our goal
is to investigate if the performance of different reference-
based EMaO algorithms can be improved by the multi-stage
framework proposed above.

A. Proof-of-Principle Results of MuSt-NSGA-III Approach

First, we integrate the proposed MuSt-EMaO framework
with NSGA-III and attempt to solve two-objective and three-
objective problems to gain insights into the working principle
of the proposed multi-stage framework. To demonstrate the
distribution of �nal ND points obtained from NSGA-III and
MuSt-NSGA-III algorithms, we plot the objective values of
Pareto solutions from the median performing runs for the
three-objective MaF07 problem in Figure 4. In all cases,N is
set to 100. Both algorithms are implemented using the pymoo
framework [26]. In all tests, both algorithms are executed with
T = 20; 000 for all problems and, for multi-stage algorithms,
we useT1 = T2 = 5 ; 000, so that
 = 1=2. Other NSGA-
III parameters are set to their standard settings:pc = 1 ,
pm = 1=n, � c = 30, and � m = 20 [16]. It is clear from the
�gure that MuSt-NSGA-III is able to �nd a better distributed
set of Pareto solutions compared to NSGA-III. This visual
comparison is aided with quanti�able indicators in Table I.
There are exactly 100 ND points spread almost uniformly on
the four clusters of the Pareto front. Despite many reference
vectors in the original setR 1 not conforming to any Pareto
solution, our MuSt-NSGA-III is able to �nd more active
reference vectors in Stage 3 and provide a well-distributed
Pareto front with the same number of SEs (T = 20; 000) as
the baseline algorithm.

Another example is the crashworthiness problem depicted
in Figure 5. The non-dominated solutions from the median
HV over the 50 runs are shown. It is clear from the �gure that
MuSt-NSGA-III procedure is able to �nd a better distribution
with more solutions than NSGA-III. Similar behaviour is also
observed for other problems, supporting the superiority of
the proposed multi-stage framework from the �ve uniformity
indicators used here. Clearly, with 100 RVs on the entire unit
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Figure 4: NSGA-III and MuSt-NSGA-III results for the me-
dian HV run for MaF07 problem show a better distribution
obtained by the latter with identical SEs.

Figure 5: NSGA-III and MuSt-NSGA-III sample results for
the crashworthiness problem. 50 runs are executed and the
ND points from the median HV run are plotted for each case.

simplex in NSGA-III, only 38 RVs are found to have asso-
ciated population members. No matter how many generations
are executed, this number will not change much, but the ob-
jective vectors may come closer to the RVs making the overall
distribution better with generations. However, NSGA-III does
not put any speci�c emphasis in arranging the distribution of
other ND solutions, which are not the closest associated RV
solutions. Thus, locations of these additional ND solutions are
not expected to make the overall distribution uniform. The top
plot in Figure 6 marks each of the active reference points on
the unit simplex. First, notice that there are many inactive
reference points on the simplex, shown with a `� '. Second,
notice from the shape of the markers indicating the number of
ND population members that are associated with each ARV
is that some reference points have more associated population
members and some are not. All 100 ND points obtained by
NSGA-III are also shown in left plot in Figure 5, clearly
depicting the non-uniform density of points. This is expected
to happen to problems in which not all RVs of the unit simplex
are expected to have an associated point.

However, in Iteration 2 of Stage 3, 335 RVs were estimated
to obtain 100 ND solutions. The left plot in Figure 6 shows
all 335 reference points on the unit simplex and associated
reference points are marked with different markers according

to the number of neighboring ND population members as-
sociated with them for the median HV run. Only 59 of 335
reference points are active. However, when the active reference
points are marked with MuSt-NSGA-III ND points, there are
87 reference points with one population member, 9 reference
points with two population members and two reference points
with 3 population members found. This makes a total of
100 points having a much closer to uniform distribution than
NSGA-III-obtained points. Since our density adjustments are
made on the entire unit simplex uniformly by increasing the
number of RVs, the uniformity in the distributed ND points is
also expected to be better on the Pareto front.

Figure 6: Active RVs from NSGA-III on unit simplex with 100
and 335 reference points, respectively, at the top and bottom-
left. Associated RVs for MuSt-NSGA-III ND solutions are
shown at the bottom-right, which uses the same 335 reference
points on the entire unit simplex. Each symbol on the plots
indicates the number of solutions assigned to each RV. MuSt-
NSGA-III �nds more active RVs.

A convergence behavior through HV can give us another
perspective of how the three stages of our proposed framework
work compared to the baseline algorithm. Figure 7 shows the
average HV variation over a number of SEs from 50 runs for
three different cases of HV computation executed after every
generation of each algorithm and not from an accumulated
archive with (i) the closest MuSt-NSGA-III ND population
member to each associated RV, marked as `MuSt-NSGA-
III', (ii) all NSGA-III ND population members, marked as
`Extended NSGA-III', and (iii) the closest NSGA-III ND pop-
ulation member to each associated RV, marked as `NSGA-III'.
The number of such population members are also shown with
values shown on the right vertical axis. For MuSt-NSGA-III,
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