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A B S T R A C T

In multi-criterion optimization, decision-makers (DMs) are not often interested in the complete
Pareto-optimal front. Instead, they have preferences favoring specific parts of the front. Multi-
criterion decision-making (MCDM) literature provides a plethora of approaches for introducing
DM’s preference information in an interactive manner to solve multi-criterion optimization
problems. Interactions with DMs can be aided with a user-friendly visualization method or by
using special data analysis procedures. An earlier study has indicated the use of self-organizing
maps (SOM) as a tool for analyzing Pareto-optimal solutions. In this paper, we demonstrate how
a specific MCDM method – NIMBUS – can be executed with the interpretable SOM (iSOM)
approach iteratively to arrive at one or more preferred solutions. A visual illustration of the
entire high-dimensional search space into multiple reduced two-dimensional spaces allows DMs
to have a better understanding of the interactions of the objectives and constraints independently,
and execute the NIMBUS decision-making procedure with a more wholistic approach. The paper
demonstrates the proposed method on a number of multi- and many-objective numerical and
engineering problems. The approach is now ready to be integrated with other popular MCDM
methods.

1. Introduction

OPTIMIZATION problems are now increasingly being solved for more than one criterion for several reasons. First,
most practical problems are better posed as a multi-criterion optimization problem, as often the resulting optimal

solution(s) must conform to several conflicting functional goals (such as cost, quality, emission, waste, etc.). Second,
despite the ultimate choice of a single preferred optimal solution, multiple trade-off optimal solutions, which become
the outcome of a multi-criterion optimization problem, provide relevant knowledge of possible alternate solutions to
the decision-makers (DMs) for them to be on top of guesses and prejudices. Finding a set of trade-off optimal solutions
(known as Pareto-optimal solutions in the parlance of multi- criterion optimization) has mostly been followed using two
broad philosophies of optimization: (i) generative approach (Miettinen, 2012; Steuer, 1986; Chankong and Haimes,
2008) in which a single Pareto-optimal solution is found one at a time by solving a parameterized scalarization of
multiple criteria and (ii) simultaneous approach (Deb, 2011; Coello et al., 2007) in which multiple Pareto-optimal
solutions are found in a single run of the algorithm. Evolutionary Multi-objective Optimization (EMO) methodologies,
proposed in the early nineties fall in the second category of algorithms, which are used to solve more than three-
objective problems (Deb and Jain, 2014; Li et al., 2014; Yuan et al., 2015).

In addition to optimization algorithms to find multiple Pareto optimal solutions, there is a need for multi-criterion
decision-making (MCDM) task which can follow the optimization task or be applied interactively with the optimization
task (Ma et al., 1999). Starting in the early seventies, various MCDM approaches were proposed to systematically
involve one or more DMs in providing preference information, either in terms of objective preferences irrespective of
solutions, preference of one solution over another in a pairwise comparison based on their objective and constraint
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values, or by other means. These interactive MCDM approaches usually formulate a scalarized version of the
multi-criterion optimization problems in an interactive manner. The scalarization process requires DM’s preference
information and thereby largely depends on the solutions being compared and their properties. To properly formulate
a scalarized problem, it is extremely helpful to the DMs to visualize the solutions well in a low-dimensional mapped
search space along with trade-off information of objectives, their nearness to constraint boundaries, and other relevant
information assisting in the decision-making process. It is needless to say that an efficient decision-making process is
less likely to be completely algorithmic; rather, it should be as procedural as possible but must accompany different
analysis tools providing relevant trade-off information, but importantly it must be guided by human decision-makers
having a direct stake in the problem (Branke et al., 2009).

Thus, it is clear from the above discussion that a multi-criterion problem-solving task cannot be a pure algorithmic
exercise of finding just any optimal solution in the search space, but must involve human decision-makers, their
perception of solutions through preferences of objectives and constraints involved in the problem (Ho et al., 2010;
Sinha et al., 2014). The latter task can be aided by a proper understanding of the location of key solutions in the
search space, the trade-off they produce among objectives and their closeness to constraint boundaries. This decision-
making task can be better achieved through the use of modern data analysis and visualization methods that are easily
understandable to human decision-makers. This paper demonstrates such an aspect of decision-making on a popularly
used MCDM approach using a recent data analysis and visualization tool on several three to ten-objective problems.

There exist many systematic MCDM methods for achieving the optimization and decision-making tasks together.
The use of an aspiration objective point and a preference direction vector in the Achievement Scalarization Function
(ASF) approach (Wierzbicki, 1980, 1999) is used to scalarize multiple objectives into a single objective, thereby
producing a single optimal solution in the end. ASF and its augmented version (AASF) (Miettinen, 2012) are
extensively used to develop a number of MCDM methods, such as surrogate worth trade-off (SWT) method (Hall and
Haimes, 1976), GUESS method (Buchanan, 1997), satisficing trade-off method (STOM) (Nakayama and Sawaragi,
1984), Pareto-race method (Korhonen and Wallenius, 1988; Korhonen and Yu, 2000), among others. These methods
systematically change either the aspiration point or the preference direction vector in an iteration depending on the
solution obtained at the previous iteration. Upon solving the AASF formulation, for example, only one solution (x𝐴𝑆𝐹 )
is obtained. However, EMO methods (such as reference point-based methods) can be used to generate 𝐾 additional
solutions (X𝐸𝑀𝑂 = {x(1), x(2),… , x(𝐾)}) in the vicinity of the single solution (x𝐴𝑆𝐹 ). Availability of such a multiple
solution set (X𝐸𝑀𝑂) permits the DM to compare these solutions and select the most preferred one amongst them as
an alternative solution instead of selecting just one (x𝐴𝑆𝐹 ). This provides flexibility to the DM in selecting his/her
preferred solution(s). On some occasions, EMO methods were shown to follow a specific MCDM approach to find
multiple preferred solutions as a further process of providing flexibility in the scalarization process. Reference point-
based NSGA-II (R-NSGA-II) (Deb and Jain, 2014), reference direction-based NSGA-II (Deb and Kumar, 2007a),
light beam approach (Deb and Kumar, 2007b; Jaszkiewicz and Słowiński, 1999) are some such hybrid EMO-MCDM
methods. Branke et al. (2015) allows the DMs to rank a single pair of solutions at regular intervals by learning a
value function based on DMs’ preferences. This preference information updates the algorithms’ internal value function
models and speeds up the evolution to arrive at the aspiration level. Branke et al. (2016) used the Choquet integral and
proposed an interactive procedure that involves preference information in terms of pairwise comparisons.

Wang et al. (2015a) extensively discussed the decomposition-based methods and highlighted that the decomposition-
based algorithms using pre-defined weights suffer from the issue of problem geometry. Although this issue can be
handled by employing adaptive weights (Siwei et al., 2011; Gu et al., 2012; Qi et al., 2014), there is the possibility
that the adaptive weights degrade the algorithm’s convergence speed often on many-objective optimization problems.
Highlighting the limitations of the decomposition-based methods, Wang et al. (2015a) proposed a preference-inspired
co-evolutionary algorithm using weights (PICEA-w) that is less sensitive to the problem geometry. In this method, the
weights are co-evolved with candidate solutions during the search process. Köksalan and Karahan (2010) proposed
an interactive MCDM technique named iTDEA. This interactive MCDM technique utilizes the concept of a territory-
defining evolutionary algorithm (TDEA) proposed by Karahan and Koksalan (2010). iTDEA technique allows DMs
to apply their preferences on a set of representative Pareto optimal solutions interactively. In each iteration, a territory
is defined around the preferred solution and a dense set of solutions is computed around it. The algorithm stops once
the aspiration level of DM is obtained. Kaliszewski et al. (2012) proposed and formulated the expression for the
lower and upper bounds on objectives or goals corresponding to the DM’s preference. The accuracy of the lower
and upper bounds is updated and controlled within the evolutionary computation framework. Wang et al. (2015b)
proposed an interactive MCDM technique termed as brushing technique utilizing the concept of a preference-inspired
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co-evolutionary algorithm using goals called PICEA-g (Wang et al., 2013). The brushing technique allows the DMs to
provide their preferences by drawing in the objective function space unlike providing the numbers in the case of utility
functions such as ASF and AASF. The implementation of interactive approaches using other MCDM techniques is
recently studied in Kadziński et al. (2020); Tomczyk and Kadziński (2019).

The Non-differentiable Interactive Multiobjective BUndle-based optimization System (NIMBUS) is another
interactive multi-criterion optimization and decision-making approach proposed in Miettinen and Mäkelä (1995) and is
the focus of this paper. It starts with a single Pareto-optimal solution and works iteratively to arrive at another preferred
Pareto-optimal solution satisfying DM’s satisfaction level on different objectives and constraints. At each iteration, the
DM can classify all conflicting objectives into five classes, each indicating different levels of satisfaction. For example,
certain objectives may require to be improved further from their values at the current solution, or certain objectives
may be allowed to deteriorate within specific limits for the improvement of some other objectives to take place, or
certain objectives can be changed to any extent possible, as in the present context, they are not as important as the
former two classes, and so on. Once such preference information is provided by the human DMs based on their desire
and perception of an acceptable solution, scalarized single-objective formulation/s of the problem are formulated and
solved to find an alternative solution. A feasibility check is always enforced to produce feasible solutions. The new
solutions are compared with the previous solution(s), and a single solution is chosen to advance to the next iteration.
The process is terminated when the DMs have found a satisfactory solution or a predefined number of iterations are
elapsed.

It is clear from the above discussion that the progress of the entire process depends on DM’s classification of
objectives into different classes and the choice of a solution among a few at the end of each iteration. While there is no
absolute right or wrong answer to this decision-making process, the DMs can be aided with adequate problem-related
information with an easy-to-understand visualization tool to make a proper choice. A recent study (Nagar et al., 2021)
by the author group has shown that an interpretable version of self-organizing maps (they named the procedure as
‘iSOM’) can produce a series of two-dimensional SOM plots of each objective and constraint function in two fictitious
mapped axes of the entire 𝑛-dimensional search space. The SOM plots are called the component planes of the respective
variables, objectives, or constraints. The objective/constraint values are shown in small hexagonal (or rectangular)
colored cells indicating their values. Since the axes are kept invariant for each objective/constraint SOM plot, a good
idea of the trade-off among objectives can be perceived by traversing in certain fixed directions on two or more SOM
plots. Moreover, the SOM plots provide a clear direction of maximal increase and decrease of each function value,
thereby allowing one to investigate the change in other function values along the fixed directions to get a good idea of
trade-off among objectives and constraints.

In this paper, we take the NIMBUS start point and show it on iSOM component planes to provide a clear
understanding of the start point in the entire search space. This allows the DMs to have a better understanding of trade-
off of objectives and constraints, so they are in a more informed position to provide classification levels of objectives
and visualize the part of Pareto front obeying the classification, which is the region of interest (RoI) as well. iSOM
visualization aids to select alternate solutions, generate intermediate solutions, and choose the final solution, knowing
fully the scope of feasible solutions and RoI. In addition, the DMs are provided with the previous iteration’s NIMBUS
solutions on the same iSOM component planes to have a clear idea of their relative importance to progress to the next
iteration. Since the iSOM procedure is agnostic to the actual variable space dimension and plots are always shown in
two dimensions, they are relatively easy to comprehend. Moreover, our proposed iSOM component planes use different
innovative fills and colors of hexagonal cells to make the whole process attractive and easier to use, a matter which is
not possible to achieve with existing visualization methods. The major contributions of the current work are as follows:

1. Integrating an inherently interpretable visualization technique, iSOM with NIMBUS for interactive MCDM
leading to a better comprehension of the various properties of the preferred solutions.

2. Identify disjoint regions in the Pareto front from the U-matrix of iSOM.

3. Along with the objective function values, the properties of the solutions such as their proximity to the constraint
and trade-off information are used as a criterion for the MCDM task leading to better decisions.

4. The ability of iSOM in permitting the DM to provide preference information for various steps such as
classification, selecting alternate solution(s), and final solution of NIMBUS method for informed decision-
making.
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In the remainder of this paper, we provide a brief description of the NIMBUS method in a step-by-step format in
Section 2 and emphasize the need for using an effective visualization method to accompany its iterative steps. Then in
Section 3, we provide a brief description of the iSOM procedure. The overall procedure of iSOM-based visualization for
NIMBUS method is provided in step-by-step format with details of color and style coding in Section 4. The advantages
of using the iSOM-NIMBUS procedure compared to existing methods are highlighted in Section 5 in the context of
a real-world three-objective crash-worthiness problem. Thereafter, the iSOM-NIMBUS procedure is further applied
to different benchmark problems (five-objective problem, disjointed Pareto-set problem, and constrained problem)
in Section 6. Finally, iSOM-NIMBUS is applied to two more real-world problems in Section 7. Conclusions of this
extensive study is then summarized in Section 8.

2. NIMBUS Algorithm
NIMBUS refers to Non-differentiable Interactive Multiobjective BUndle-based optimization System. As the name

suggests, it is a multiobjective optimization (MOO) system that is able to handle even non-differentiable functions
(Miettinen et al., 2008; Miettinen and Mäkelä, 1999). However, the assumptions behind the implementation of
NIMBUS are that all objective functions and constraint functions are locally Lipschitz continuous and that the feasible
region {x ∈ ℝ𝑛

| g(x) ≤ 0} is convex (Miettinen and Mäkelä, 1996) (x is the vector of the design variable and g(x) is
the set of constraints functions). Given the MOO problem:

Minimize
(x)

{

𝑓1(x),… , 𝑓𝑀 (x)
}

,

subject to: g(x) =
(

𝑔1(x),… , 𝑔𝐽 (x)
)𝑇 ≤ 0,

(1)

where f(x) =
{

𝑓1(x),… , 𝑓𝑀 (x)
}𝑇 is a vector of objective functions. NIMBUS is based on the classification of the

objective functions 𝑓𝑖 into the following five classes (Miettinen and Mäkelä, 1999), based on the objective vector 𝐟 (𝐱ℎ)
at the current solution 𝐱ℎ, as follows:

1. whose values should be minimized further requiring 𝑓𝑖(𝐱) < 𝑓𝑖(𝐱ℎ), for 𝑖 ∈ 𝐼<,

2. whose values should be minimized till some aspiration level 𝑧̄𝑖 (< 𝑓𝑖(𝐱ℎ)), such that 𝑓𝑖(𝐱) ≥ 𝑧̄𝑖 for 𝑖 ∈ 𝐼≤,

3. whose current values are satisfactory at the moment (𝑖 ∈ 𝐼=),

4. whose values are allowed to increase until or up to a specific upper bound 𝜀𝑖 (≥ 𝑓𝑖(𝐱ℎ)), such that 𝑓𝑖(𝐱) ≤ 𝜀𝑖 for
𝑖 ∈ 𝐼≥, and

5. whose values can change freely (𝑖 ∈ 𝐼<>).

The difference between the classes 𝐼< and 𝐼≤ is that the functions in the former class are to be minimized as far as
possible, as the functions in the latter class are to be minimized only till the aspiration level. At each iteration, the DM
has the option to classify the objective functions at a feasible start point/current solution. Based on the classification
a new (multiobjective) optimization problem is formed and solved by Multiobjective Proximal Bundle (MPB) method
(Miettinen and Mäkelä, 1996).

The authors of the NIMBUS method have changed the formulation of the scalarization problem many times since
their first study (Miettinen and Mäkelä, 2006), but the one shown below (Miettinen and Mäkelä, 2002) guarantees
finding a Pareto-optimal solution. Let 𝑓 (xℎ) be the feasible start point at an iteration, at which the classification
is performed. Further to the classification, the following augmented achievement scalarizing function (AASF) sub-
problem is formulated:

Minimize
(x)

max
𝑖∈𝐼<,𝑗∈𝐼≤

[

𝑓𝑖(x)−𝑧∗𝑖
𝑧nad
𝑖 −𝑧∗∗𝑖

, 𝑓𝑗 (x)−𝑧̄𝑗
𝑧nad
𝑗 −𝑧∗∗𝑗

]

+ 𝜌
𝑀
∑

𝑖=1

𝑓𝑖(x)
𝑧nad
𝑖 −𝑧∗∗𝑖

,

subject to: 𝑓𝑖(x) ≤ 𝑓𝑖(xℎ), 𝑖 ∈ 𝐼< ∪ 𝐼≤ ∪ 𝐼=,
𝑓𝑖(x) ≤ 𝜀𝑖, 𝑖 ∈ 𝐼≥,
g(x) = (𝑔1(x),… , 𝑔𝐽 (x))𝑇 ≤ 0,

(2)

where, 𝑧nad𝑖 and 𝑧∗𝑖 are nadir and ideal objective values, respectively, of the 𝑖-th objective, and 𝑧∗∗𝑖 (slightly smaller
than 𝑧∗𝑖 ) is the Utopian objective value. These values are computed at the start of the NIMBUS procedure. While it
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is possible to obtain the ideal objective vector by minimizing each constrained objective function individually, the
nadir objective vector can only be estimated (Deb and Miettinen, 2010). The parameter 𝜌 (>0) is usually chosen to
be a small scalar value and the term including 𝜌 ensures that the resulting optimal solution of the above problem is
a Pareto-optimal point, and not a weak Pareto-optimal point (Miettinen, 2012). The denominators in the terms of the
objective function control the reference direction for the AASF formulation.

Miettinen and Mäkelä (1996) also proposed the use of the following three more sub-problem formulations to find
alternate solutions using other standard MCDM approaches. In the next sub-problem, the scalarizing function used is
STOM (Nakayama and Sawaragi, 1984):

Minimize
(x)

max
𝑖=1,…,𝑀

[

𝑓𝑖(x)−𝑧∗∗𝑖
𝑧̄𝑖−𝑧∗∗𝑖

]

+ 𝜌
𝑀
∑

𝑖=1

𝑓𝑖(x)
𝑧̄𝑖−𝑧∗∗𝑖

subject to: g(x) = (𝑔1(x),… , 𝑔𝐽 (x))𝑇 ≤ 0.
(3)

For objectives not belonging to 𝐼≤ class, 𝑧̄𝑖 is set to 𝑧∗𝑖 . The denominator of the terms in the objective function is
different, thereby causing a different reference direction for the resulting AASF problem. Notice that no additional
constraint is used in this formulation, thereby ignoring 𝜀𝑖 information. The resulting solution may not satisfy 𝑓𝑖(x) ≤
𝑓𝑖(xℎ) constraint for 𝑖 ∈ 𝐼< ∪ 𝐼≤ ∪ 𝐼= and 𝑓𝑖(x) ≤ 𝜀𝑖 for 𝑖 ∈ 𝐼≥.

In the third sub-problem formulation, the scalarizing function used, comes from the reference point method (Deb
and Jain, 2014):

Minimize
(x)

max
𝑖=1,…,𝑀

[

𝑓𝑖(x)−𝑧∗∗𝑖
𝑧nad
𝑖 −𝑧∗∗𝑖

]

+ 𝜌
𝑀
∑

𝑖=1

𝑓𝑖(x)
𝑧nad
𝑖 −𝑧∗∗𝑖

subject to: g(x) = (𝑔1(x),… , 𝑔𝐽 (x))𝑇 ≤ 0.
(4)

This formulation does not use 𝑧̄𝑖 or 𝜀𝑖 information.
The scalarizing function used in the fourth sub-problem formulation to be introduced is related to the one used in

the GUESS method (Buchanan, 1997):

Minimize
(x)

max
𝑖=1,…,𝑀

[

𝑓𝑖(x)−𝑧nad
𝑖

𝑧nad
𝑖 −𝑧̄𝑖

]

+ 𝜌
𝑀
∑

𝑖=1

𝑓𝑖(x)
𝑧nad
𝑖 −𝑧̄𝑖

subject to: g(x) = (𝑔1(x),… , 𝑔𝐽 (x))𝑇 ≤ 0.
(5)

For objectives not in the 𝐼≤ class, 𝑧̄𝑖 is set to 𝑧∗𝑖 .
On solving the scalarized MOO problems (2), (3), (4) and (5), the solutions obtained are referred to as alternate

solutions. If a specific alternate solution is not desirable, a number of intermediate points can be examined between
two alternate solutions on a line joining them. In the last step, the Pareto-optimality of the final solution is guaranteed
by solving the following additional problem with slack variables 𝛾𝑖:

Maximize
(x,𝜸)

𝑀
∑

𝑖=1
𝛾𝑖,

subject to: 𝑓𝑖(x) + 𝛾𝑖 ≤ 𝑓𝑖(xℎ), 𝑖 ∈ 𝐼<,
𝛾𝑖 ≥ 0, 𝑖 ∈ 𝐼<,
g(x) = (𝑔1(x),… , 𝑔𝐽 (x))𝑇 ≤ 0.

(6)

If the solution to the above problem is equal to (xℎ, 𝟎), then xℎ is guaranteed to be Pareto-optimal and is appointed as
the final solution. Finally, the solution process stops once the aspiration level of the DMs is obtained.

NIMBUS is a flexible method where the DMs can proceed in several ways by providing information about the
aspiration level in each iteration of the algorithm. The overall NIMBUS algorithm is provided below in item-by-item
format with a mention of steps in which iSOM can be employed for a better understanding:

1. Given the MOO problem (1), find ideal point (𝐳∗) and estimate nadir point (𝐳nad) using the pay-off table or other
methods (Miettinen, 2012), or from a representative set of EMO solutions. Set an Utopian point 𝐳∗∗ = 𝐳∗ − 𝝐
(usually, 𝜖𝑖 = 10−3).

2. Choose a feasible starting point x0 and calculate a Pareto-optimal solution x1 as a start point, with 𝐼< =
{1,… ,𝑀}. Set h = 1.
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3. Divide the objective functions into five classes 𝐼<, 𝐼≤, 𝐼=, 𝐼≥, and 𝐼<> at the point f(xℎ) such that 𝐼≥∪𝐼<> ≠ ∅
and 𝐼< ∪ 𝐼≤ ≠ ∅. They ensure that an improvement in an objective must come from a deterioration on at least
one other objective. If either of the unions is empty, go to Item 10. Obtain the aspiration levels 𝑧̄ℎ𝑖 for 𝑖 ∈ 𝐼≤

and the upper bounds 𝜀ℎ𝑖 for 𝑖 ∈ 𝐼≥ from the DM. (iSOM-aided)

4. Find at most four alternate solutions x̂ℎ,𝑘 by solving each of the 𝑘-th sub-problems defined in (2), (3), (4) and (5)
by the MPB routine. If x̂ℎ,𝑘 = xℎ for all 𝑘, ask the DM whether (s)he wants to try another classification. If yes,
set xℎ+1 = xℎ, ℎ = ℎ + 1, and go to Item 3 for finding new set of alternate solutions. If no further classification
is desired, go to Item 10. If x̂ℎ,𝑘 ≠ xℎ for any 𝑘, x̂ℎ,𝑘 is an alternate solution. Go to Item 5 with all alternate
solutions. (iSOM-aided)

5. Present f(xℎ) and all f(x̂ℎ,𝑘) to the DM. If the DM does not like any of the alternate solutions and prefers f(xℎ),
set xℎ+1 = xℎ , ℎ = ℎ + 1, and to go Item 3 for a different classification process. Otherwise, if the DM prefers
a specific alternative solution x̂ℎ,𝑘̄ more than other solutions, go to Item 6. Otherwise (the DM likes more than
one solution in the set (xℎ, x̂ℎ,𝑘)), the DM chooses two most preferred solutions out of the set (xℎ, x̂ℎ,𝑘). Let us
say that the two chosen solutions are x𝐴 and x𝐵 . Set dℎ = x𝐴 − x𝐵 and go to Item 7. (iSOM-aided)

6. At this step, the DM wants to continue from f(x̂ℎ,𝑘̄). If 𝐼< ≠ ∅, set xℎ+1 = x̂ℎ,𝑘̄, ℎ = ℎ + 1, and to go Item 3
for finding a new set of alternate solutions arising from x̂ℎ,𝑘̄. Otherwise (𝐼< = ∅), the Pareto-optimality of x̂ℎ,𝑘̄
must be checked by setting 𝐼< = {1,… ,𝑀} and employing the MPB method to solve the resulting problem
(6). Let the solution be x̂ℎ and set xℎ+1 = x̂ℎ. Set ℎ = ℎ + 1, and go to Item 3. (iSOM-aided)

7. Compute 𝑃 different criterion vectors uniformly f(x𝐴 + 𝑡𝑗dℎ), where 𝑡𝑗 =
𝑗−1
𝑃−1 , 𝑗 = 1,… , 𝑃 .

8. Produce 𝑃 intermediate Pareto-optimal solutions 𝐱̄ℎ from the computed criterion vectors employing the MPB
method (with 𝐼< = {1,… ,𝑀}). Store all alternate solutions and intermediate solutions in a database 𝐷.

9. Present 𝑃 intermediate criterion vectors to the DM and let the DM choose the most preferred one among them.
Denote the corresponding solution by xℎ+1. Set ℎ = ℎ + 1. If DM further wants to generate 𝑃 intermediate
solutions between the two intermediate solutions x𝐴 and x𝐵 , then go to Item 7. If the DM wants to continue to
improve solutions, go to Item 3, otherwise, go to Item 10. (iSOM-aided)

10. Check the Pareto-optimality of xℎ by solving the problem (6). Let the solution be (x̃, 𝛾̃). If x̃ = xℎ, the final
solution is x̃, otherwise, go to Item 3, by setting xℎ = x̃.

If the solution of the problem (6) is equal to (xℎ, 0), then xℎ is guaranteed to be Pareto optimal and can be appointed
as the final solution. If xℎ is not Pareto-optimal, then x̂ is Pareto-optimal solution.

Note that the DM can be aided with an easy-to-use visualization method in arriving at a decision at all italicized
tasks in Items 2, 3, 4, 7, and 9 to (i) Define Start point, (ii) provide a classification of objectives, and set aspiration and
upper bounds, (iii) seek different alternate solutions if needed, (iv) generate intermediate solutions and (v) choose the
most preferred out of 𝑃 intermediate solutions or from database 𝐷. NIMBUS employs a few standard visualization
techniques for DM to facilitate decision-making: (i) Bar chart technique (ii) Petal diagram technique, and (iii) Value
path (or parallel coordinate plot (PCP)) technique. The applicability of bar chart and petal diagrams are limited only
to a few solutions. For handling a large number of alternate solutions and intermediate solutions, it is often difficult
to visualize and compare each solution with these methods. With value path visualization, although one can visualize
a large number of solutions, it is difficult to get a clear idea of the trade-off information or infer disjoints, holes,
closeness to constraint boundaries, nearness to other chosen solutions, or other features of the solutions, which would
be crucial in making the above decisions. In this study, we propose the use of iSOM (described in the next section)
to visualize NIMBUS solutions, such as the start point, alternate solutions, intermediate solutions, and, of course, the
final solution. In addition, iSOM also permits visualizing NIMBUS solutions near the boundary of the Pareto-optimal
front, near disjointed regions or holes, near-constraint solutions, and, importantly, the current location of the solutions
in the front along with a clear idea of the extent of the unexplored and explored parts of the Pareto-optimal front for
a continuation of the NIMBUS method. We shall demonstrate the use of iSOM in NIMBUS method through several
examples in Sections 5 to 7.
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3. Brief Introduction to Self-Organizing Map (SOM)
Self-organizing maps (SOM) is a type of Artificial Neural Network (ANN) that is based on unsupervised learning.

It takes high-dimensional data (each with 𝑛 variables and one response) v = [x1,x2,… ,x𝑛,y] as input and maps them
into a low-dimensional space, generally, a two-dimensional representation of the input data. This two-dimensional
representation consists of nodes, which are connected in a rectangular or a hexagonal grid to form a ‘Map’. Each node
(say 𝑗𝑡ℎ) is associated with the weight vector w𝑗 = [𝑚𝑗

1, 𝑚𝑗
2, …, 𝑚𝑗

𝑛, 𝑚𝑗
𝑦] such that the dimension of the weight vector is

equal to the dimension of data set. Each dimension i.e. input and response is represented by a 2-d map on a color scale
called the component plane. The color scale on the component planes represents the variation and interaction between
the input and response. A schematic of the self-organizing map depicting its working principle is presented in Fig. 1.
Training of SOM includes finding out the Best Matching Units (BMUs) and a weight update rule. It also preserves the
topology of the high-dimensional input space into the low-dimensional space.

Figure 1: Working principle of Self-Organizing Map. Input data points are used to construct a mapping on a two-dimensional
uniform grid.

3.1. Conventional Self-Organizing Map (cSOM)
Neurons of SOM are called nodes that form a hexagonal or rectangular grid (Kohonen, 1997). Each node is

associated or assigned with a weight vector that is called a code-book vector whose dimension is equal to the high
dimensional data as presented in Fig. 1. SOM algorithm consists of two steps first initialization followed by training
as the second step. During the initialization, SOM assigns some initial weights to nodes.

The initial weights i.e. code-book can be chosen randomly or linearly from the data set. If initial weights are chosen
randomly it is called random initialization and if chosen as a linear combination of a given data set then called linear
initialization. The training step includes Best matching Unit (BMU) calculation based on the Euclidean distance and
weight update rule iteratively in order to map the high dimensional data into a 2-dimensional representation. During
the BMU calculation step, a data point is assigned as the winner node for which the SOM node has the minimum
Euclidean distance. In the training step, the weight of the BMUs is updated in order to map the shape and topography
of the given high-dimensional data set.

Training in a conventional SOM (cSOM) algorithm consists of choosing a winner node called the Best Matching
Unit (BMU). The BMU is a node that has the least distance from the selected data point in the 𝑛-dimensional input
space. Upon identifying the BMU, the weight vector of the respective node and nodes in its neighborhood are modified
based on the weight update rule.

Assume that the given data-set consists of 𝑛-dimension in input [𝑥𝑖1,… , 𝑥𝑖𝑛] and a single response 𝑦𝑖, where
𝑖 = 1,… , 𝑁 . In order to map the given data-set the input to SOM will be a (𝑛+1)-dimensional data-set v𝑖 =
[𝑥𝑖1,… , 𝑥𝑖𝑛, 𝑦

𝑖]𝑁𝑖=1; the 𝑀 SOM node’s weights can be expressed as w𝑗 = [𝑚𝑗
1,… , 𝑚𝑗

𝑛, 𝑚
𝑗
𝑦]𝑀𝑗=1. BMU calculation and

weight update is performed during the iterative training process. The governing equation for the BMU calculation is-

𝑐𝑖 =
𝑀

argmin
𝑗=1

{||v𝑖 − w𝑗
||}; 𝑖 = 1,… , 𝑁. (7)
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Upon identifying the BMUs the weight update of the 𝑗-th winner node and its neighboring nodes take place as per the
equation (8).

w𝑗(𝑡 + 1) = w𝑗(𝑡) + Φ(𝑐𝑖, 𝑗, 𝑡) × 𝐿(𝑡) ×
(

v𝑖 − w𝑗(𝑡)
)

. (8)
Φ is the neighbourhood function around the winner node w𝑐𝑖 for the 𝑗-th node at 𝑡-th iteration for the 𝑖-th input vector
and 𝐿(𝑡) is Learning rate.

The neighborhood function (Φ) and associated Equations are presented in (9).

Φ(𝑐𝑖, 𝑗, 𝑠) = exp
(

−
||w𝑐𝑖 − w𝑗

||

2

2𝜎(𝑠)2

)

,

𝜎(𝑠) = 𝜎0 −
(𝑠 − 1)𝜎0

𝑁 × 𝑡𝑚𝑎𝑥 − 1
,

𝑠(𝑡) = (𝑡 − 1) ×𝑁 + 1,

(9)

where 𝑠 is the update step, 𝑡 is the iteration number, 𝜎0 is the initial radius that takes the default value as 1 and decays
linearly with the iteration (𝑡) as presented in (10).

𝐿(𝑠) = 𝐶 ×
𝛼0

𝐶 + 𝑠
,

𝐶 = 𝑁
100

,
(10)

where 𝛼0 is a hyperparameter that takes a default value of 0.5 and 𝐶 is a constant. The reader is referred to Kohonen
(1997) for additional details about cSOM.

This method of initialization and training is done in conventional Self-Organising Maps (cSOM) that suffer from
self-intersection and folding of the map grid resulting in loss of topography and trend of the response which affects the
visualization. To overcome these issues, interpretable Self Organizing Map (iSOM) was introduced (Thole and Ramu,
2020).

3.2. Interpretable Self-Organizing Map (iSOM)
Thole and Ramu (2020) suggested a different BMU finding and weight update rule to avoid the folding and self-

intersection of cSOM. Topology preservation and avoidance of the self-intersection are two key features that make
iSOM better than cSOM. In iSOM, the BMU is calculated by using the input vector only, whereas the weight update
rule during training considers the response only. This modification provides the interpretability between the input
space and response, hence termed as interpretable Self-Organizing Maps (iSOM). iSOM performs linear initialization
on the data set whereas BMU finding takes place in input space in the training phase and weight update is performed
in response only. The modification proposed during the training is given in the below set of eqns. (11)-

𝑚𝑗
𝑖 (𝑡 + 1) = 𝑚𝑗

𝑖 (𝑡), 𝑖 = 1,… , 𝑛,

𝑚𝑗
𝑦(𝑡 + 1) = 𝑚𝑗

𝑦(𝑡) + Φ(𝑐𝑖, 𝑗, 𝑡) × 𝐿(𝑡) ×
(

𝑦𝑖 − 𝑚𝑗
𝑦(𝑡)

)

.
(11)

The modification suggested in the eq. (11) during the training process avoids the self-intersection and folding of the
SOM grid and allows interpretable visualization and exploration of design space by preserving the topography of the
response with respect to the input space. This ability of iSOM to preserve the topography allows the DM to visualize
and interpret the functional relation between the input space and response. Further details on iSOM are documented in
Thole and Ramu (2020) which discusses the interpretability of iSOM in the context of design space exploration. In the
current work, we use iSOM to visualize and interpret the interaction between the objective functions to aid the DMs
in the MCDM task. A recent study (Nagar et al., 2021) has compared cSOM and iSOM in the context of visualizing
multi-criterion Pareto-optimal solutions and demonstrated the advantage of iSOM on several standard and real-world
problems. We are now ready to discuss how the iSOM visualization method can be applied to make the NIMBUS
application easier and more convenient for DMs.

4. Proposed iSOM-based Visualization within NIMBUS Method
Nagar et al. (2021) proposed the use of iSOM to visualize the Pareto-optimal front. In the current work, we extend

iSOM’s capabilities for convenient visualization of NIMBUS solutions, as discussed below. NIMBUS finds different
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solutions in different steps during the iterative process. Hence, it is essential to distinguish those solutions and select the
preferred solution based on their properties and relative positions in the Pareto optimal front. The following subsections
address the different NIMBUS solutions, their relative position in Pareto optimal front, and provide a unique color code
scheme to iSOM nodes.

4.1. Identifying Boundary Points of Pareto Disjoint Regions
The boundary points of the Pareto disjoint region are identified from the unified distance matrix (U matrix) of

the iSOM component planes of the objective functions. U-matrix is a 2-D map that plots the distance between two
neighboring nodes/cells in an intermediate node (Kohonen, 1997). Larger values of the intermediate nodes in the
U-matrix represent the disjoint region in the Pareto optimal front. The nodes/cells of the component planes of the
objective function corresponding to the larger value in the U-matrix are identified and plotted using the color code
defined in Table 1.

4.2. Visualization of Trade-offs among the Objectives
Often DM wishes to select one or many the preferred solutions based on the trade-off values of objectives. We

propose plotting a separate iSOM component plane
(

𝑇 (x)
)

indicating the trade-offs of objectives, for convenient
visualization. The trade-off metric 𝑇 (𝑥𝑖) for a Pareto-optimal solution x𝑖 in the objective space is computed as follows

𝑇 (x𝑖) =
|𝐵(f(x𝑖))|

max
𝑗=1

𝜃(x𝑖, x𝑗), (12)

in a defined neighborhood𝐵
(

f(x𝑖)
)

. The neighborhood of the solution f(x𝑖) has been computed in Pareto front (objective
function) space using the euclidean distance. 𝐵(f(x𝑖)) is the neighbourhood solutions in the vicinity of the solution x𝑖
in objective function space. The number of neighborhoods i.e. |

|

𝐵(f(x𝑖))|
|

is usually decided by the DM. Here, 𝜃(x𝑖, x𝑗)
is the trade-off between two neighboring solutions x𝑖 and x𝑗 , defined as the ratio of the average loss in objective values
to the average gain in objective values for moving from x𝑖 to x𝑗 :

𝜃(x𝑖, x𝑗) = 𝐿̄(x𝑖, x𝑗)
𝐺̄(x𝑖, x𝑗)

. (13)

The average loss and gain functions are defined below:

𝐿̄(x𝑖, x𝑗) =
∑𝑀

𝑘=1max
(

0, 𝑓𝑘(x𝑗) − 𝑓𝑘(x𝑖)
)

∑𝑀
𝑘=1

{

1
[

𝑓𝑘(x𝑗) > 𝑓𝑘(x𝑖)
] }

, (14)

𝐺̄(x𝑖, x𝑗) =
∑𝑀

𝑘=1max
(

0, 𝑓𝑘(x𝑖) − 𝑓𝑘(x𝑗)
)

∑𝑀
𝑘=1

{

1
[

𝑓𝑘(x𝑖) > 𝑓𝑘(x𝑗)
] }

. (15)

Here,
{

1
[

𝑓𝑘(𝑥𝑗) > 𝑓𝑘(𝑥𝑖)
]}

denotes the count for which the criteria defined in [.] holds true. The term inside the
indicator function checks the condition for which the current solution (𝑥𝑖) is better than the neighboring solution (𝑥𝑗)
in the 𝑘th objective function 𝑓𝑘. It is to be noted that 𝑗 = 1,… , |

|

𝐵(f(x𝑖))|
|

. 𝑀 is the number of objective functions.
After 𝑇 (x𝑖) is computed for each Pareto solution, these values can be used to plot iSOM component planes of trade-offs
(𝑇 ) that will be convenient for DM in selecting the preferred solution in MCDM task. Visualizing iSOM component
plane of trade-offs (𝑇 ) DM may wish to select solutions corresponding to the higher values of 𝑇 .

4.3. Identifying Near-Constraint Points
In order to visualize the Pareto-optimal solutions near the constraint boundary, the average of the normalized

constraint value 𝐺(x) is trained and plotted on a separate component plane 𝐺 using iSOM. It is to be noted that 𝐺
is only computed on the feasible solutions at which there is no constraint violation. The values for generating the
component plane 𝐺 can be computed as follows:

𝐺(x) = 1
𝐽

𝐽
∑

𝑗=1
𝑔̂𝑗(x)

[

1
(

𝑔̂𝑗(x) < 0
)]

, (16)
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Table 1
Color code for visualization using iSOM for distinguishing the different NIMBUS solutions and selecting the preferred
solution based on their properties and relative positions in Pareto optimal front. Edge (edge of iSOM node), Face (Face
of iSOM node), Color (Edge color/ Face color of corresponding iSOM node), Node (for demonstration purpose).

S.No.

1

2

3

4

5

6

7

8

Points

Boundary points

Near-constraint points

Start point/ current solution

Selected points after
classification

Un-selected points in respective
objectives after classification

Alternative solutions

Intermediate solutions

Final solution

Edge

Yes

No

No

Yes

Yes

No

No

No

Face

No

Yes

Yes

No

No

Yes

Yes

Yes

Color

Black

Grey

Black

White

Red

Magenta

Green

Red

Node

where, 𝑔̂𝑗(𝐱) is the 𝑗-th normalized constraint function (Deb, 2011) of 𝑔𝑗(𝐱) − 𝑏𝑗 ≤ 0 (𝑏𝑗 being the resource value
of a typical constraint) obtained as 𝑔̂𝑗(𝐱) = 𝑔𝑗(𝐱)∕𝑏𝑗 − 1 ≤ 0, and 𝐽 is the number of constraints. Let us say that
the number of feasible solutions are 𝑛𝑓 = |𝐺(x)|. In order to indicate the near-constraint points, we identify top 10%
(𝑛𝐺 = ⌈0.1×𝑛𝑓⌉) feasible solutions (𝐱𝑘𝐺, for 𝑘 = 1,… , 𝑛𝐺) close to the constraint boundaries by first sorting the points
in descending order of 𝐺 and picking the top 10% of points from the sorted list.

Then, respective cells (𝐜𝑘𝐺, for 𝑘 = 1,… , 𝑛𝐺) are found by finding the closest cell in the 𝐺 component plane to each
of the 𝐱𝑘𝐺 solutions. These cells are plotted on each component plane using the color code defined in Table 1 (S.No. 2).

4.4. Selected Search Space after Classification
Every classification made in Item 3 of the NIMBUS method can provide the DMs an idea of selected and un-selected

parts of the search space that can be visualized on iSOM component plane of objectives. For the current solution 𝐱ℎ,
all Pareto optimal points that conform to the classification of objectives, provided by the DMs, can be identified and
marked on the respective iSOM component plane of objectives. They represent the selected Pareto points for the current
iteration. Such a visual check can allow the DMs to make a final consideration in leaving Item 3. In addition, the cells
that do not conform to the provided classification of objectives can be marked in a different color and style to indicate
the opposite. The respective color code scheme for both selected and un-selected search regions are shown in Table 1
(S.No. 4 and 5).

4.5. NIMBUS Points
Every iteration of the NIMBUS method begins with several key points: (i) current point (𝐱ℎ) (or, a user-specified

start-point 𝐱0) in Item 2, (ii) a derived MPB solution 𝐱̂ℎ in Item 4, and (iii) several created intermediate points 𝐱̄ℎ
in Item 7, of which the most preferred solution is chosen in Item 9. In addition to visualizing these solutions using
iSOM component planes for a better understanding of the NIMBUS method, another important solution to include
in the visualization process is the final point (x̃) of the overall NIMBUS method. The respective iSOM cells can be
marked differently for each of the above points (described in Table 1- S.No. 6 to 8) to have a better comprehension of
the progress of NIMBUS method.

4.6. Augmentation of NIMBUS with Focused EMO Algorithm
In the event of fewer points in the vicinity of intermediate solutions in Item 8, a focused EMO algorithm, such as

R-NSGA-II (Deb and Sundar, 2006) or R-NSGA-III (Vesikar et al., 2018) or other methods can be employed. These
methods use a population-based evolutionary multi-objective optimization method to find multiple trade-off solutions
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in a focused region on the Pareto-optimal front dictated by a DM-supplied reference point 𝐳𝑟 and a shrinkage factor
(𝜇). In this study, we choose them as follows:

𝐳𝑟 = F𝑎𝑙𝑡1 + F𝑎𝑙𝑡2

2
, (17)

𝜇 =
𝑀

max
𝑖=1

[

|𝑓 𝑎𝑙𝑡1
𝑖 − 𝑓 𝑎𝑙𝑡2

𝑖 |

𝑓max
𝑖 − 𝑓min

𝑖

]

. (18)

where, F𝑎𝑙𝑡1 and F𝑎𝑙𝑡2 are two alternate MPB solutions and 𝑓min
𝑖 and 𝑓max

𝑖 are the minimum and maximum values of
𝑖-th objective function. Focused EMO approaches create a set of well-distributed reference points on a unit simplex
close to 𝐳𝑟 and then shrink the points by 𝜇 to make them closer to each other. Thereafter, a reference point-based EMO
procedure, such as NSGA-III (Deb and Jain, 2014), is applied to find respective focused Pareto-optimal points close to
the alternate solutions. After generating the focused solutions, DM can plot them in iSOMs on the objective function
space and visualize the preferred solution only, instead of on the complete Pareto-optimal front. The visualization of
NIMBUS solution on the component plane of preferred solutions allows a larger spread as compared to the component
plane of the complete Pareto optimal solution. Thus, visualization of NIMBUS solutions on the component plane of
preferred solutions can also be referred to as local visualization using EMO.

4.7. Proposed iSOM-aided NIMBUS method
The steps of iSOM-aided NIMBUS are discussed below:

Step 1: Obtain a set of complete Pareto optimal front for the given MOO using an EMO procedure.

Step 2: Plot the iSOM component plane for each objective and constraint function using Pareto-optimal points after
Item 1 of the NIMBUS method.

Step 3: Identify the Pareto disjoint regions using the U-matrix and plot them on the iSOM component planes according
to the color code defined in Table 1.

Step 4: Plot near-constraint points on the component plane of objective functions and the average of normalized
constraint violation component plane 𝐺.

Step 5: Select the start point or current point on iSOM component planes. (Item 2 in NIMBUS algorithm)

Step 6: At the start point or current point, define the NIMBUS classification according to the desired aspiration/upper
level and visualize selected and un-selected Pareto regions on the iSOM component planes of objectives.
(Item 3 in NIMBUS algorithm)

Step 7: Obtain and plot alternate solutions on iSOM component plane. (Item 4 in NIMBUS algorithm)

Step 8: If DM wants to further classify the objective functions at an alternate solution, go to Step 6, otherwise select
two alternate solutions aided by iSOM visualization. (Items 5 and 6 in NIMBUS algorithm)

Step 9: Generate intermediate solutions between two alternate solutions (if DM wants to explore more points) and
plot it using iSOM, go to Step 11. (Item 7 in NIMBUS algorithm)

Step 10: If DM wants to visualize solutions locally, generate focused EMO solutions by R-EMO algorithm using
Equations (17) and (18) and visualize locally.

Step 11: If aspiration level is attained, select the final solution and mark it on the iSOM component plane; otherwise
go to Step 8. (Items 9 and 10 in NIMBUS algorithm)

A flowchart of the main steps is provided in the supplementary document.
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Figure 2: Crash worthiness problem: (a) Scatter Plot of NSGA-III-obtained Pareto solutions are marked with NIMBUS
solutions, blue markers depict search space selected after classification, (b) U-matrix plot indicates Pareto boundary cells
having relatively large values of 𝑈 , indicating three clear clusters that exist on the obtained Pareto front. 𝑓1, 𝑓2 and 𝑓3 are
component plane of objective functions, for which each cell indicates the respective 𝑓𝑖 values. Cells with black edge color
depict Pareto disjoint boundary inferred from the U-matrix. The cells with red and white edge colors represent objective-wise
un-selected points and selected points respectively after classification. The cells with black face color represent the start
point, magenta face color represents alternate solutions, green face color represents intermediate solutions, and red face
color represents the final solution. The color code scheme is provided in Table 1.

Figure 3: Crash-worthiness problem: (a) iSOM component plane of objectives, (b) Scatter plot of R-NSGA-III points in the
context of the entire Pareto-optimal front. The region of interest is blown up for clarity. The use of focused R-NSGA-III
iSOM component planes allows a more convenient decision-making approach.

5. Results of iSOM-NIMBUS Procedure on Crash-worthiness Problem and Its Advantages
In this section, the proposed methodology to visualize the NIMBUS solutions using the iSOM approach is discussed

in detail on the crash-worthiness problem (Vesikar et al., 2018). Crash-worthiness problem is an unconstrained MOO
problem with three objective functions and five design variables. The decisions in various stages of the NIMBUS
method adopted here are purely based on the author’s choice. They allowed to demonstrate how the iSOM-aided
NIMBUS procedure can be used conveniently. Any other decision by DMs can also be implemented similarly.
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5.1. Using Complete Pareto-optimal Front
A scatter plot of a representative set of Pareto-optimal solutions in the entire search domain obtained using the

NSGA-III procedure (Deb and Jain, 2014) is shown in the Fig. 2(a) in small dots as Step 1. In Step 2 the iSOM
procedure is applied to the Pareto data set to obtain the component planes of each objective function. To facilitate
our discussions, the objective vectors of the set are checked for clusters using the U-matrix in iSOM. U-matrix plot
shows the existence of three different clusters in the entire Pareto set. The three clusters are seen and marked in the
scatter plot in Step 3. Ideal, Utopian, and nadir points are estimated from the complete set for NIMBUS computations.
The start point of the NIMBUS method is chosen to be around the centroid of the Pareto set and is marked with a
black-colored diamond. This point falls in cluster 2. This completes Step 5. Lets say the DM chooses the start solution
as: 𝐱0 = (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) = (2, 2, 2, 2, 2) with start criterion vector 𝐳0 = (𝑓1, 𝑓2, 𝑓3) = (1683.130, 9.630, 0.120),
resulting in 𝐳1 = (1668.870, 7.130, 0.090) on the Pareto-optimal front is shown in black face color in three iSOM
component planes of the objectives. At the start point, a classification of objective functions is first defined by the DM,
as follows:

𝐼< = ∅, 𝐼≤ = {2}, 𝐼≥ = {1}, 𝐼= = ∅, 𝐼<> = {3},

with an aspiration level of 𝑧̄2 = 6.85 and 𝜀1 = 1680. This implies that DM wishes to improve on 𝑓2 at the expense of
increasing 𝑓1 while letting 𝑓3 change freely. Note that the above values need not be so specific and any other suitable
values can also be chosen as desired by the DMs.

Figure 4: PCP on crash-worthiness problem: 𝑓1,𝑓2 are 𝑓3 are objective function axes, whereas NIMBUS Steps: 1 represents
Pareto front, 2 represents start point, 3 represents alternate solutions, 4 represents intermediate solutions and 5 represents
the final solution.

The un-selected cells after classification are shown by red edge color in the respective iSOM component planes
of objectives. As objective 𝑓3 can change freely, there are no un-selected points after classification. Hence, 𝑓3 iSOM
component plane has no cells with red edge color. The selected cells after classification are highlighted by white edge
color in iSOM component plane of each objective. It is clear from the iSOM component planes that classification
𝐼≤ = {2} overrides 𝐼≥ = {1}, as red edge color zone in 𝑓2 iSOM component plane contains the red edge color
zone in 𝑓1 iSOM component planes. This completes Step 6. In Step 7, the resulting four MPB solutions are obtained
based on the above classification. All the four MPB solutions with objective vectors 𝐳1,1 = (1671.421, 6.839, 0.188),
𝐳1,2 = (1675.490, 6.143, 0.264), 𝐳1,3 = (1676.166, 6.583, 0.217) and 𝐳1,4 = (1677.054, 6.295, 0.244) are different from
the start-point 𝐳1, so they are declared as alternate solutions. It is clear that two of the four alternate solutions (magenta
face color) lie on the edge of the Pareto front. Also, the iSOM component planes of objectives indicate that the two
alternate solutions in the edges have extreme values of 𝑓2 and 𝑓3. In Step 5, if DM is not comfortable in choosing the
edge points, DM is left with two intermediate alternate solutions 𝐳1,3 and 𝐳1,4, for which all three objectives seem to
have a good compromise in them as Step 8. To create more points in the vicinity, the DM has an option of generating
a maximum of 𝑃 = 15 reference points in between them in Step 7. In Step 8, 15 different Pareto-optimal intermediate
solutions are found solving AASF problem (Eqs.(2), (3), (4) and (5)) by classifying all objectives in 𝐼< class. Once
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again, the iSOM component planes of objectives reveal that the intermediate solution (green face color) near the middle
of all 15 intermediate solutions makes a better trade-off (near-average objective values of 15 intermediate solutions)
in all three objectives. Thus, in Step 9, the intermediate solution marked using a red-faced cell is chosen. Since it is
a Pareto-optimal solution, the NIMBUS method is terminated with the red-faced cell solution as the final solution
𝐳2 = (1676.777, 6.392, 0.235) of the iSOM-NIMBUS procedure as Step 11.

5.2. Using a Focused Set of Pareto-optimal Solutions
It can be seen from Fig. 2 that most of the NIMBUS decision-making activities took place at the bottom-left corner

of the iSOM component planes. DM’s classification choice can take such activity anywhere on the Pareto-optimal
front. A more clear visualization can be achieved if the decision-making activity can be carried out at a focused part
of the Pareto-optimal front dictated by the alternate solutions obtained in Step 5. In this section, we take the help of a
reference point-based NSGA-III procedure (Vesikar et al., 2018) for this purpose. We discuss the procedure here.

First, instead of NSGA-III, R-NSGA-III solutions are found and stored to create iSOM component planes.
Reference point and shrinkage factor are calculated based on Equations (17) and (18) using the two chosen alternate
solutions:

𝐳𝑟 = (1676.166, 6.583, 0.216) + (1677.054, 6.295, 0.244)
2

,

= (1676.610, 6.439, 0.230),

𝜇 = max
[

0.888
33.492

, 0.288
4.603

, 0.028
0.225

]

,

= max
[

0.026, 0.063, 0.124
]

,
= 0.124.

Next, iSOM component plane plots of objectives are made using R-NSGA-III solutions, and all 15 intermediate
solutions including the two alternate solutions are marked in Fig. 3. For relevance, the R-NSGA-III solutions are also
shown in the original scatter plot (Fig. 3(b)). It can be seen that 15 intermediate solutions are now more visible. The
trade-off in objective values for 15 solutions is also clear, allowing the DM to make a choice in choosing the final
solution (𝐳2) with more confidence. The final choice is a solution that lies in the middle of the two alternate solutions
for which all three objectives take an average value, making it a good trade-off solution among all 15 solutions. The
color-contoured iSOM component plane plots of objective allow a DM to investigate the sensitivity of objectives in
moving from one intermediate solution to the next and make a decision. This completes Step 10 of the iSOM-aided
NIMBUS procedure.

5.3. Contrasting with NIMBUS Visualization Techniques
NIMBUS method includes several inbuilt visualization techniques. The parallel coordinate plot (PCP) (or the value

path plot) is one of the best visualization techniques available in NIMBUS. In order to demonstrate the complete
NIMBUS procedure on a PCP, we first show all NSGA-III-obtained Pareto-optimal solutions (Step 1 of NIMBUS
procedure) in Fig. 4 with green lines for the crash-worthiness problem. We add a fourth vertical axis (in addition to
three objective axes) to show the addition of NIMBUS points in different stages. The inclusion of NSGA-III solutions
is the first stage of the PCP. In stage 2, the start-point (Step 2 of NIMBUS procedure) is shown with a white line.
Four alternate solutions were found in Step 4 of NIMBUS procedure with yellow lines. The PCP clearly shows that all
four solutions are associated with a small 𝑓2 value and a relatively high 𝑓3 value. By looking at the PCP, it is difficult
to conclude that two of the four alternate solutions lie on the edge of the Pareto-optimal front. Only one of the four
solutions has the largest 𝑓3 value and smallest 𝑓2 value. While this solution can be considered to lie on the edge, the
second near-edge solution is difficult to comprehend. In comparison, iSOM component plane of objectives in Fig. 2
clearly shows that two alternate solutions lie close to the edge of the Pareto front.

Next, in stage 4, 15 intermediate solutions are shown with red lines. While they lie in between the two pivoting
alternate solutions chosen to create them, some trade-off in objectives can be observed from the PCP. But the true
trade-off among the solutions is not apparent. The final solution chosen using iSOM-NIMBUS procedure is marked
in stage 5, but if an average trade-off solution would have been the choice, a different solution passing through the
middle of two pivoting alternate solutions in each objective axes should have been chosen. Clearly, the PCP does not
provide a true idea of the location of a point in the perspective of the entire Pareto-optimal front. PCP does not also
provide true trade-off information. It certainly cannot show clusters, holes, and discontinuity in the Pareto-optimal
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Table 2
NIMBUS-iSOM solutions on benchmark and real-world problems discussed in the main paper. NIMBUS solutions, shown
in bold indicate two pivotal solutions to create intermediate solutions. 𝑁𝐳̄ indicates the number of intermediate solutions
generated. The ideal point (𝐳∗), final solution (𝐳̂), and nadir point (𝐳nad) are shown in the final column in that order.

Problem Start Point (𝐳1) Classification Alternate Solutions (𝐳̂) 𝑁𝐳̄ 𝐳∗, 𝐳̃, 𝐳nad

Crash-
worthiness (1668.868, 7.126, 0.087)

𝑓1 ≥ 1668.868,
𝑓2 ≤ 7.126,
𝑓3 <> 0.087.

(1671.421, 6.839, 0.188);
(1675.490, 6.143, 0.264);
(1676.166, 6.583, 0.217);
(1677.054, 6.295, 0.244).

15
(1661.708, 6.143, 0.039);
(1676.777, 6.392, 0.235);
(1695.200, 10.745, 0.264).

Naru-
weiss

(-5.509, -2.946, -7.177,
0.436, 0.016)

𝑓1 < -5.509,
𝑓2 < -2.946,
𝑓3 ≥ -7.177,
𝑓4 ≥ 0.436,
𝑓5 <> 0.016.

(-6.340, -3.426, -0.321, 8.694,
0.350);
(-6.283, -3.252, -3.129, 3.485,
0.325);
(-6.307, -3.257, -2.208, 3.549,
0.336);
(-6.222, -2.967, -4.500, 0.450,
0.298).

15

(-6.340, -3.445, -7.500, 0.000,
0.000);
(-6.275, -3.091, -3.348, 1.387,
0.322);
(-4.751, -2.867, -0.321, 9.706,
0.350).

DTLZ-7 (0.155, 0.155, 5.380)
𝑓1 ≥ 0.155,
𝑓2 ≥ 0.155,
𝑓3 ≤ 5.380.

(0.251, 0.251, 5.147);
(0.855, 0.855, 2.616);
(0.717, 0.717, 3.902);
(0.668, 0.668, 4.645).

15
(0.000, 0.000, 2.615);
(0.683, 0.683, 4.415);
(0.859, 0.859, 5.955).

C2DTLZ2 (0.577, 0.577, 0.577)
𝑓1 ≤ 0.577,
𝑓2 <> 0.577,
𝑓3 ≤ 0.577.

(0.000, 1.000, 0.000);
(0.067, 0.920, 0.386);
(0.186, 0.920, 0.345).

15,
15

(0.000, 0.000, 0.000);
(0.035, 0.979, 0.197);
(1.000, 1.000, 1.000).

Carside
Impact

(31.179, 3.756,
11.411)

𝑓1 > 31.179,
𝑓2 ≤ 3.756,
𝑓3 <> 11.411.

(37.869, 3.585, 11.066);
(32.731, 3.669, 11.578);
(34.305, 3.591, 11.748).

15
(23.748, 3.585, 10.611);
(33.293, 3.639, 11.640);
(41.199, 3.987, 12.491).

WATER (0.830, 0.266, 0.325,
0.419, 0.861)

𝑓1 < 0.830,
𝑓2 <> 0.266,
𝑓3 < 0.325,
𝑓4 <> 0.415,
𝑓5 < 0.861.

(0.819, 0.500, 0.250, 0.573,
0.565);
(0.817, 0.633, 0.227, 0.632,
0.479);
(0.818, 0.566, 0.237, 0.604,
0.519).

15

(0.798, 0.027, 0.095, 0.031,
0.001);
(0.817, 0.599, 0.232, 0.618,
0.498);
(0.918, 0.900, 0.950, 1.350,
3.140).

GAA

(73.87, 1885.35, 59.33,
1.97, 450.33, 42665.30,
-2145.27, -15.33,
-197.96, 1.08)

𝑓1 < 73.87,
𝑓2 <> 1885.35,
𝑓3 <> 59.33,
𝑓4 <> 1.97,
𝑓5 <> 450.33,
𝑓6 <> 42665.30,
𝑓7 <> -2145.27,
𝑓8 <>-15.33,
𝑓9 <> -197.96,
𝑓10 ≥ 2.00.

(74.745, 2039.188, 85.483, 2.538,
360.318, 45270.785, -2041.393,
-19.259,-192.681, 2.895);
(73.246, 2115.349, 87.119, 2.388,
331.409, 46531.275, -2354.166,
-19.296, -187.258, 2.042);
(73.276, 1957.045, 77.198, 2.646,
483.566, 43470.697, -2997.576,
-16.516,-192.592, 1.604).

15

(73.18, 1826.54, 54.22, 1.76,
231.32, 41324.27, -3121.66,
-20.64,-209.69, 0.00);
(73.28, 1950.27, 75.00, 2.26,
447.82, 43172.46, -2756.46,
-16.17, -189.35, 2.05);
(75.23, 2154.92, 97.31, 2.61,
552.19, 47912.62, -883.57,
-13.98, -182.58, 4.68).

front. Hence, reliable visualization-based decision-making becomes a difficult task using PCP. They can be used to
passively demonstrate a set of trade-off solutions, as a trade-off in objectives occurs only if there is criss-crossing of
lines in two neighboring objective axes in a PCP.

5.4. Involving Human Decision-makers
In order to obtain a direct feedback from real decision-makers, we have involved four DMs (two professors from

Indian Institute of Technology, Guwahati and Madras in India, and two doctoral students from the latter) having
expertise and knowledge in design and optimization topics. They have been provided with a brief tutorial on the working
principles of NIMBUS and iSOM procedures. Then, they were asked to apply a few iterations of the iSOM-NIMBUS
procedure to the crash-worthiness and a few other test problems. The details of their feedback on the advantages of
using the integrated iSOM-NIMBUS procedure are outlined in the supplementary document, but in general, they all
have positively commented on the role of the visual aid provided by the iSOM approach in executing the NIMBUS
procedure.

6. Results on Benchmark Problems
6.1. The five-objective Problem from NIMBUS Study

Naru-weiss problem is a two-variable, five-objective unconstrained multi-objective optimization problem (Mietti-
nen and Mäkelä, 2000). The formulation for this problem is given in the supplementary document. In Fig. 5(a), three
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objectives 𝑓1, 𝑓2 and 𝑓3 are represented on three axes. 𝑓4 is represented by the marker size (proportional to its value)
and 𝑓5 is represented by the color (blue to yellow indicating low to high value).

From Fig. 5(a), it is clear that the objective functions 𝑓1 and 𝑓3 are conflicting in nature. Also, 𝑓2 and 𝑓4 are in
conflict to each other. The objective function 𝑓5 has a small value at one certain location (dark blue region) and then
increases rapidly outwards from that location. The same inference can be drawn from the component plane of objective
functions depicted in Fig. 5(b).

From the start point (dark black cell indicating minimum of 𝑓5), DM provides the following classification of
objectives:

𝐼< = {1, 2}, 𝐼≤ = ∅, 𝐼≥ = {3, 4}, 𝐼= = ∅, 𝐼<> = {5},

with (𝜀3, 𝜀4) = (-4.5, 0.45) (worsening 𝑓3 and 𝑓4 till some limit), letting 𝑓5 change freely and hoping to improve 𝑓1
and 𝑓2 as much as possible.

Figure 5: Naru-weiss problem (a) 5-d Scatter plot obtained from NSGA-III Pareto optimal points, 𝑓1,𝑓2 and 𝑓3 on axes,
𝑓4 is represented by marker size and 𝑓5 is represented by the color bar, Selected part of search space after classifications
are shown by blue markers, (b) iSOM component planes of objective functions 𝑓1,𝑓2,𝑓3,𝑓4 and 𝑓5. Un-selected points and
selected points in search space after classification and all the NIMBUS critical points have been represented by cells with
the color code scheme provided in Table 1.

Four sub-problem formulations find four independent alternate solutions, marked with magenta cells. One alternate
solution at the edge of the Pareto front is discarded. Then, randomly two out of three alternate solutions are selected and
15 intermediate solutions are computed in between them using the procedure described in Step 9 of the iSOM-aided
NIMBUS procedure, of which one solution (red face cell) is chosen as the final solution (see Table 2 for a summary
of iterative solutions for this and other problems of this paper). The start point, alternative and intermediate solutions,
and the final solution are marked in Fig. 5, using the color code defined in Table 1.

If we observe the iSOM component planes of objectives, we can conclude that the start point corresponds to small
values of 𝑓3, 𝑓4, and 𝑓5, whereas moderate values of 𝑓1 and higher values of 𝑓2 can also be verified from the scatter plot
in Fig. 5(a) as well. Out of two alternate solutions, one alternate solution corresponds to a large value of 𝑓2, 𝑓3 and 𝑓5
component planes, whereas small values of 𝑓1 and 𝑓4 planes that can be verified from scatter plot in Fig. 5(a) as well.
It is evident from Fig. 5(b) that the intermediate solutions spread in large values of 𝑓5 component plane, but have small
values of 𝑓1 and 𝑓4 component planes and span across large to small values in 𝑓2 and 𝑓3 component planes. The final
solution (shown as a red face cell) makes a good compromise in values of all five objectives among 15 intermediate
solutions. Besides making a good compromise, the final solution is also away from the Pareto boundary and well inside
the feasible space. Without the iSOM component plane plots of the objectives, such decision-making would have been
difficult to achieve. The final solution is sent to Item 10 of NIMBUS algorithm for a final Pareto-optimality check before
termination of the overall NIMBUS-iSOM procedure. The iSOM component planes of objectives also allow DM to
have clear ideas of (i) centrality (or boundary) of the solutions in the Pareto-optimal front, (ii) proximity to constraint
boundaries, and (iii) a trade-off among objectives. The methodologies described in the PaletteViz study (Talukder and
Deb, 2020; Deb and Talukder, 2021) in identifying knee point, a hole, and other peculiarities can be considered and
marked appropriately on the iSOM component planes for additional aid in decision-making.
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6.2. A Disjointed Pareto Set Problem: DTLZ7
DTLZ7 problem has three objective functions and the Pareto optimal front is separated by four disjoint regions (Li

et al., 2016). The scatter plot of the Pareto-optimal front obtained using NSGA-III and their classification, obtained
using the U-matrix of the iSOM component planes, into four clusters are shown in Fig. 6(a). The start point is shown
with a blue diamond, which happens to fall on cluster 3. The following classification is made by the DM:

𝐼< = ∅, 𝐼≤ = {3}, 𝐼≥ = {1, 2}, 𝐼= = ∅, 𝐼<> = ∅,

with 𝑧̄3 = 5.25 (improving 𝑓3 with a limit) and (𝜀1, 𝜀2) = (0.859, 0.859) values (at the expense of worsening 𝑓1 and
𝑓2 within limits).

Figure 6: DTLZ7 problem: (a) NSGA-III-obtained Pareto points and the NIMBUS solutions. Selected part of search space
after classification is shown by blue markers. (b) iSOM component planes of objectives, selected and un-selected points
after classification and all critical NIMBUS points.

Figure 7: DTLZ7 problem: (a) R-NSGA-III-obtained Pareto points and the NIMBUS solutions.(b) iSOM component planes
of objectives using focused Pareto points and all critical NIMBUS points.

The selected points after classification are shown with blue marker color in the Fig. 6(a). The respective iSOM
component planes of objectives are shown in Fig. 6(b). It is clear that the start point falls on cluster 3 and is somewhat
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away from the Pareto boundary. Step 7 finds four alternate solutions, marked with magenta face color. These points are
marked on the iSOM component planes of objectives. Clearly, despite the start point’s location in cluster 3, the alternate
solutions obtained by solving four sub-problems produce three points on cluster 1 and one in cluster 3. These points are
also marked in the scatter plot in Fig. 6(a) for clarity, but a good idea of the location of all four alternate points is clear
from iSOM component plane plots of the objectives. At Step 8, two preferred alternate solutions – two interior points
having a good trade-off among all three objectives – are chosen by the DM. In Step 9, 15 intermediate solutions (marked
in green cells) are found systematically within the two preferred alternate solutions. Finally, a solution from the center
region of all intermediate solutions is chosen as the final solution (shown with a red cell). A final Pareto-optimality
check of the final solution will terminate the decision-making process.

In this problem, the two chosen alternate solutions and the resulting 15 intermediate solutions lie in one of the four
clusters (cluster 1). To have a more clear visualization and decision-making, R-NSGA-III can be employed to obtain a
set of focused Pareto-optimal points to develop iSOM component plane plots of the objectives using the reference point
𝐳𝑟 = (0.7863, 0.7863, 3.2591) and shrinkage factor 𝜇 = 0.2. Fig. 7(a) re-plots the scatter plot with R-NSGA-III points.
Fig. 7(b) shows iSOM component planes of objectives using R-NSGA-III points only. The two preferred alternate
solutions and 15 intermediate points are also marked on the iSOM component planes of objectives. The final solution
can now be seen to lie at a good compromise region of each objective and almost at the center of the R-NSGA-III
obtained Pareto-optimal region. Whenever more focused decision-making needs to be performed to better visualize
the trade-off in objectives, the original NSGA-III can be replaced with R-NSGA-III to find a focused set of points for
clarity and more convenient decision-making.

6.3. Constrained Problem: C2-DTLZ2
Next, we consider a constrained test problem: three-objective C2-DTLZ2 problems. NSGA-III points are shown

in Fig. 8(a). Decision-making in the presence of constraints requires a clear visualization framework revealing near-
constraint solutions. This problem is chosen to demonstrate the effectiveness of iSOM visualization method for this
purpose.

The iSOM U-matrix plot reveals that there are four clusters in the Pareto-optimal front and also identifies the
boundary points of each cluster. The boundary points, marked with grey markers, happen to fall on the constraint
boundary. The start point is found to be at the center of the complete Pareto-optimal front, marked with a black
diamond. The iSOM component planes shown in Fig. 8(b) also mark the start point. The boundary of each cluster
is also clearly shown in iSOM component plane plots of the objectives. The following classification rules are provided
for this problem:

𝐼< = ∅, 𝐼≤ = {1, 3}, 𝐼≥ = ∅, 𝐼= = ∅, 𝐼<> = {2},

with (𝑧̄1, 𝑧̄3) = (0.3, 0.5) (improve 𝑓1 and 𝑓3 to their limits) at the expense of possible worsening of 𝑓2 without any
limit.

Figure 8: C2DTLZ2 problem: (a) NSGA-III-obtained Pareto points, NIMBUS solutions and selected part of search space
after classification. (b) iSOM component planes of objectives using complete Pareto points, selected and un-selected points
after classification and all critical NIMBUS points.
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Notice that four sub-problems in Item 3 of NIMBUS algorithm produce three alternate solutions, marked with
magenta cells in iSOM component plane plots of the objectives. Of these three points, two fall on the constraint
boundary and one at the extreme of cluster 2. The nearness of constraint boundary and extreme position on cluster 2
is clear from iSOM component planes as well. Each of the constraint boundary solutions is paired up with the extreme
solutions and 15 intermediate solutions are found for each pair. It can be seen from iSOM component plane plots of
the objectives that all 30 intermediate solutions correspond to small values of 𝑓1, large values of 𝑓2, and small to
intermediate values of 𝑓3. A good compromise solution lying close to the centroid of the intermediate solutions is
chosen as the final solution (shown in red color).

A separate iSOM component plane plot for the constraint is shown for this problem. The near constraint cells,
boundary points, and ensuing alternate and intermediate solutions are shown in the plot, allowing DM to choose a
final solution that is away from the constraint boundary but also not too close to the extreme Pareto solution. This
level of visualization and understanding of Pareto-optimal points on the entire Pareto front or a focused part of the
Pareto front is rare in standard Pareto visualization methods. Despite requiring several iSOM component planes, they,
together, allow a more convenient decision-making environment revealing critical functionalities associated with a
problem. This example demonstrates the sensitivity of the decision-making task in arriving at a final preferred solution
and the importance of an easier and more revealing visualization framework for performing convenient and effective
decision-making for multi- and many-objective optimization.

7. Results on Real-world Problems
7.1. Carside impact problem

Carside impact problem is a three-objective, 10-constraint problem, in which the weight of the car, the pubic force
experienced by a passenger, and the average velocity of the B-pillar responsible for withstanding the impact load need
to be minimized (Deb and Kumar, 2007a). This problem will allow us to demonstrate the iSOM-based visualization
in the presence of constraint/s on a real-world problem.

NSGA-III points are shown in Fig. 9(a) for a reference since the objective space is three-dimensional. The resulting
iSOM component planes (three objectives and constraint violation) are shown in Fig. 9(b). Note that a non-zero
constraint violation 𝐺(𝐱) point (Eqn. (16)) implies it is feasible. The start point on the Pareto front is shown with
a black colored cell on all four iSOM component planes. At the start point (𝐳1 = (31.180, 3.756, 11.411)), the DM
makes the following classification:

𝐼< = ∅, 𝐼≤ = {2}, 𝐼≥ = ∅, 𝐼= = ∅, 𝐼<> = {1, 3}.

This means the DM wishes to improve 𝑓2 with a limit 𝑧̄2 = 3.75 and allow 𝑓1 and 𝑓3 to change freely.
Fig. 9 (both a and b) shows the possible cells (or solutions) that satisfy the above classification and are selected

for further search. The respective cells are marked with white-bordered cells and the un-selected cells are marked
with red-bordered cells. Cells that are close to the constraint boundary are marked in grey color. Step 7 produces three
distinct alternate solutions, marked in magenta color. Two alternate solutions are far away from the constraint boundary
and also are at the boundary of the Pareto front, as can be confirmed from the scatter plot shown in Fig. 9(a). Choosing
the two solutions on the selected part, 15 intermediate solutions (shown in green) are created in Step 9. Among these
15 solutions, the final solution, marked in red color, makes a good compromise in keeping 𝑓1 and 𝑓3 objectives not
too worse, while forcing 𝑓2 to go close to 𝑧̄2 = 3.75. The final solution is 𝐱̃ = (0.50, 1.35, 1.29, 1.50, 2.11, 1.20, 0.40)
with 𝐳̃ = (33.293, 3.639, 11.640). It can be seen that this final solution is better than 𝐳1 in 𝑓2 (reduced from 3.756
to 3.639) with slightly worse values in both 𝑓1 (increased from 31.180 to 33.293) and 𝑓3 (increased from 11.411 to
11.640). Although the desired target of 𝑧̄2 = 3.75 too close to 𝑧12 = 3.756 was supplied in the classification step, the
final solution has a smaller value than 𝑧̄2 = 3.75, which is allowed.

7.2. WATER Problem
WATER problem has five objectives and seven constraints (Deb et al., 2002). As discussed earlier, in order to

visualize the near constraint violation Pareto optimal solutions, we compute the average of the normalized constraint
violation and plot a separate component plane 𝐺 using iSOM. Fig. 10(a) represents the scatter plot of the NSGA-III
obtained Pareto front. Objectives 𝑓1, 𝑓2, and 𝑓3 are represented on axes, 𝑓4 is represented by marker size, and 𝑓5
is represented on a color scale. Larger marker size and yellow marker color indicate the larger value of 𝑓4 and 𝑓5,
respectively. This scatter plot is used only for verification purposes here. The NIMBUS solutions – start point, alternate
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Figure 9: Carside impact problem: (a) NSGA-III-obtained Pareto points and the NIMBUS solutions. Selected part of search
space after classification. (b) iSOM component plane plots of the objectives using complete Pareto points, selected and
un-selected points after classification and all critical NIMBUS points.

solutions, intermediate solutions, selected and un-selected points after classification, near-constraint solutions, and the
final solution are plotted on the scatter as well as the iSOM component planes. The start point is shown with a black
cell. Clearly, iSOM component planes of objectives indicate that 𝑓1 and 𝑓3 are highly correlated, while others have
trade-offs. Also, the start point is far away from the constraint boundary. The classification provided by the DM is
shown below:

𝐼< = {1, 3, 5}, 𝐼≤ = ∅, 𝐼≥ = ∅, 𝐼= = ∅, 𝐼<> = {2, 4}.

DM wishes to improve 𝑓1, 𝑓3, and 𝑓5 without any limit at the expense of possible worsening of 𝑓2 and 𝑓4 without any
limit. Selected and un-selected cells are shown on iSOM component planes.

Figure 10: WATER problem: (a) NSGA-III-obtained Pareto points, NIMBUS solutions and selected part of search space
after classification. (b) iSOM component planes of objectives using complete Pareto points, selected and un-selected points
after classification and all critical NIMBUS points. In iSOM component plane one alternate solution and the final solution
have shared the same node.

Three alternate solutions, marked with magenta color, are found by the NIMBUS procedure. The iSOM component
planes make it clear that all three solutions lie on the selected part of the Pareto front and are far away from the constraint
boundary. Also, it is clear that the alternate solutions do not unnecessarily make 𝐼<>-class objectives too worse (not
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Figure 11: WATER problem: (a) R-NSGA-III-obtained Pareto points and the NIMBUS solutions. (b) iSOM component
planes of objectives using focused Pareto points and all critical NIMBUS points. The R-NSGA-III-obtained Pareto points
in hollow blue markers are blown up for clarity.

taking them to yellow cells) while improving 𝐼<-class objectives slightly from the start point. The trade-offs in the
objectives do not allow these alternate points to be away from each other.

To investigate the alternate solutions better, we apply R-NSGA-III using reference point (0.817, 0.600, 0.232, 0.618,
0.499) and shrinkage factor of 0.1 to obtain more focused Pareto points. They are used to create a new set of iSOM-plots,
which is presented in Fig. 11. Since the third alternate solution is relatively closer to the start point than the other two
alternate solutions, hence for the given classification the third solution is worse than the other two alternate solutions.
Therefore, the other two alternate solutions that are away from the start point are selected. 15 intermediate solutions
are found using two chosen alternate solutions and are shown in green color. Eventually, the final solution, marked in
red color, is found by observing a good compromise of intermediate solutions.

The final solution is 𝐱̃ = (0.303, 0.024, 0.010) having 𝐳̃ = (0.817, 0.600, 0.232, 0.618, 0.498). From the start point
(𝐳1) (see Table 2), the final solution is better in 𝑓1, 𝑓3 and 𝑓5 with a deterioration in 𝑓2 and 𝑓4, as desired by the
classification. The use of iSOM-based visualization has helped in the process of arriving at the final solution by allowing
the DM to have a comprehensive look at the entire Pareto set from its proximity to constraint boundary and objective
trade-offs.

7.3. 10-objective GAA Problem
General Aviation Aircraft (GAA) is a 10-objective problem (Simpson et al., 1996) consisting of 27 decision

variables and 18 constraints. A set of well-converged Pareto-optimal solutions is generated using NSGA-II to plot
the iSOM component plane of objective functions (𝑓𝑖; 𝑖 = 1,… , 10), an average of normalized constraint violation
(𝐺), as shown in Fig. 12. For this problem, we introduce a new but important decision-making metric – trade-off
(𝑇 ) of the objectives in the neighborhood of a solution. It is the ratio of the average loss to average gain in objective
values in favor of neighboring solutions (Deb and Talukder, 2021). A solution having higher 𝑇 means that loss per
unit gain is more for choosing a neighboring solution instead of the current solution; hence, it is wise to stay with the
current solution as a preferred option. From the iSOM component planes, the conflicting behavior among the objective
functions can be observed. The near-zero CV solutions are shown by grey-colored iSOM cells in objective functions
and 𝐺 component plane. After visualizing the near-zero CV solutions, DM may wish to select a start point that is far
from the region (grey-colored iSOM cells) having relatively larger CV values (infeasible solutions). At the start point
z1 = (73.87, 1885.35, 59.33, 1.97, 450.33, 42665.30, -2145.27, -15.33, -197.96, 1.08) (shown in black color cell in
Fig. 12), the classification defined by the DM is

𝐼< = {1}, 𝐼≤ = ∅, 𝐼≥ = {10},

𝐼= = ∅, 𝐼<> = {2, 3, 4, 5, 6, 7, 8, 9},

with 𝜀10 = 2.0 to improve the objective function 𝑓1 at the cost of increasing 𝑓10, while letting freely change other eight
objective functions.
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Figure 12: GAA problem: iSOM component planes of objectives using complete Pareto points, selected and un-selected
points after classification, and all critical NIMBUS points- start point, alternate solutions, intermediate solutions, and final
solution.

Selected and un-selected regions are highlighted in iSOM component planes as per the color code defined in Table 1.
Upon solving the scalarized sub-problems, three different alternate solutions z1,1, z1,2, z1,3 are obtained and plotted on
iSOM component planes with magenta color cells. It is observed that all three alternate solutions lie at boundary of the
selected region obtained after the classification step. Also, two of the three alternate solutions (z1,1 and z1,2) lie at higher
values of 𝑓2, 𝑓3, 𝑓4, 𝑓6 and 𝑓9. Say, the DM decides to select an alternate solution (z1,3) that lies at higher values of 𝑓4
and 𝑓5, whereas moderate values of 𝑓9, and at relatively low values of other objectives. Next, 15 intermediate solutions
are generated between the start point z1 and the selected alternate solution z1,3 and are shown in green colored iSOM
cells. Since DM wished to improve 𝑓1 while allowing to deteriorate 𝑓10, iSOM plots reveal that intermediate solutions
that have lower 𝑓1 values are (i) at the edge of the selected region (white color cell boundaries), (ii) come with higher
values of 𝑓3 and 𝑓4, and (iii) has relatively lower trade-off values. Thus, the DM needs to look at iSOM plots for an
intermediate solution that (i) is far from the edge of the selected region, (ii) has moderate 𝑓3 and 𝑓4 values, and (iii)
has relatively high trade-off values. The 𝑇 -iSOM plot shows the marked red point (one of the intermediate points) has
the largest relative trade-off value and better objective values of all objectives, except 𝑓4. These visual comparisons of
intermediate points lead to the final solution: z̃ = (73.29, 1950.27, 75.00, 2.26, 447.82, 43172.46, -2756.46, -16.17, -
189.35, 2.05). We observe that this final solution (z̃) has an improved 𝑓1 value from 73.87 to 73.28 with a deterioration
of 𝑓10 from 1.08 to 2.05 compared to z1. This example shows how the iSOM visualization can aid the decision-maker
to investigate alternate trade-off solutions, focus on a few, and then choose a preferred one being guided by NIMBUS’s
decision-making steps involving classification and prescribed limits on objective values.

Although our proposed iSOM visualization method requires DMs to consider a linearly increasing number of iSOM
plots with number of objectives, this 10-objective example and our decision analysis reveal an important matter. In
addition to objective iSOM plots, functionally important iSOM plots, such the trade-off (𝑇 ) iSOM plot to help choose
a solution that would cause a large loss per unit gain in case a neighboring solution was preferred, constraint violation
(𝐺) based iSOM plot to help choose a solution away from constraint boundaries, other problem-specific utility function
based iSOM plots (Kennedy et al., 2008), or robust and reliability based iSOM plots preferring solutions with certain
desired properties, can provide more relevant and direct decision-making information to the DMs. Moreover, a few
functionally motivated iSOM plots can be a way to scale-up the visualization aspect of the decision-making procedure
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for many-objective problems. Objective iSOM plots can stay as secondary visual decision-making aid, but primary
selection of non-dominated points can be obtained using functionally motivated iSOM component planes.

8. Conclusions
In multi-criterion decision-making (MCDM), an effective visualization of Pareto-optimal solutions to have clear

visual information about the extent of constraint closeness/violation, distance from the edge of Pareto-optimal front,
trade-offs among the objectives, robustness and other point measures should provide vital information to the decision-
maker (DM) in arriving at a preferred solution(s) in each iteration of the respective MCDM procedure. The usual
visualization methods used in MCDM activities, such as parallel coordinate plots, radial visualization, scatter plots,
etc. are various geometric techniques to present higher-dimensional Pareto-optimal solutions in a two-dimensional plot,
but cannot provide any functional information that can help a DM. In this paper, we have proposed an interpretable
self-organizing map (iSOM) approach which makes two-dimensional maps of each objective and constraint violation
functions from Pareto solutions to provide a comprehensive picture of solutions, their trade-offs, nearness to constraint
boundaries, etc. We have briefly discussed the iSOM approach and indicated how the original NIMBUS decision-
making procedure can be aided with iSOM component planes in aiding a DM task. We have proposed a color and
style scheme for visualizing each cell of iSOM to clearly show (i) cells with function-value-based coloring, (ii) near-
constraint cells, (iii) the starting cell for NIMBUS procedure, (iv) cells that satisfy (and do not satisfy) NIMBUS
classification of objectives, (v) alternate NIMBUS-obtained solutions meeting classification conditions, (vi) created
intermediate solutions from a chosen set of alternate solutions, and (vii) the final preferred solution. iSOM component
planes can help DMs to make decisions in most of their steps by visualizing two-dimensional iSOM component planes.
For clarity, the procedure has been aided with creating iSOM component planes with focused Pareto points obtained
using R-NSGA-III procedure at the preferred part of the Pareto front.

The iSOM-NIMBUS procedure has been demonstrated on a number of constrained and unconstrained numerical
problems and real-world problems from three to ten-objective problems. The detailed description of the plots has
helped to understand the NIMBUS procedure better and importantly has demonstrated how iSOM visualization with
points, either from the complete Pareto set or from a part of the Pareto set, has proposed an informed decision-making
aid to the use of the NIMBUS procedure. Based on the visualization aspects of an interactive MCDM, an assessment
of iSOM has been performed on different steps of NIMBUS by involving human DMs, who commented positively on
the convenience and benefits of using the iSOM visualization technique with the MCDM approach.

The iSOM visualization methodology is now ready to be used with other MCDM procedures, such as Pareto
race (Korhonen and Wallenius, 1988; Korhonen and Yu, 2000), STOM (Nakayama and Sawaragi, 1984), GUESS
(Buchanan, 1997) and other methods (Miettinen, 2012). A layered iSOM approach in which higher-level iSOM cells
can be expanded with lower-level iSOM cells in a hierarchical manner can be implemented to focus on larger to smaller
areas on the Pareto-optimal front. Focused EMO procedures, such as R-NSGA-III (Vesikar et al., 2018), can be run
quickly using a parallel computing environment to enable such transitions smoothly. Other key features of Pareto-
optimal solutions, such as knee points having large trade-off among objectives, holes, robust/reliable solutions against
uncertainties, etc. can also be implemented in the iSOM approach for easy visualization (Talukder and Deb, 2020; Deb
and Talukder, 2021). Nevertheless, this paper has shown the importance of bringing multi-criterion optimization and
multi-criterion decision-making tasks closer together and demonstrated that the proposed iSOM approach can aid in
making informed decisions at various stages of the decision-making process by providing DMs a clearer and deeper
understanding of the Pareto-optimal solutions.
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