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Abstract—Evolutionary multi-objective and many-objective
optimization (EMO and EMaO) algorithms are increasingly
being used to identify the true shape and location of the Pareto-
optimal front using a few representative well-converged and well-
distributed solutions. The reason for their popularity is due
to their ability to provide a better understanding of objective
relationships for optimal solutions, and also to facilitate the
choice of a preferred solution using an interactive or post-
optimal multi-criterion decision analysis. However, since EMO
and EMaO algorithms are stochastic, a single application may
not provide a true representative set with a desired number of
Pareto solutions reliably in repetitive runs and importantly with a
well-distributed set of solutions. In this paper, we propose a multi-
stage framework involving reference-vector based evolutionary
multi- and many-objective algorithms (MuSt-EMO and MuSt-
EMaO) that attempts to recursively rectify shortcomings of
previous stages by careful executions of subsequent stages so
that a prescribed number of well-distributed and well-converged
solutions are achieved at the end. The proposed multi-stage
approach is implemented to a number of popular reference vector
based EMO/EMaO algorithms and is applied on various multi-
and many-objective test and real-world problems.

Index Terms—Multi-objective optimization, evolutionary algo-
rithms, Pareto front, Gap-filling method.

I. INTRODUCTION

EVOLUTIONARY algorithms (EAs) are regularly being
used to find a set of trade-off Pareto solutions for multi-

and many-objective optimization (EMO and EMaO) problems.
However, there are a number of known shortcomings of EMO
and EMaO algorithms which have been recognized in the
literature in achieving adequate convergence and distribution
of non-dominated solutions, but still stay as open issues
required to be resolved using systematic approaches.

First, since EMO and EMaO algorithms are stochastic
in nature, a single application may not always produce a
reproducible well-distributed and well-converged set of non-
dominated (ND) solutions (Pareto or near-Pareto solutions)
over multiple applications. EMO researchers often use mul-
tiple runs, each starting with a different initial population and
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present a median or average performing result. This is achieved
by presenting the ND set obtained by the median or mean-
performing hypervolume (HV) or inverse generational distance
(IGD) run, or by using a more sophisticated attainment surface
method [1].

Second, EMO and EMaO algorithms are expected to pro-
duce a prescribed number of ND solutions, usually dictated
by the chosen population size N (and/or number of reference
vectors R) [2], [3], although the number of solutions needed
to adequately represent a ND set may not be known a priori.
But every EMO or EMaO run may not produce the exact
number of ND points as desired. This can be mainly due to
two reasons. First, the stochasticity involved in an algorithm’s
operators may have failed to find an ND solution for every
specified reference vector (RV). Second and more likely, since
the exact location and shape of the Pareto front are not known
before a run, all specified reference vectors may not associate
with an Pareto solution, thereby causing less than |R| ND
solutions to be found at the end of the run. These issues
make a comparison between two sets of ND solutions difficult.
For example, a reliable comparison using the HV metric or
any uniformity measure expects both sets to have an identical
number of ND solutions. Moreover, since a RV-based EMO or
EMaO algorithm is designed to process |R| (usually equal to
the population size N ) reference vectors, fewer ND solutions
in a population cause a waste of overall computational effort
and memory. Third, a set of ND solutions may indicate certain
gaps in the apparent ND front discovered by an EMO or EMaO
algorithm. A gap in the ND front may artificially arise from
discovering fewer points in a certain area of the Pareto front
or a gap may truly exist in the Pareto front. Usually, a gap-
confirming method [4] with a focused EMO [5] or focused
EMaO [6] is employed to confirm the true existence of a
gap. However, if the true or artificial existence of gaps can
be confirmed and repaired during the optimization process,
and not as a post-optimal process, the resulting EMO/EMaO
application is expected to be more efficient and reliable.

Thus, although these known shortcomings are addressed
with certain other additional execution of specific tasks, it
would be desired if the EMO/EMaO algorithms are able to
find a more reliable and reproducible ND set having exactly
the desired number of a uniformly distributed set of points on
the entire Pareto front with a clear indication of true gaps and
holes, if any.

In the recent past, EMO researchers have emphasized mak-
ing a balance between convergence and diversity in finding
final ND solutions and proposed multi-phase EMO and EMaO
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algorithms. Balanced NSGA-III (B-NSGA-III) [7] approach
identified one of the three possible stages – extreme point
identification phase, uniform diversity enforcement phase, and
local improvement phase. A recent study [8] has followed
three different distinct phases – convergence phase, diversity
preservation phase, and convergence-diversity phase. These
approaches focus on identifying gaps and holes within their
obtained ND front either explicitly or through their innovative
diversity evaluation metrics. But, none of these methods has
focused on finding a pre-specified number of ND solutions,
which are evaluated during the optimization process to possess
the convergence and diversity properties without any artificial
holes or gaps as a collection of final solutions with a given
number of solution evaluations.

Recent archive-based EMO/EMaO methods propose to save
all ND solutions from every generation from the start to the
end of a run in an archive and then choose the desired number
of ND solutions from the archive as the outcome of the overall
algorithm [9], [10]. Expecting that the archive will grow into
a huge set, selection of a few solutions from it will be time-
consuming. While it may be useful for practical problems
requiring to utilize a small budget of solution evaluations,
such a strategy does not demand a careful balance between
convergence and diversity among population members to be
carried out at every iteration, making EMO/EMaO methods
less appealing in an algorithmic sense.

In this paper, we attempt to address these issues by propos-
ing a three-stage framework to improve the performance of
existing evolutionary multi and many-objective optimization
algorithms. The first stage attempts to find a set of ND
solutions roughly on the entire Pareto front by using a standard
EMO or EMaO algorithm. Based on the achieved distribution
of solutions, the second stage focuses on to fill the apparent
gaps and holes not covered by the first stage. In the third
stage, solutions from both stages are combined, and a final
EMO/EMaO algorithm is run in two iterations with a well-
estimated number of RVs to arrive at the exact desired number
of final ND solutions having a better convergence and unifor-
mity. Later stages use populations obtained at the previous
stages to maintain continuity and also to reduce overall com-
putational complexity. Moreover, repeated emphases at critical
regions of the search space ensure that the obtained solutions
are reliably close to the true Pareto front.

In the remainder of the paper, we briefly review of the
main focus in EMaO algorithms and motivate the need for a
multi-stage framework involving EMaO algorithms for reliably
finding a specific number of ND solutions in Section II. The
multi-stage framework is presented in detail next in Section III
with the help of a constrained test problem and a unconstrained
practical problem. Results on a number of three to 10-objective
problems are presented in Section IV. A parametric study of a
single hyper-parameter of the proposed framework is presented
in Section V. Finally, conclusions of this extensive study are
summarized in Section VI.

II. EXISTING EVOLUTIONARY ALGORITHMS AND
MOTIVATION FOR THIS STUDY

Evolutionary algorithms have a clear niche in finding mul-
tiple Pareto solutions for multi- (having two or three objec-
tives) and many-objective (having more than three objectives)
optimization problems in a single run [11], [12] compared to
their traditional counterparts which mostly work by finding
a single Pareto solution in a generational manner [13]. In
EMO and EMaO algorithms, usually an emphasis for non-
dominated solutions to achieve convergence and an emphasis
for diverse objective solutions to achieve a uniform distribu-
tion are established either hierarchically or simultaneously.
In EMaO algorithms, a set of pre-specified normalized RVs
are used to help achieve a better distribution of solutions.
Despite their ever-increasing popularity in both developmental
and application studies, there are a few shortcomings which
we highlight here, handling of which becomes the main
motivation of this paper.

A. Reliable Convergence and Uniform Distribution of Solu-
tions

EMO and EMaO algorithms start with an initial population
and use stochastic search operators to iteratively improve
two aspects – convergence towards the Pareto front and
maintain a uniform distribution of solutions in the objective
space. Convergence aspect is achieved mostly by providing
more selection pressure for non-dominated solutions. Diver-
sity of solutions is achieved by various means, including a
crowding measure estimating the number of solutions in the
neighborhood. Original MOEA/D [14] proposed the diversity
maintenance through a pre-defined uniform set of reference
vectors1 in the objective space originating from the ideal point
and preferring solutions that are close to RVs and also close to
the ideal point. This revolutionary idea has been particularly
found to work well for many-objective problems.

While two aspects – convergence and diversity – are
undoubtedly the main emphasis of any EMO and EMaO
algorithms, their order and extent of use within an algorithm
are not yet settled. Some algorithms (such as, NSGA-II [16],
NSGA-III [2], SPEA2 [17] and others) use a hierarchical
‘convergence first, diversity second’ strategy, whereas recent
studies have raised questions about this strategy [18]. Too
much focus on convergence early on may lead to a loss of
diversity in population members, thereby making a diversity
enhancement difficult in certain problems. It is clear that
a ‘diversity first, convergence second’ strategy may not be
that useful, as although a well-distributed set of solutions is
possible to achieve early on the search space far away from
the Pareto front, it may be difficult to maintain the diversity
all along towards the convergence phase of the algorithm at
the latter part of the run. However, a number of studies have
proposed the need to strike a balance between convergence
and diversity from start to finish during a run.

The two-archive evolutionary algorithm for constrained
multi-objective optimization, C-TAEA, proposed in [19], tries

1Recent studies suggested non-uniform distribution of reference vectors
based on Pareto front shapes [15].
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to balance convergence and uniformity of solutions in a two-
archive procedure that simultaneously maintains two popula-
tions: the convergence archive (CA) and the diversity archive
(DA). The former supports the convergence and feasibility in
the evolutionary process while the latter explores areas that the
convergence archive has not exploited yet. In this algorithm,
the reference lines are also used in the update mechanism
of the CA and DA. We use this RV-based algorithm as a
potential method for improvement by our proposed multi-stage
framework.

The MOEA/D-AWA [20] uses a two-stage strategy to deal
with the generation of the weight vectors. In the first stage,
pre-determined weight vectors are used until the population is
considered converged. Then, in the second stage, some weight
vectors are adjusted based on deleting the overcrowded sub-
problems and inserting new ones in the sparse areas. However,
such insertion may not satisfactorily adapt to the problems
with disconnected Pareto fronts.

In [7], B-NSGA-III is presented as a multiphased many-
objective evolutionary optimization algorithm capable of au-
tomatically balancing convergence and diversity of population
members. The algorithm uses three phases dynamically. In
phase 1, it looks for extreme points. In phase 2, it tries to cover
gaps and extend extreme points found in the non-dominated
front. And finally, in phase 3, it concentrates the efforts
towards helping poorly converged non-dominated solutions.
The algorithm can interchange from one phase to another if
population properties trigger for such a change. Results show
superior performance when compared to several state-of-the-
art algorithms in a set of benchmark problems. However, this
approach requires an internal local search method, making the
overall algorithm not easy to compare with pure evolutionary
algorithms for a fixed budget of solution evaluations.

In [21], a multi-stage constrained multi-objective evolu-
tionary algorithm, CMOEA-MS, is proposed. The algorithm
exclusively focuses on constrained problems and balances ob-
jective optimization and constraint satisfaction, giving different
priorities in each phase. The first phase indicates that most
solutions are infeasible, and these solutions can support the
population to leave the infeasible regions. The second phase
points out that most solutions are feasible, so more feasible
solutions can be found to help the population spread along
the feasible boundaries. The general strategy uses different
priorities of objectives and constraints in the two stages. The
work presents some experiments based on constrained problem
sets. It does not mainly address the diversity/uniformity of
solution sets.

A many-objective evolutionary algorithm, dubbed as CLIA,
combining two interacting processes, Cascade Clustering (CC)
and Reference Point Incremental Learning, is proposed in
[22]. The cascade clustering (CC) uses the non-dominated
and dominated solutions to create clusters, sort, and select
solutions for a better convergence and diversity. CC uses
reference lines to create and sort the solutions. In the second
process, a support vector machine (SVM) model is applied
in an incremental learning approach, classifying the refer-
ence points as active/inactive and creating denser reference
lines (generated on the unit simplex) and is used in the

optimization process. The incremental SVM model adjusts
the RVs during the evolution process. By hybridizing an
evolutionary approach with SVM, an adaptive adjustment of
RVs provides a better distribution of ND solutions. We also
integrate this algorithm with our multi-stage framework to
improve its performance. RVRL-EA [23] also adapts reference
vectors using reinforcement learning. However, it does not
use a multi-stage framework and can only be integrated with
decomposition-based algorithms. Experiments have shown that
the algorithm was competitive compared to CLIA.

MSEA [8], a multistage EMaO algorithm, is designed for
improving the diversity performance of EMaO. In Stage 1, the
population is assessed based on a convergence metric. Then, in
Stage 2, the diversity is assessed again; a particular selection
algorithm generates offspring to replace one solution in the
population. Finally, in stage 3, there is a mating selection for
a parent with good convergence and diversity. The authors
present results for multi-objective problems only, and the
method presents a cubic computational complexity related to
the number of solutions. The algorithm’s extension to many-
objective problems were not demonstrated and also MSEA
does not use any RV. Thus, we exclude its comparison with
our proposed framework.

These existing multi-stage EMaO algorithms attempt to
stress convergence, diversity, or both, whenever needed during
the evolutionary process, but lack significant actions towards
reinforcing the true convergence and diversity of evolving
solutions. In the single-objective evolutionary algorithm litera-
ture, restarts are often employed to help an algorithm to escape
from premature convergence and also to reinforce convergence
to true optimal solutions. However, due to multi-faceted goals
in multi-objective optimization, restarts must have different
goals. From a prematurely stuck existing ND solution set, how
would a restart be initiated so that convergence, diversity, or
both can be achieved in the next phase, depending on what
is lacking in the stuck set of population members? Such a
restart strategy should not only be disruptive to the previous
stuck phase and, if done properly, must address various aspects
of multi-objective problem solving in a systematic manner
and help produce a more reliable set of ND solutions. Our
proposed multi-stage framework is a step toward this effort.

B. Fewer than Expected Number of Solutions

In an EMO or EMaO, we usually target a set (say N )
of well-distributed and well-converged ND solutions. The
parameter N is user-supplied. If a run produces less than N
ND solutions at the end, there are at least two difficulties.
First, it does not fulfill the stated requirement and second, it
may be difficult to compare or statistically come up with a
single performance measure for two or more competing such
sets having different number of points. No existing method
guarantees this aspect and most often, solutions from a big
archive are chosen to extract exactly N solutions [24]. Since
an archive is not usually directly used in the evolutionary
process, this may not produce the best possible distribution
achievable with N ND points and, moreover, dilutes the spirit
of algorithmic search for N well-distributed solutions.
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C. Gaps in the Obtained Non-dominated Front

Some algorithms were proposed to identify apparent gaps
in obtained Pareto front and employ additional tasks to fill
the gaps. In [4], a three-step algorithm was proposed to deal
with identifying and filling gaps in obtained ND fronts. In
the first step, a well-distributed and converged solution set is
obtained (using an EMO/EMaO algorithm). The second step
tries to identify whether there are real gaps (based on inner
problem characteristics) or not. Two metrics are proposed to
help in this step. The third step attempts to fill the gap based
on the outcome of the second step. This study only attempted
to find and fill gaps, but did not focus on finding a pre-defined
number of ND points, nor did the study make the steps use
points from previous steps to make the overall approach more
computationally efficient.

Based on the above discussions, we set our goal of arriving
at a multi-stage framework involving an EMO/EMaO algo-
rithm having the following properties:

1) A coherent and seamless three-stage algorithmic frame-
work with a possibility of skipping latter stages based on
the number of well-distributed ND solutions achieved,

2) A multi-stage framework that attempts to find as close to
the desired number of ND points and having as uniformly
distributed as possible on the entire feasible Pareto front,

3) A multi-stage framework that repeats its search among
critical parts of the search space to ensure a reliable set
of well-converged and well-distributed ND points, and

4) A multi-stage framework which is pragmatic in using
existing seed solutions, implementable with any existing
reference vector based EMO/EMaO algorithm, executed
for a budget of solution evaluations, and controlled with
a single well-tuned parameter.

III. PROPOSED MULTI-STAGE FRAMEWORK

Our proposal is a multi-stage framework that improves the
performance of a specific reference vector based EMO/EMaO
algorithm (such as, NSGA-III [2] or MOEA/D [14]) to find
a prescribed number of repeatable, well-converged and well-
distributed set of Pareto solutions (N ). The chosen RV-based
EMaO algorithm uses a set of reference vectors (R) usually
equal to the population size N , an initial seed population
P seed of any size, and the preset number of solution evalua-
tions (SEs) T , and produces a set of non-dominated solution
set S of size N . Note also that the size of the supplied
initial population P seed need not be same as N or |R|. The
initial population generation operator creates exactly N =
|R| population members at the first generation by the EMaO
algorithm’s operators from P seed. The proposed MuSt-EMaO
uses three stages, dividing T SEs among them satisfying
T = T1 + T2 + T3, where Ti is the number of SEs for the
i-th stage. The pseudo-code of the proposed MuSt-EMaO is
presented in Algorithm 1.

Stage 1 of MuSt-EMaO framework makes the first attempt
to generate an evenly distributed ND solution set using an
existing reference vector based approach (the baseline EMaO
algorithm). We apply the Riesz s-energy method to create
exactly N reference lines (R1) by GenerateReferenceVectors

Algorithm 1: MuSt-EMaO Framework.
Input: EMaO (optimization algorithm), N (desired number

of solutions), T = (T1, T2, T3) (number of solution
evaluations), P seed (initial population)

Output: S (a reliable and well-distributed ND solution set)
1 // Stage 1
2 R1 ← GenerateReferenceVectors(N );
3 S1 ← EMaO(R1, P seed, T1);
4 [ST1

1c , R1c] ← Classify(R1, S1);
5 if |ST1

1c | < N then
6 // Stage 2
7 S2 ← EMaO(R1c, S1, T2);
8 S12 ← NonDominance(ST1

1c ∪ S2);
9 [S0

3c, R12c] ← Classify(R1, S12);
10 else
11 S2 = ∅, S0

3c = ST1
1c ;

12 T3 ← T2 + T3;
13 end
14 // Stage 3
15 S0

3 ← S1 ∪ S2;
16 N3 = N ;
17 for i = 1:2 do
18 N3 ← int

(
N(N3/|Si−1

3c |)
)

;

19 Ri
3 ← GenerateReferenceVectors(N3);

20 Si
3 ← EMaO(Ri

3, Si−1
3 , T3/2);

21 Si
3 ← NonDominance(Si−1

3 ∪ Si
3);

22 [Si
3c, Ri

3c] ← Classify(Ri
3, Si

3);
23 end
24 if |S2

3c| < N then
25 S2

3c ← NonDominance(S1
3c ∪ S2

3c);
26 end
27 S ← Reduce(S2

3c, N );

operator in Line 2. The procedure first creates N points
on the unit-simplex using the reduction method outlined in
[25] and then each point is adjusted using the Riesz-energy
minimization through projected gradient-descent method, a
code of which is available at pymoo distribution [26]. Then,
we execute the EMaO algorithm for a maximum of T1 SEs
(Line 3). EMaO starts by creating an initial population of size
N from the supplied P seed of any size. Applying the baseline
EMaO algorithm, we obtain the first non-dominated solution
set (S1 of size N1 (≤ N )). The next task in Stage 1 is to
classify the reference vector set R1 into two classes: (i) active
reference vector (ARV) set and inactive reference vector (IRV)
set by using the proposed Classify operator. This operator first
associates every member of S1 with a reference line based on
the shortest normalized Euclidean distance (identical to the d2
operator in MOEA/D [3] or NSGA-III [2]). Then, all reference
vectors for which there is an associated member from set S1

are saved in the ARV set. Let us say that the solution set ST1
1c

(⊂ S1) is associated with the ARV set R1c. The remaining
ND solutions of S1 are saved as S1c = S1 \ ST1

1c and the
corresponding reference vectors are saved in the IRV set as
R1c = R1 \ R1c. Note that the IRV set indicates the region
on the unit simplex for which no ND solutions are found in
Stage 1.

If the cardinality of ST1
1c is less than the number of de-

sired solutions (N ), then the MuSt-EMaO framework goes to
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f1 f2

f3

(a) RV set R1 for Stage 1

R1c: ARVs R1c: IRVs

f1 f2

f3

(b) Stage 1 ND set

ST1
1c solution set

Figure 1: Stage 1 of MuSt-EMaO framework is illustrated on
C2-DTLZ2 problem. Of |R1| = 100 RVs, 65 ND points are
obtained with T1 = 5, 000 SEs in Stage 1.

Stage 2 (Line 5), in which a separate EMaO is run to find ND
solutions for IRVs from the Stage 1 using R1c. Solutions from
Stages 1 and 2 are then combined, NonDominance operator
finds the ND set in Line 8, and the resulting ND set is classified
to find associated points for the original R1 RVs, generating
S0
3c.
On the other hand, if Stage 1 is able to find an associated

point for each R1 RV, Stage 2 is omitted, and remaining T2

and T3 SEs are allocated to Stage 3.
Next, the MuSt-EMaO framework moves to Stage 3, irre-

spective of whether the total number of ND points obtained
from combined Stages 1 and 2 is still less than N , or equal
to N . In case of former, Stage 3 creates new ND points by
increasing the number of RVs beyond N , so that N points are
found by Stage 3 EMaO execution. In case of latter, Stage 3
uses the remaining SEs (T3) with N RVs to improve the
obtained solutions. The first task in Stage 3 is to estimate
the number of required reference lines for this purpose. We
suggest linearly scaling the population size by making the
argument that if N reference vectors have produced S0

3c ND
points in the combined Stages 1 and 2, how many reference
vectors are needed to produce N ND points? We calculate
this estimate as N3 in Line 18. The first iteration of Stage 3
applies the same EMaO algorithm with a combined population
S1 and S2 of all ND solutions found in Stages 1 and 2 as an
initial population. The EMaO algorithm is run for N3 number
of reference vectors (set R1

3 created in Line 19) for half of
the allocated SEs for Stage 3. This produces a new ND set
S1
3 in Line 20. The associated ND points are saved in set

S1
3c. In order to not leave out any previously obtained better

distributed ND points, S1
3c is combined with S0

3c, and a better
set S1

3 of size of |R1
3| is chosen in Lines 21-22. Since at least

N RVs are used in Stage 3, it is likely that two iterations will
find N or more ND points at the end of Stage 3.

There is still a remote possibility that we are not able to
have more than or equal N points. Line 24-25 treats this case.
Solutions from S1

3c and S2
3c are combined, the NonDominance

operator is used, generating a new S2
3c.

Finally, S2
3c set is then reduced to have exactly N final

points in Line 27. The Reduce operator eliminates the most
crowded solution according to the Riesz S-energy one by one
until N solutions remain.

A. An Illustration

We illustrate the working of the proposed MuSt-EMaO
framework with NSGA-III through a simulation on three-
objective C2-DTLZ2 constrained problem. Figure 1(a) shows
the active reference point set on the unit simplex by ‘+’ that
have an associated ND point from the final population of
NSGA-III algorithm run with N = |R| = 100 reference points
and other standard parameter settings [2]. The respective ND
objective vectors are shown with circles in Figure 1(b). A total
budget of solution evaluations of T = 20, 000 is divided as
T1 = T2 = 5, 000 and T3 = 10, 000. It is clear that each
ARV has at least one ND solution assigned to it. For this
problem, Stage 1 is able to find |ST1

1c | = 65 ND solutions.
Each RV in the IRV set (35 RVs represented with a ‘×’) does
not have an ND solution associated with it in Stage 1. This
can be a failure on the part of the NSGA-III algorithm or the
C2-DTLZ2 problem does not possess any true Pareto solution
associated with the IRVs. This is intended to be verified at
Stage 2 by executing NSGA-III again with a special focus in
attempting to find Pareto solutions corresponding to the IRV
set only. This makes the MuSt-EMaO framework more reliable
than a single algorithmic run with a focus on all RVs on the
entire unit simplex.

f1 f2

f3

(a) RV set R1 for Stage 2

R1c: ARVs R1c: IRVs

f1 f2

f3

(b) Stage 2 ND set

ST1
1c solution set S2 solution set

Figure 2: Stage 2 of MuSt-EMaO framework is illustrated on
C2-DTLZ2 problem. 11 new ND points are found in Stage 2,
making a total of 76 points (out of 100 original RVs) obtained
with T1 + T2 = 10, 000 SEs.

In Stage 2, the same EMaO algorithm is applied with the
Stage 1 ND set S1 as the initial population, but only with
the inactive reference vector set R1c. This allows to focus the
search on the part of the Pareto front left out at Stage 1 and
finds a new ND set S2 in Line 7. In the illustrative problem,
|R1c| = 35. Stage 2 NSGA-III execution finds |S2| = 11
new ND points that were not found in Stage 1, as shown
in Figure 2. The non-dominated solutions of the ND sets of
Stages 1 and 2 (ST1

1c and S2) are identified and stored in S12

in Line 8. 65 and 11 (or |S12| = 76) ND solutions are shown
in Figure 2(b) with solid and open circles, respectively. The
respective ARV points (for Stage 2 solutions are shown in
Figure 2(a) with a ‘+’ symbol. This ND set is then classified
using the original entire reference set R1 to identify the
associated points S0

3c and the IRV set R12c in Line 9. An
explicit focus in undiscovered region provides the reliability
of the proposed framework, as depicted in the figure. The total
number of ND points found after Stages 1 and 2 are |S0

3c| =
76 for the C2-DTLZ2 example.
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f1 f2

f3

(a) RV set R1
3 for Stage 3-1, N3 = 131

R1
3c: ARVs R1

3c: IRVs

f1 f2

f3

(b) Stage 3-1 ND set

S1
3c solution set

f1 f2

f3

(c) RV set R2
3 for Stage 3-2, N3 = 136

R2
3c: ARVs R2

3c: IRVs

f1 f2

f3

(d) Stage 3-2 ND set

S2
3c solution set

Figure 3: Two iterations of Stage 3 of MuSt-EMaO framework
are illustrated on the C2-DTLZ2 problem. 20 more ND points
are found on Stage 3, Iteration 1 ((a) and (b)), making a total
of 96 points, and, finally, 4 more points are found on Stage 3,
Iteration 2 ((c) and (d)), making 100 points at the end. Both
iterations of Stage 3 use T3 = 10, 000 SEs.

The first iteration of Stage 3 estimates that N3 =
int (100(100/76)) = 131 reference vectors are needed. Fig-
ures 3(a) and (b) show that 96 ND solutions are found. These
points are denser but are all within the feasible region of the
Pareto front. However, the number of obtained points is close,
but still not equal to the desired number N = 100.

The above linear estimation procedure for an increased num-
ber of reference vectors R1

3 does not require any complicated
information on the region where more RVs are required to be
added, as proposed in the adaptive NSGA-III procedure [27].
More RVs are simply placed on the entire unit simplex. In the
second iteration, the required number of RVs is estimated to
be N3 = int (100(131/96)) = 136. Figures 3(c) and (d) show
the obtained 100 ND points (equal to the desired number of
N = 100 points), which are slightly more packed compared
to iteration 1 of Stage 3. It is clear that without the iterative
process, it would have been difficult to predict exactly how
many RVs were required to be chosen the desired number of
Pareto solutions.

One can argue that instead of going through two iterations
within Stage 3, one can double or triple the number of RVs
and make a single iteration in Stage 3 and then use the reduce
operator to adjust the final ND points to N . This alternate
approach is not viable in a few ways. First, as argued above,
it is difficult to know beforehand how many RVs are needed
to produce N well-distributed ND points. Second, there is
waste of computational effort in dealing with unnecessarily
large RVs. Our two-iteration approach in Stage 3 makes a
good compromise among the naive larger-than-required RV
approach and many meticulous iterations to slowly reach the
desired number of RVs.

Note that the proposed MuSt-EMaO framework does not
demand too many critical parameters. The N is the desired
number of ND solutions and is not a parameter. The total
SEs, T , is also not a parameter, but two of the three SEs:
T1, T2, and T3 are the only required parameters to be set. In
this sense, we intend to have only one parameter: γ, which is
the proportion of T to be set for T3: T3 = γT . We assume
T1 = T2 = 1−γ

2 T . We perform a parametric study in Section V
to suggest a suitable value of γ.

IV. RESULTS

In this section, first, computational tests are designed aim-
ing to assess the performance of the proposed multi-stage
framework with NSGA-III [2] as an EMaO algorithm. In
this case, well-known quality indicators are employed, and
the MuSt-NSGA-III is compared with the baseline NSGA-
III approach on a set of benchmark problems. Thereafter, the
general applicability of the proposed MuSt-EMaO approach
is tested on other EMaO algorithms. In this case, our goal
is to investigate if the performance of different reference-
based EMaO algorithms can be improved by the multi-stage
framework proposed above.

A. Proof-of-Principle Results of MuSt-NSGA-III Approach

First, we integrate the proposed MuSt-EMaO framework
with NSGA-III and attempt to solve two-objective and three-
objective problems to gain insights into the working principle
of the proposed multi-stage framework. To demonstrate the
distribution of final ND points obtained from NSGA-III and
MuSt-NSGA-III algorithms, we plot the objective values of
Pareto solutions from the median performing runs for the
three-objective MaF07 problem in Figure 4. In all cases, N is
set to 100. Both algorithms are implemented using the pymoo
framework [26]. In all tests, both algorithms are executed with
T = 20, 000 for all problems and, for multi-stage algorithms,
we use T1 = T2 = 5, 000, so that γ = 1/2. Other NSGA-
III parameters are set to their standard settings: pc = 1,
pm = 1/n, ηc = 30, and ηm = 20 [16]. It is clear from the
figure that MuSt-NSGA-III is able to find a better distributed
set of Pareto solutions compared to NSGA-III. This visual
comparison is aided with quantifiable indicators in Table I.
There are exactly 100 ND points spread almost uniformly on
the four clusters of the Pareto front. Despite many reference
vectors in the original set R1 not conforming to any Pareto
solution, our MuSt-NSGA-III is able to find more active
reference vectors in Stage 3 and provide a well-distributed
Pareto front with the same number of SEs (T = 20, 000) as
the baseline algorithm.

Another example is the crashworthiness problem depicted
in Figure 5. The non-dominated solutions from the median
HV over the 50 runs are shown. It is clear from the figure that
MuSt-NSGA-III procedure is able to find a better distribution
with more solutions than NSGA-III. Similar behaviour is also
observed for other problems, supporting the superiority of
the proposed multi-stage framework from the five uniformity
indicators used here. Clearly, with 100 RVs on the entire unit
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Figure 4: NSGA-III and MuSt-NSGA-III results for the me-
dian HV run for MaF07 problem show a better distribution
obtained by the latter with identical SEs.
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Figure 5: NSGA-III and MuSt-NSGA-III sample results for
the crashworthiness problem. 50 runs are executed and the
ND points from the median HV run are plotted for each case.

simplex in NSGA-III, only 38 RVs are found to have asso-
ciated population members. No matter how many generations
are executed, this number will not change much, but the ob-
jective vectors may come closer to the RVs making the overall
distribution better with generations. However, NSGA-III does
not put any specific emphasis in arranging the distribution of
other ND solutions, which are not the closest associated RV
solutions. Thus, locations of these additional ND solutions are
not expected to make the overall distribution uniform. The top
plot in Figure 6 marks each of the active reference points on
the unit simplex. First, notice that there are many inactive
reference points on the simplex, shown with a ‘−’. Second,
notice from the shape of the markers indicating the number of
ND population members that are associated with each ARV
is that some reference points have more associated population
members and some are not. All 100 ND points obtained by
NSGA-III are also shown in left plot in Figure 5, clearly
depicting the non-uniform density of points. This is expected
to happen to problems in which not all RVs of the unit simplex
are expected to have an associated point.

However, in Iteration 2 of Stage 3, 335 RVs were estimated
to obtain 100 ND solutions. The left plot in Figure 6 shows
all 335 reference points on the unit simplex and associated
reference points are marked with different markers according

to the number of neighboring ND population members as-
sociated with them for the median HV run. Only 59 of 335
reference points are active. However, when the active reference
points are marked with MuSt-NSGA-III ND points, there are
87 reference points with one population member, 9 reference
points with two population members and two reference points
with 3 population members found. This makes a total of
100 points having a much closer to uniform distribution than
NSGA-III-obtained points. Since our density adjustments are
made on the entire unit simplex uniformly by increasing the
number of RVs, the uniformity in the distributed ND points is
also expected to be better on the Pareto front.

Figure 6: Active RVs from NSGA-III on unit simplex with 100
and 335 reference points, respectively, at the top and bottom-
left. Associated RVs for MuSt-NSGA-III ND solutions are
shown at the bottom-right, which uses the same 335 reference
points on the entire unit simplex. Each symbol on the plots
indicates the number of solutions assigned to each RV. MuSt-
NSGA-III finds more active RVs.

A convergence behavior through HV can give us another
perspective of how the three stages of our proposed framework
work compared to the baseline algorithm. Figure 7 shows the
average HV variation over a number of SEs from 50 runs for
three different cases of HV computation executed after every
generation of each algorithm and not from an accumulated
archive with (i) the closest MuSt-NSGA-III ND population
member to each associated RV, marked as ‘MuSt-NSGA-
III’, (ii) all NSGA-III ND population members, marked as
‘Extended NSGA-III’, and (iii) the closest NSGA-III ND pop-
ulation member to each associated RV, marked as ‘NSGA-III’.
The number of such population members are also shown with
values shown on the right vertical axis. For MuSt-NSGA-III,
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the final population from the previous stages and the current
population are combined to find associated active points, and
HV is computed from them. Thus, a solution evaluation-wise
HV variation is expected to be mostly monotonic, as can be
seen in Figure 7. It can also be seen that very early on, NSGA-
III is able to find 100 ND population members (shown by the
dashed line). NSGA-III and MuSt-NSGA-III find a similar
number of active RVs until about 10,000 SEs (until the end of
Stage 2). This is not surprising because both these algorithms
employ the same baseline NSGA-III until then, and Stage 1 is
able to capture most of the active RVs, and Stage 2 does not
add many new ARVs. However, due to the increase in total
RVs using our proposed estimation procedure, the number of
ARVs drastically increase in Iteration 1 of Stage 3 and some
more in Iteration 2. Stage 1 was saturated with 38 ARVs (out
of 100 RVs), and without these iteration-wise increases in RVs,
as in NSGA-III shown with dotted line, the algorithm would
not have increased the number of ARVs close to the desired
number (N = 100). It is also clear that Iteration 2 of Stage 3
is not able to produce exactly 100 ARVs, but Line 24 to 27
of Algorithm 1 allows a combination of both iteration’s points
together to produce exactly 100 solutions at the end.

The HV variations reveal that NSGA-III and MuSt-NSGA-
III perform almost in the same manner during Stages 1 and 2.
However, MuSt-NSGA-III improves the HV by adding more
ND points in both iterations of Stage 3, whereas NSGA-
III’s HV does not improve due to lack of denser active ND
solutions in the population. But, if all ND solutions are used
to compute HV, marked with ‘Extended NSGA-III’, a slight
increase in HV from the HV computed with single active
ND point, marked with ‘NSGA-III’ is observed. The HV for
‘MuSt-NSGA-III’ is better due to a more uniformly distributed
set of increasingly denser points obtained by our multi-stage
framework.
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Figure 7: Average hypervolume (solid lines) and the number of
active RVs (dotted lines) obtained using NSGA-III calculated
from two sets – closest to each RV and all ND solutions –
and MuSt-NSGA-III ND set for the crashworthiness problem.

The above deeper analysis on HV (and the same on other

metrics shown in the supplementary document) of the behavior
of the proposed MuSt-NSGA-III compared to the original
NSGA-III makes a better understanding of the working prin-
ciple of the proposed framework. Furthermore, it provides us
with confidence to use the framework to solve other problems
and integrate with other EMaO algorithms.

B. MuSt-NSGA-III Applied to Multi-objective Test Problems

Next, we apply MuSt-NSGA-III to a number of multi-
objective test problems. But before that, we briefly describe the
quality indicators that are used in this study. For more detailed
information about the indicators, the original references pro-
vided below can be referred. The quality indicators (with more
information in the supplementary document) have been chosen
taking into account their ability in measuring convergence and
uniformity in their distribution.

• We use well-known hypervolume metric with nadir point
as the reference point. Higher the HV value, better is the set
in terms of convergence and diversity.

• MIP-DoM [28] is a binary quality indicator that tries to
express Pareto front features, such as, proximity, cardinality,
spread, and uniformity. It considers the minimum overall
movement of points in one set needed to dominate each and
every member of the other set. If MIP-DoM(A,B) < MIP-
DoM(B,A), then set A is better than B and vice versa.

• To measure uniformity of ND solutions, we use several
metrics. As a naive measure, we use the mean and standard
deviation of the k-th nearest neighbor (k = ⌊

√
M − 1⌋) values

[17] of ND solutions. A large value of mean and a small value
of standard deviation are desired.

• Spacing (SP), proposed in [29], measures how uniform
the ND solutions are according to the standard deviation
of Euclidean distance from their nearest neighbors. Smaller
spacing values indicate better distribution.

• Uniform Distribution (UD), proposed in [30], is a niching-
based unary quality indicator that measures the standard
deviation in niche count values of solutions. Larger the metric,
more uniform is the distribution.

• Finally, we use the Evenness (ξ) metric [31] as an
indicator to measure gaps, if any, by a coefficient of variance
measure of two critical neighbor distances of all ND points.
Smaller the value, the better is the evenness.

Using the above quality indicators, the computational exper-
iments are designed to assess the performance of the MuSt-
NSGA-III for a comparison to its baseline version on 12
multi-objective problems. ZDT3 and MaF07 present disjoint
Pareto fronts having natural gaps. Crashworthiness and car
side-impact problems [2] are practical problems and involve
non-linearity and non-convexity features of the Pareto front.
Other problems from the MaF benchmark suite (designed for
CEC’2018 MaOP competition) are selected: MaF01, MaF10,
MaF11, and MaF12, which present linear, non-separable, bi-
ased, convex/disconnected, and concave features. A few DAS-
CMOP family problems having multiple disjointed clusters in
their Pareto fronts [32] are also selected. For DAS-CMOP7
to DAS-CMOP9 problems, the difficulty triplets are set to
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Table I: Results of baseline NSGA-III with complete ND population (N = 100) and MuSt-NSGA-III. 7 performance metrics
statistically compare both algorithms over 50 runs. Symbols ↑ and ↓ indicate better metric values for large and small values,
respectively. MIP-DoMs from top to bottom are for pairs (NSGA-III, MuSt-NSGA-III) and (MuSt-NSGA-III, NSGA-III).

Problem Algorithm M N HV MIP-DoM ↓ k-neighbors distance SP ↓ UD ↑ ξ ↓ #RVs
mean ↑ std dev ↓ mean ↑ std dev ↓ Stage 3, i=2

ZDT3 NSGA-III 2 100 0.4806 0.0038 0.1086 0.0071 0.0048 0.0068 0.6983 1.6641 -
MuSt-NSGA-III 100 0.4816 0.0006 0.1594 0.0083 0.0028 0.0040 0.9634 1.6300 177

DTLZ2 NSGA-III 3 100 0.7917 0.0000 0.7201 0.1049 0.0034 0.0052 1.0000 0.0858 -
MuSt-NSGA-III 100 0.7916 0.0002 0.7253 0.1031 0.0037 0.0061 0.9975 0.0902 100

MaF01 NSGA-III 3 100 0.0146 0.0002 1.7711 0.0175 0.0147 0.0227 0.5329 0.8066 -
MuSt-NSGA-III 100 0.0162 0.0001 1.7393 0.0439 0.0073 0.0102 0.9748 0.2392 343

MaF07 NSGA-III 3 100 0.2503 0.0150 1.4809 0.0254 0.0179 0.0279 0.6400 0.9236 -
MuSt-NSGA-III 100 0.2551 0.0092 1.4508 0.0498 0.0133 0.0190 0.8781 0.6991 222

MaF10 NSGA-III 3 100 0.5153 0.0893 1.0939 0.0290 0.0171 0.0266 0.5922 0.8987 -
MuSt-NSGA-III 100 0.6177 0.0289 1.2600 0.0500 0.0141 0.0218 0.9359 0.7319 187

MaF11 NSGA-III 3 100 0.7273 0.0635 1.5877 0.0855 0.0198 0.0282 0.9030 0.2285 -
MuSt-NSGA-III 100 0.7371 0.0614 1.5133 0.0868 0.0146 0.0204 0.9868 0.2098 106

MaF12 NSGA-III 3 100 0.6640 0.0019 2.2017 0.0837 0.0192 0.0272 0.9049 0.2311 -
MuSt-NSGA-III 100 0.6646 0.0020 2.2286 0.0858 0.0141 0.0194 0.9951 0.2119 102

Carside impact NSGA-III 3 100 0.2288 0.0005 1.9857 0.0506 0.0334 0.0498 0.6919 0.4876 -
MuSt-NSGA-III 100 0.2303 0.0009 2.0307 0.0733 0.0118 0.0163 0.9671 0.2117 143

Crashworthiness∗∗
NSGA-III

3
100 0.1102 0.0027 1.4844 0.0195 0.0166 0.0260 0.5424 0.9322 -

MuSt-NSGA-III 100 0.1140 0.0017 1.0885 0.0404 0.0112 0.0169 0.7971 0.6208 325
Archive-NSGA-III 100 0.1117 0.0018 1.3647 0.0263 0.0284 0.0418 0.3648 0.9981 -

DAS-CMOP7 NSGA-III 3 100 0.7331 0.0074 0.9922 0.0778 0.0244 0.0359 0.8402 0.3194 -
MuSt-NSGA-III 100 0.7330 0.0060 0.9918 0.0794 0.0158 0.0237 1.0000 0.2881 109

DAS-CMOP8 NSGA-III 3 100 0.7148 0.0065 0.9917 0.0837 0.0199 0.0292 0.9017 0.2955 -
MuSt-NSGA-III 100 0.7156 0.0027 0.9963 0.0834 0.0161 0.0239 0.9975 0.2974 111

DAS-CMOP9 NSGA-III 3 100 0.2744 0.0513 0.4712 0.0139 0.0135 0.0209 0.4625 0.9744 -
MuSt-NSGA-III 100 0.2912 0.0509 0.5330 0.0194 0.0122 0.0183 0.4766 0.8128 396

The Wilcoxon signed-rank test with a significance level of 0.05 was applied to perform a statistical comparison between the approaches. Thus, the data in
italics means that it is not possible to detect differences between NSGA-III and MuSt-NSGA-III. Data in bold indicates the best value between the approaches;
∗∗ MIP-DoM from top to bottom for pairs: (NSGA-III, MuSt-NSGA-III), (MuSt-NSGA-III, Archive NSGA-III), (Archive NSGA-III, MuSt-NSGA-III).

(0.5,0.5,0.5). Results on many other problems are shown in
the supplementary document, including DTLZ5.

Table I presents the average quality indicator values ob-
tained by NSGA-III and MuSt-NSGA-III over 50 runs of both
algorithms on 12 problems. In all cases, N is set to 100. In
all tests, MuSt-NSGA-III is executed with T = 20, 000 for
all problems, except for DAS problems, for which we use
T = 100, 000. For all problems, γ = 1/2 is chosen. The
Wilcoxon signed-rank test with a significance level of 0.05
is applied to assess the statistical significance of the obtained
values. Data in italics means that the p-value is more than
0.05, and it is not possible to reject the null hypothesis that the
distribution of the differences between NSGA-III and MuSt-
NSGA-III is symmetric at about zero. Data in bold indicates
the best value between the approaches.

It is important to observe that in some problems, the base
algorithm is not able to generate N ND solutions, mainly due
to the non-existence of an Pareto solution for every chosen RV.
To make a fair comparison with our multi-stage framework,
we use an extended ND solution set with population members
that are beyond the closest point to each RV. This enables to
have a total of N ND points, but they need not have a good
distribution.

Analyzing Table I, some important features of the proposed
multi-stage framework can be highlighted. First, we argue
that the MuSt-EMaO maintains the inner characteristics of

the baseline reference-vector-based algorithm. If the problem
allows finding all N solutions in Stage 1, like in ZDT3 and
DTLZ2 problems, MuSt-NSGA-III and the baseline NSGA-
III perform precisely the same way. In three-objective DTLZ2,
there is no hole or clusters in the Pareto front. Then, only
Stage 1 of the multi-stage framework is executed for the entire
T SEs. Thus, the table shows that all quality indicators present
no statistical difference among the results. This degeneracy of
our proposed algorithm to the baseline algorithm was a desired
feature.

Second, observing the hypervolume values, it is possible
to observe that the MuSt-NSGA-III always produce a larger
hypervolume value than its baseline version, except for DAS-
CMOP7. However, the statistical test indicates that there
is no statistical difference between the algorithms on this
problem as well. However, MuSt-NSGA-III is statistically
better on MAF01, MaF07, car side-impact, crashworthiness,
DAS-CMOP8 and DAS-COMP9 problems. For the MIP-DoM
metric, except in ZDT3, MuSt-NSGA-III is statistically better
or equivalent to NSGA-III on all 11 problems. All other
indicators capture the reliability and uniformity of the final
ND solution set. MuSt-NSGA-III clearly performs better than
the baseline algorithm considering all the indicators. The
only exceptions are the k-nearest neighbor distance mean and
evenness indicators for DAS-CMOP8 problem; however, the
tests indicate no statistical difference between their values.
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Third, to demonstrate the reproducibility aspect, the stan-
dard deviation on HV shows that, in most problems, the
variation of HV over 50 independent runs has a much smaller
standard deviation compared to NSGA-III, meaning that the
multiple MuSt-NSGA-III runs produce almost a similar set of
100 ND points. The coefficient of variation (standard deviation
of HV divided by the mean HV) varies between 0.0000 and
0.1748 with a median of 0.0072, while NSGA-III values vary
between 0.0001 to 0.187 with a median of 0.0119.

Fourth, the last column of the table presents the number
of RVs needed in Iteration 2 of Stage 3 of MuSt-NSGA-
III to obtain N = 100 ND solutions. As it can be seen, a
maximum of 4N RVs are needed to obtain N ND points for
these problems. Interestingly, for the DTLZ5 problem shown
in the supplementary document, about 19N RVs are needed.
These numbers are difficult to predict at the beginning for a
problem and our proposed multi-stage framework with two
iterations adaptively estimates the requisite number of RVs
needed to find the desired number of ND points.

The crashworthiness result in Table I shows that the archive-
based NSGA-II method [9], [10] may not produce a better dis-
tribution of solutions, despite choosing the desired number of
solutions from a large archive of generation-wise collected ND
solutions. To achieve a well-distributed and well-converged set
of solutions, algorithms need to focus their search in multiple
diverse regions in a coordinated manner parallely at every
generation and allow current good solutions to compete with
newly created solutions, rather than expecting a few sampled
ND solutions, passively collected from multiple generations,
to automatically produce a good distribution. However, a more
comprehensive investigation is warranted as a future study.

C. Multi-stage Framework in Other EMaO Algorithms

The computational results so far were achieved using the
NSGA-III as the baseline reference-vector based algorithm.
However, the multi-stage framework can also be integrated
with any other reference-based EMaO as long as a require-
ment is met. Since in the multi-stage framework, the initial
population from Stage 1 must be used in Stage 2, and in
Stage 3, the baseline algorithm must allow the user to set
an initial population instead of always a random one. Three
additional reference-based algorithms are included in this
study: MOEA/D [3], C-TAEA [19], and CLIA [22]. The
algorithms have been implemented using pymoo and PlatEMO
frameworks, [26], [33]. The performance indicators – HV, k-
neighbors distance mean, k-neighbors distance standard de-
viation, Spacing, UD, and Evenness – are used as quality
indicators. The Wilcoxon signed-rank test with a significance
level of 0.05 was employed to assess the statistical significance
of the values. Data in italics means the p-value is more than
0.05, and it is not possible to detect difference between the
values. Data in bold indicates the best value between the multi-
stage framework and its baseline.

Table II presents seven quality indicators calculated for five
EMaO algorithms with and without the multi-stage framework
on three-objective MaF01 problem (similar to the inverted
DTLZ1 problem). As described in Section II, CLIA [22] is an

algorithm which combines two interactive processes: Cascade
Clustering (CC) and Reference Point Incremental Learning.
CC uses reference vectors to create and sort the solutions,
while the SVM model adjusts these references throughout the
evolutionary process. Therefore, we want to apply CLIA as a
baseline algorithm in MuSt-EMaO in two different contexts.
Initially, CLIA is applied as the reference-based algorithm
in MuSt-EMaO just like other EMaO algorithms (NSGA-III,
MOEA/D, and C-TAEA). Thereafter, we integrate our multi-
stage framework coupled with the Cascade Clustering (CC) of
CLIA. The rationale behind this idea is that although the SVM
model in the incremental learning phase improves the unifor-
mity of adjusting the reference vectors, it presents a quadratic
computational cost related to the number of objectives. We
argue that the proposed multi-stage framework can improve
the reliability and uniformity, when coupled with CC. In this
context, to assess the effectiveness of the reference vector
adjustments, we turn off the incremental learning approach
from CLIA and integrate our MuSt-EMaO framework with
the Cascade Clustering process (MuSt-CC). Interestingly, in
all performance measures, the respective multi-stage version
has obtained statistically better or equivalent performance.

Table II: MaF01 problem set with M = 3. The experiment
involves 50 trials, and each algorithm is run with T = 20, 000.
Some selected quality indicators are tabulated.

Algorithm N HV ↑ MIP-
DoM ↓

k-neighbors
distance SP ↓ UD ↑ ξ ↓

mean ↑ std dev ↓

NSGA-III 100 0.0146 1.7711 0.0175 0.0147 0.0227 0.5329 0.8066
MuSt-NSGA-III 100 0.0162 1.7393 0.0439 0.0073 0.0102 0.9748 0.2392

MOEA/D 97 0.0129 1.7946 0.0261 0.0269 0.0409 0.4709 0.8589
MuSt-MOEA/D 100 0.0161 1.7473 0.0424 0.0085 0.0122 0.9282 0.2808

C-TAEA 100 0.0153 1.7449 0.0289 0.0130 0.0205 0.5552 0.5800
MuSt-C-TAEA 100 0.0162 1.7770 0.0450 0.0079 0.0108 0.9646 0.2233

CLIA 100 0.0164 1.8025 0.0345 0.0128 0.0198 0.7148 0.4338
MuSt-CLIA 100 0.0164 1.7332 0.0450 0.0085 0.0110 0.9687 0.2318

CLIA 100 0.0163 1.8537 0.0344 0.0128 0.0199 0.7123 0.4323
MuSt-CC 100 0.0164 1.6558 0.0438 0.0087 0.0120 0.9798 0.2466

To show the distribution of obtained points, we plot
MOEA/D obtained ND points in the left plot of Figure 8.
These points come from the median HV run. The ND points
from MuSt-MOEA/D are shown in the right plot. Clearly,
the multi-stage framework is able to produce a much better
distribution of points on the MaF01 problem. Note from
Table II that MOEA/D could not produce 100 ND points. We
compute the quality indicators if at least 95% of prescribed
ND points are found and ascertain that any fewer number
of ND solutions will not make the comparison between two
vastly unequal sets fair. The experiment is extended to two
more problems: MaF07 and MaF11 in Tables III, and IV,
respectively. It is important to note that MOEA/D can find
only 85 ND solutions with 100 RVs on the entire unit simplex
for MaF07 and MaF11 problems. The final population of
MOEA/D does not have any more ND points to increase the
final number of ND points to the desired number (100, in our
case). Thus, we do not compare MOEA/D’s performance with
MOEA/D’s multi-stage version.
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Figure 8: MOEA/D and MuSt-MOEA/D ND solutions from
the median HV run of 50 runs for MaF01 problem.
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Figure 9: C-TAEA and MuSt-C-TAEA ND solutions from the
median HV run of 50 runs for MaF07 problem.

Analyzing the results from MaF01 problem, presented in
Table II, a similar pattern, observed in Table I, also appears
here. There is a significant statistical difference favoring the
multi-stage framework when the uniformity indicators are
computed. However, for MuSt-CLIAand MuSt-CC, regarding
the HV indicator, there is no statistical difference between the

Table III: MaF07 problem set with M = 3. The experiment in-
volves 50 trials, and each algorithm has set with T = 20, 000.
Some quality indicators are presented. MOEA/D algorithm is
not able to generate 100 solutions; hence, we do not compute
and compare the quality indicators.

Algorithm N HV ↑ MIP-
DoM ↓

k-neighbors
distance SP ↓ UD ↑ ξ ↓

mean ↑ std dev ↓

NSGA-III 100 0.2503 1.4809 0.0254 0.0179 0.0279 0.6400 0.9236
MuSt-NSGA-III 100 0.2551 1.4508 0.0498 0.0133 0.0190 0.8781 0.6991

MOEA/D 85 - - - - - - -
MuSt-MOEA/D 100 0.2205 1.1091 0.0374 0.0148 0.0229 0.7366 0.7080

C-TAEA 100 0.2603 1.3762 0.0272 0.0224 0.0335 0.4616 1.1244
MuSt-C-TAEA 100 0.2702 1.3036 0.0467 0.0143 0.0211 0.8916 0.7503

CLIA 100 0.2076 1.5099 0.0314 0.0221 0.0341 0.4909 0.9842
MuSt-CLIA 100 0.2218 1.3957 0.0441 0.0110 0.0164 0.8425 0.7239

CLIA 100 0.2066 1.6067 0.0310 0.0225 0.0347 0.5065 0.9870
MuSt-CC 100 0.2162 1.2410 0.0436 0.0110 0.0163 0.8264 0.7390

baseline algorithm and the multi-stage framework. Figure 9
shows the ND points from C-TAEA and MuSt-C-TAEA. A
better distribution of ND points can be observed with the
multi-stage framework.

In Table IV, the results on MaF11 problem are presented. In
this case, there is a statistical difference in two CLIA versions
related to HV. However, considering the k-neighbor distance
mean, the pair-wise values are very close, and there is no
statistical difference. Figure 10shows the CLIA and MuSt-
CLIA solution sets.

Table IV: MaF11 problem set with M = 3. The experiment in-
volves 50 trials, and each algorithm has set with T = 20, 000.
Some quality indicators are presented. MOEA/D algorithm is
not able to generate 100 solutions; hence, we do not compute
and compare the quality indicators.

Algorithm N HV ↑ MIP-
DoM ↓

k-neighbors
distance SP ↓ UD ↑ ξ ↓

mean ↑ std dev ↓

NSGA-III 100 0.7273 1.5877 0.0855 0.0198 0.0282 0.9030 0.2285
MuSt-NSGA-III 100 0.7371 1.5733 0.0868 0.0146 0.0204 0.9868 0.2098

MOEA/D 85 - - - - - - -
MuSt-MOEA/D 100 0.3593 0.7533 0.0535 0.0103 0.0162 0.6854 0.5377

C-TAEA 100 0.5782 1.3290 0.0608 0.0297 0.0446 0.7901 0.6010
MuSt-C-TAEA 100 0.7500 1.3526 0.0675 0.0174 0.0264 0.9696 0.4102

CLIA 100 0.7389 1.5326 0.0727 0.0264 0.0408 0.9729 0.4795
MuSt-CLIA 100 0.7406 1.5397 0.0737 0.0195 0.0303 0.9803 0.3794

CLIA 100 0.7398 1.5356 0.0723 0.0258 0.0399 0.9819 0.4827
MuSt-CC 100 0.7421 1.5423 0.0743 0.0188 0.0293 0.9893 0.3746
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Figure 10: CLIA and MuSt-CLIA ND solutions from the
median HV run of 50 runs for MaF11 problem.

In the supplementary document, more results on other
problems, such as, ZDT3, DTLZ5, C2-DTLZ2, MW14, more
MaF and DAS-CMOP problems, are provided.

D. MuSt-NSGA-III Applied to Many-objective Problems

Next, to analyze the effect of the number of objective
functions on the proposed framework, MaF07 and C2-DTLZ2
are considered. For both problems, the number of objective
functions is set to M = 3, 5, 8, and 10 using N = 100, 200,
400, and 600, and T = 20, 000, 40, 000, 80, 000, and 120, 000,
respectively. Only NSGA-III and MuSt-NSGA-III are used in
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this study. Table V shows the average of performance measures
over 50 runs on MaF07 problem. Considering HV and MIP-

Table V: Number of objective functions is set to M = 3,
5, 8, and 10, with N = 100, 200, 400, and 600, and,
T = 20, 000, 40, 000, 80, 000, and 120, 000, respectively, for
MaF07 problem. Average of quality indicators for 50 runs are
presented.

Algorithm M N HV ↑ MIP-
DoM ↓

k-neighbors
distance SP ↓ UD ↑ ξ ↓

mean ↑ std dev ↓

NSGA-III 3 100 0.2503 1.4809 0.0254 0.0179 0.0279 0.6400 0.9236
MuSt-NSGA-III 100 0.2551 1.4508 0.0498 0.0133 0.0190 0.8781 0.6991

NSGA-III 5 200 0.2284 3.3726 0.0970 0.0606 0.0760 0.6224 0.7188
MuSt-NSGA-III 200 0.2300 3.0803 0.1323 0.0392 0.0585 0.9212 0.4425

NSGA-III 8 400 0.0528 5.4310 0.1489 0.0700 0.1234 0.6698 0.6098
MuSt-NSGA-III 400 0.0526 5.5817 0.1731 0.0518 0.0864 0.8119 0.4571

NSGA-III 10 600 0.0323 5.5446 0.1982 0.0662 0.1382 0.6721 0.5454
MuSt-NSGA-III 600 0.0319 5.6760 0.2167 0.0359 0.0672 0.9500 0.3827

DoM, the results of MuSt-NSGA-III for M = 8 and 10 are
not statistical different from NSGA-III. All other results bring
evidence favoring the multi-stage framework. In Figure 11, a
comparison of final ND solutions for eight-objective MaF07
problem from NSGA-III and MuSt-NSGA-III are shown on
parallel coordinate plots (PCPs). Visually, it is possible to
observe a better regularity in the position of the lines for MuSt-
NSGA-III, particularly for objective functions f3, f7, and f8.
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Figure 11: Parallel coordinate plots for NSGA-III and MuSt-
NSGA-III for the MaF07 problem with M = 8. 50 runs are
made and the presented results come from the median HV run.

Table VI shows the results for C2-DTLZ2. There is no sta-
tistical difference for HV, MIP-DoM, and k-neighbors distance
mean indicators, as the number of objectives increase. All
other indicators show a more uniform distribution for MuSt-
NSGA-III, as observed for the MaF07 problem.

V. PARAMETRIC STUDIES

Algorithm 1 shows that four input are needed to execute
the MuSt-EMaO framework. Of them, the EMaO algorithm,

Table VI: Number of objectives is set to M = 3, 5, 8, and
10, N = 100, 200, 400, and 600, and, T = 20, 000, 40, 000,
80, 000, and 120, 000, respectively, for C2-DTLZ2 problem.
Average of quality indicators for 50 runs are presented.

Algorithm M N HV ↑ MIP-
DoM ↓

k-neighbors
distance SP ↓ UD ↑ ξ ↓

mean ↑ std dev ↓

NSGA-III 3 100 0.7379 0.9331 0.0573 0.0365 0.0540 0.6965 0.4780
MuSt-NSGA-III 100 0.7476 0.9221 0.0710 0.0140 0.0199 1.0000 0.3506

NSGA-III 5 200 0.9603 1.0005 0.1647 0.0459 0.0812 0.7818 0.4874
MuSt-NSGA-III 200 0.9607 1.0004 0.1695 0.0268 0.0340 1.0000 0.4197

NSGA-III 8 400 0.9812 1.0007 0.2036 0.0732 0.1199 0.7741 0.5038
MuSt-NSGA-III 400 0.9811 1.0013 0.2042 0.0464 0.0563 0.9969 0.4798

NSGA-III 10 600 0.9612 1.0002 0.2255 0.0765 0.1247 0.7921 0.4951
MuSt-NSGA-III 600 0.9612 1.0007 0.2314 0.0698 0.0815 0.0849 0.4437

desired number of ND solutions, and the overall number of
SEs are supplied by the user and are not algorithm parameters
which can be set in any way by the developer. The above
section has shown how the proposed MuSt-EMaO framework
can be integrated with a number of EMaO algorithms to im-
prove their performance in terms of finding a well-distributed
set of a pre-specified number of desired ND point reliably.
The use of three stages adaptively determines if the first
stage will continue until all pre-specified number of solution
evaluations are completed, or if the algorithm has to move to
Stage 2 to ensure if any active RVs was left out in Stage 1,
or if the algorithm needs to produce denser points to come
up the desired number of ND points. The P seed is the
initial supplied random population. The proposed multi-stage
framework requires only one parameter: γ, which determines
the proportion of total T SEs to be dedicated to Stage 3, while
the remaining SEs are equally distributed between Stages 1
and 2. The number of desired ND points (N ) is truly not a
parameter for the algorithm, but is a desired number that the
user needs to provide. But, in the next section, we show that
the MuSt-NSGA-III works well with different N values.

A. Effect of Number of Desired Solutions

The previous experiments have attempted to find N = 100
ND solutions. Here, we investigate the effect of number of
desired solutions (N ) on the performance of our proposed
multi-stage framework. Table VII presents the results on the
MaF07 problem for three different N values: 50, 100 and
200. We use a linearly proportionate SEs: 10,000, 20,000 and
40,000 for the three scenarios, respectively. We have also set
γ = 0.5 in this study. It is clear from the table that MuSt-
NSGA-III is able to produce a more uniformly distributed
set of Pareto solutions compared to NSGA-III for the same
number of respective SEs over 50 runs. In most cases, MuSt-
NSGA-III is statistically superior to NSGA-III.

Next, we consider the crashworthiness problem and show
the results for N = 50, 100 and 200 as well in Table VIII. For
this problem, MuSt-NSGA-III performs statistically superior
to NSGA-III over 50 independent runs, clearly indicating the
advantage of the multi-stage framework.
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Table VII: Results using MaF07. Number of solutions are set
to N = 50, 100, 200 and M = 3, using T = 10, 000, 20, 000,
and 40, 000, respectively. Average of quality indicators for 50
runs are presented.

Algorithm N HV ↑ MIP-
DoM ↓

k-neighbors
distance SP ↓ UD ↑ ξ ↓

mean ↑ std dev ↓

NSGA-III 50 0.2416 1.1875 0.0446 0.0367 0.0557 0.6489 0.7807
MuSt-NSGA-III 0.2421 1.0841 0.0692 0.0229 0.0337 0.7988 0.5837

NSGA-III 100 0.2503 1.4809 0.0254 0.0179 0.0279 0.6400 0.9236
MuSt-NSGA-III 0.2551 1.4508 0.0498 0.0133 0.0190 0.8781 0.6991

NSGA-III 200 0.2546 1.5469 0.0170 0.0118 0.0183 0.5922 1.1038
MuSt-NSGA-III 0.2565 1.4665 0.0335 0.0078 0.0113 0.8990 0.8840

Table VIII: Results using Crashworthiness. Number of so-
lutions are set to N = 50, 100, 200 and M = 3, using
T = 10, 000, 20, 000, and 40, 000, respectively. Average of
quality indicators for 50 runs are presented.

Algorithm N HV ↑ MIP-
DoM ↓

k-neighbors
distance SP ↓ UD ↑ ξ ↓

mean ↑ std dev ↓

NSGA-III 50 0.1091 1.4982 0.0275 0.0246 0.0388 0.5625 0.9016
MuSt-NSGA-III 0.1132 1.3401 0.0592 0.0187 0.0283 0.7846 0.5409

NSGA-III 100 0.1101 1.4844 0.0195 0.0166 0.0260 0.5440 0.9333
MuSt-NSGA-III 0.1139 1.0682 0.0403 0.0112 0.0169 0.7991 0.6205

NSGA-III 200 0.1135 1.4164 0.0138 0.0110 0.0172 0.5268 1.0229
MuSt-NSGA-III 0.1162 0.9642 0.0281 0.0074 0.0108 0.8226 0.7266

B. Effect of the Solution Evaluation Budget on Each Stage

Next, we perform a parametric study with the γ parameter,
that decides the individual SEs for each stage. We assume that
T1 = T2, providing two equal chances for the EMaO algorithm
to reliably find a set of ND solutions by first focusing on
the entire Pareto front in Stage 1 and then focusing on the
IRVs in Stage 2, that could not be covered in Stage 2. Using
T as the total number of solution evaluations, we define
T3 = γT and T1 = T2 = 1−γ

2 T . Based on this setting,
three different configuration tests are designed with γ = 1/3,
1/2, and 2/3. Therefore, for example, considering 10,000 total
solution evaluations, a configuration set with γ = 1/2 will set
T1 = 2, 500, T2 = 2, 500, and T3 = 5, 000. Note that Stage 3
involves two iterations.

Our goal is to determine the statistically best setting con-
sidering all quality indicators and all problems used in this
study. However, the usual multiple pairwise comparisons, such
as the ones done in the Wilcoxon test, suffers from the
multiplicative effect to control the family-wise error rate [34].
We adopt two non-parametric statistical tests that are able
to make multiple comparisons. The first test, the Friedman
test, ranks the algorithm’s performance for each problem and
computes the average performance among problems. It uses
these rankings to test the null hypothesis, the equivalence
of median metric value for different γ values, versus the
alternative hypothesis that two or more medians are different.
The second test, the Quade test [34], considers the difference
among the problems. It calculates the range of the problems
as the maximum differences between the samples and ranks

the k problem ranges. Then, these ranks are assigned to the
problems and represent a weight to the ranks obtained by the
Friedman method. Finally, it uses the same null and alternative
hypotheses as in the Friedman test.

Table IX shows the Friedman test results using the HV
values in the top part of the table. The mean HV value and
the ranking of each γ are shown for each problem in brackets.
The mean HV-based ranking is tabulated in the last row. While
γ = 1/2 performs the best, the other two values are also
statistically equivalent. Similar tables are also produced for all
other indicators. The complete Friedman table for each quality
indicator is shown in the supplementary document. Here, we
show only the final ranking for the other indicators.

Table IX: Friedman ranks for HV mean for all config sets using
γ = 1/3, 1/2, and 2/3. For k-neighbors distance distance
mean, k-neighbors distance std dev, SP, UD, and ξ quality
indicators, only the final ranking are shown for brevity.

Problem sets
Config sets using γ

1/3 1/2 2/3
HV Friedman test rank

ZDT3 0.4817 (1) 0.4816 (2) 0.4815 (3)
MaF01 0.7275 (2) 0.7278 (1) 0.7272 (3)
MaF07 0.6813 (3) 0.6819 (2) 0.6823 (1)
MaF10 0.6792 (1) 0.6330 (2) 0.5543 (3)
MaF11 0.7386 (3) 0.7422 (1) 0.7392 (2)
MaF12 0.7700 (3) 0.7709 (1) 0.7701 (2)
Crashworthiness 0.7447 (3) 0.7460 (1) 0.7458 (2)
Carside impact 0.6823 (2) 0.6823 (3) 0.6826 (1)
DAS-CMOP7 0.7808 (1) 0.7794 (2) 0.7755 (3)
DAS-CMOP8 0.7884 (1) 0.7880 (2) 0.7845 (3)
DAS-CMOP9 0.5108 (1) 0.5015 (2) 0.4944 (3)

Ranking 1.90 1.72 2.36
k-neighbors distance mean Friedman test

Ranking 2.18 1.81 2.00
k-neighbors distance std dev Friedman test

Ranking 2.72 1.72 1.54
Spacing Friedman test

Ranking 2.90 1.54 1.54
UD Friedman test

Ranking 2.27 1.86 1.86
ξ Friedman test

Ranking 2.45 1.64 1.90

The numbers indicate that it is not possible to reject the null
hypothesis, concluding that there is an equivalence among all
three γ values for the hypervolume metric. We conduct the
same test using the Quade ranking test, and even considering
the different problem difficulties, it is again impossible to
reject the null hypothesis. Therefore, the experiments present
no statistical difference related to this quality indicator. The
same phenomenon happens to k-neighbors distance mean,
UD, and Evenness, in which it is not possible to observe
statistical differences among different γ values. Contrarily, k-
neighbors distance std-dev and spacing have produced slightly
different conclusions. Results indicate statistically significant
differences among γ values, preferring γ = 1/2 and 2/3 over
1/3.

The main drawback of the Friedman and Quade tests is
that they can only detect significant differences over multiple
comparisons. A general recommendation approach is: if the
null hypothesis is rejected, we should proceed with a post-hoc
procedure to characterize these differences. Then, applying a
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Table X: HV Shaffer’s adjusted p-values for tests considering
multiple comparisons among all methods.

Hypothesis Shaffer

k-neighbors distance std dev

Config test γ = 1/3 vs Config test γ = 2/3 0.0426

Config test γ = 1/3 vs Config test γ = 1/2 0.0426

Config test γ = 1/2 vs Config test γ = 2/3 0.7060

Spacing

Config test γ = 1/3 vs Config test γ = 2/3 0.0126

Config test γ = 1/3 vs Config test γ = 1/2 0.0200

Config test γ = 1/2 vs Config test γ = 2/3 0.5930

post-hoc test, we can obtain a p-value that determines the
degree of rejection of each pairwise hypothesis. Therefore,
we conduct a post-hoc analysis using the adjusted p-values
calculated by Shaffer’s procedure [35]. Table X makes a pair-
wise comparison of three γ configurations for k-neighbors
distance standard deviation and spacing indicators on all
problems. Considering a significance level of 0.05, it can be
concluded that there is always a difference in performance with
γ = 1/3 compared to 1/2 or 2/3. However, the comparisons
between γ = 1/2 and γ = 2/3 do not present a statistical
difference for both quality indicators. It leads us to conclude
that a budget with a number of solution evaluations greater
than γ = 1/2 performs better. Since the final adjustments
with increased number of RVs in Stage 3 determines the
quality of the overall framework, the parametric study finds
that allocating more SEs at Stage 3 is a better strategy.

VI. CONCLUSIONS

Evolutionary algorithms are stochastic; hence they produce
different sets of solutions in different runs. To make evolu-
tionary multi-objective optimization algorithms reproduce a
desired number of non-dominated (ND) solutions reliably, this
paper has proposed a three-stage reference vector (RV) based
framework that takes multiple attempts to focus on various
key aspects of multi-objective problem solving. The first stage
attempts to find a skeleton of active RVs that contain at least
one associated ND solution. The second stage attempts to fo-
cus its search on inactive RVs to make sure no true associated
ND solutions are left out. Having identified all active RVs,
the third stage focuses on searching the desired number of
ND points in two iterations by progressively increasing the
number of RVs. While each of the three stages has their
individual role, if an earlier stage is able to find the desired
number of ND points, the algorithm consumes the remaining
budget of solution evaluations to make the convergence and
distribution better without truly moving to the latter stages,
thereby degenerating to a single-stage original algorithm, if
adequate. A later stage starts from the final populations of the
previous stages to make the overall algorithm more efficient.

The working principle of the multi-stage NSGA-III has
been demonstrated on 12 two-objective and three-objective
problems, clearly showing its superiority in terms of achiev-
ing a better distribution of points measured through seven

performance indicators. The multi-stage approach has been
integrated with MOEA/D, C-TAEA, and CLIA algorithms as
well, with an improved performance in each case. Thereafter,
the multi-stage NSGA-III is applied to many-objective prob-
lems having 5-10 objective problems. Better performance has
been reported compared to the original NSGA-III for the same
number of solution evaluations.

A parametric study has been performed for the parameter
defining the proportion of SEs dedicated to each stage. With
a statistical analysis, it has been observed that the multi-stage
approach works better with 50% or more total SEs assigned
to two iterations of Stage 3. The multi-stage EMaO has also
shown to work well with different number of desired ND
solutions, thereby making the overall framework generically
applicable.

This extensive study for finding a reliable set of desired
number of ND points can be extended in various ways. First,
the multi-stage approach can be extended to algorithms that
do not use RVs, by identifying inactive regions in Stage 2
and the number of uniformly distributed ND points using
other indicators. Second, instead of prefixing a γ parameter to
allocate a fixed number of SEs for each stage, indicators for
stability in convergence and diversity measures can be used to
terminate a stage. Care must be taken to ensure sufficient SEs
are kept for later stages, despite stability conditions are not met
for earlier stages. Third, effect of more iterations in Stage 3
can be tried. Fourth, comparisons of our approach with other
shape-invariant EMaO algorithms [36], [15] and archive-based
ND solution accumulation strategies [9], [10] may be studied.
Nevertheless, the multi-stage philosophy proposed here makes
the framework practical by finding an exact number of desired
uniformly distributed ND solutions reliably through repetitive
searches in stages with varying focus.
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