
   
 

   

 

Machine Learning Based Prediction and 
Analysis for Virtual Metrology Tasks in 
Long Batch Processes 
Ritam Guhaa,e, Anirudh Sureshb,e, Jared DeFrainc  and Kalyanmoy Debd,e 

aComputer Science and Engineering, Michigan State University, East Lansing, USA; 
bMechanical Engineering, Michigan State University, East Lansing, USA; cInformation 

Technology, Hemlock Semiconductor Operations LLC, Hemlock, MI, USA; dElectrical 

and Computer Engineering, Michigan State University, East Lansing, USA; 
eComputational Optimization and Innovation (COIN) Laboratory, Michigan State 

University, East Lansing, USA  

COIN Report Number 2023009 

Abstract 

 A long batch process typically runs for several hours to produce different process 
outcomes. During the entire duration of the process, several sensor data are recorded 
involving complicated non-linear dynamics among process constituents, which are 
difficult to model. The users are often interested in predicting the eventual process 
outcomes well before the completion of the process so that the process can be terminated 
in case the predicted outcome is not as desired or get a reasonable time estimate to stop 
the process for achieving the desired outcome. Virtual Metrology (VM), a virtual 
property estimation procedure, has gained importance over the years as a supporting tool 
to address this problem. In this paper, we have proposed a generalized VM pipeline 
including a deep-learning model that can be scaled to support high-dimensional input 
sensors and outputs. We have illustrated the applicability of the pipeline over data 
collected for a long process from the industry. The developed model is able to predict 
end-results with less than 10% error after about one-fifth of the total process-time. 
Critical sensors affecting prediction error are also identified. Moreover, we also modify 
the model to provide uncertainty of predictions, thereby making the overall prediction 
process pragmatic and trustworthy. 
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Introduction:  
Modern batch processes are complex, involving a large number of inputs processed 
through a time-varying manner and finally producing resultant process outcomes as 
outputs. Such processes are resource consumptive and are usually monitored by a 
system of sensors measuring process indicators as a time series of sensor data. The 
processes are usually computationally expensive to be simulated during process 
operation due to a variety of reasons. First, the underlying dynamics of constituents are 



   
 

   

 

nonlinear and complex to analyze. Second, there are internal uncertainties in the system 
which are difficult to include in exact computational procedures. Third, the multitude of 
inputs, sensors, and outputs makes the task non-scalable in practice. However, in these 
processes, usually, a number of  recipe data (input as meta-parameters, time-varying 
sensor data for the entire duration of the process, and the outputs as target product at the 
end of the batch process) are available from the past execution of the process. It then 
becomes important to analyze the available data and develop a model of the outputs1 as 
a function of inputs and partial or full sensor data. If such a model is developed, it can 
be used to predict outputs with the knowledge of inputs and a few initial time steps of 
sensor data. Such a task will be helpful to know the quality of outputs well before the 
batch process is completed, thereby saving  time and effort and hence increasing 
productivity and revenue from the process. 

In terms of the data analysis problem, the above problem becomes a modeling 
task: 

 𝒚	 = 	𝑓(𝒙, 𝒔𝟏:𝒕𝒃), ( 1 ) 

in which 𝒙 is the input vector (defining the meta-variable of the batch process, such as 
raw materials, material type, machine number, etc.), 𝒔$  is the sensor data vector at time-
step 𝑡, and 𝒚 is the output vector at the end of the process (that is, 𝒚 is determined at the 
final time 𝑡	 = 	𝑇). The model 𝑓(·) is to be determined by a data analysis procedure. 
The sensor data is utilized from 𝑡	 = 	1 to an intermediate time 𝑡	 = 	 𝑡%	(≤ 	𝑇). It is 
interesting to note that the above model does not explicitly utilize the available sensor 
data from 𝑡	 = 	 𝑡% 	+ 	1 to 𝑡	 = 	𝑇, simply because at the time of deployment the above 
model must be applied at time 𝑡	 = 	 𝑡%  and only sensor data from the beginning to 𝑡	 =
	𝑡%  are available. However, during the model development process, the entire sensor 
data is available, and can be used to enhance the modeling task better by predicting the 
sensor data from 𝑡	 = 	 𝑡% 	+ 	1 to 𝑡	 = 	𝑇 along with the outputs: 

 [𝒚, 𝒔($"'():*] 	= 	𝑓(𝒙, 𝒔𝟏:𝒕𝒃). ( 2 ) 

The above virtual metrology (VM) task is gaining popularity in industries due to 
extensive efforts in data recording and the availability of efficient machine learning 
procedures. This is a huge problem faced by practitioners in the industry and there is no 
generalized framework to solve this problem at a large scale. Moreover, every process 
will have its own associated sensor readings and recipes. It is hard to capture a single 
VM framework that can be generalized for multiple differing systems. It is also 
important to collect a significant amount of data from the system to learn the pre-
existing relationships in the recipe and make efficient predictions. 

In this paper, we propose a generalized machine learning-based framework, 
named VMNet, which can be easily extended to a large number of dimensions and 
process outputs. To illustrate the applicability of the proposed framework, we use 
proprietary process data from the industry. The proposed VMNet procedure has been 
developed and deployed to the industry with success. Besides developing the prediction 

 

1 In this paper, we have referred to the final product of the process as outputs, response, process 
outputs interchangeably. 



   
 

   

 

model, we also use other machine learning methods to identify critical sensors affecting 
the prediction quality so that industries can improve the data collection from these 
specific critical sensors. Moreover, to make the deployment process more practical and 
reliable, we use a quantile-based machine learning approach to provide an estimate for 
the level of uncertainty in the prediction  so that besides getting a prediction value, the 
user is also aware of the uncertainty of the prediction. 

The remainder of the paper is organized as follows. Section 2 discusses some of 
the recent works in the domain of VM. A formal description of the problem is defined 
in Section 3. Some preliminary concepts required to understand the proposed process 
are described in Section 4. Section 5 illustrates the proposed ML framework for 
performing the VM. The results obtained for the proposed framework are mentioned in 
Section 6. For a more confident deployment process, uncertainty in the prediction is 
considered in Section 7. Finally, conclusions are drawn in Section 8. 

Related Work:  

VM has gained enormous interest in recent times. As a result, multiple researchers have 
focused on developing VM systems as supporting tools for batch processes. Figure 1a 
shows the number of publications on issues related to VM, whereas Figure 1b plots the 
division of publications coming from different subject areas using VM technology. 
From Figure 1a, we can clearly see that the number of publications on VM has risen 
sharply over the last decade. In this section, we are providing a brief overview of the 
existing VM tools and their limitations. 

 

(a) Number of publications on VM over the years. 



   
 

   

 

 

(b) VM Publication pie chart with respect to different subject areas. 

Figure 1. Analysis of publications on VM according to Scopus [3]. 

Chang et. al [1] proposed a hybrid system consisting of a piece-wise linear NN 
and fuzzy NN, where the piece-wise linear NN is used to capture the drift in the process 
recipe over time and then the drift information is used by a fuzzy NN to predict silicon 
wafer outcome. The paper proposes a way to consider the drifts in the process 
parameters, but it becomes complicated to map the drifts coming from a huge number of 
process parameters to the final yield. The authors have divided each timeline into 
multiple clusters assuming that a deviation from a linear structure denotes a change in 
the process recipe which is not always true in complicated high-dimensional system 
dynamics. Moreover, the structure requires the process parameter readings for the entire 
timeline which is not always available, leading to limited applicability in deployment. 

In 2009, Kang et. Al [2] proposed a framework for performing virtual metrology 
in semiconductor manufacturing and provided a direction for systematic analysis. The 
authors obtained the data from a Korean manufacturing company. The entire process 
was very specific to the problem under consideration and lacked generalization. The 
process had only 8 steps and the data had fixed dimensions in the processing, but it is 
not true in every situation. For example, some runs may take 50 hours to get completed, 
but there can be other runs that take 60 hours to get completed. The paper did not 
provide any procedure for dealing with these varying dimensionality of the data. 
Moreover, the prediction models that the authors have used are not scalable enough 
along the timeline. The addition of a recurrent structure in the prediction model would 
permit it to  be easily scaled to the required time limit. 

Hung et. al [4] used a radial basis function NN (RBFN) as a VM model to predict 
the Chemical Vapor Deposition (CVD) thickness. The input sensors are mapped to the 
hidden layers of the NN using fixed radial basis functions as the transfer functions. In 
this way, the authors have removed the iterative training process of the standard 
backpropagation-based NNs. Such a modification was done to the model to deal with 
the low quantity of data available for the training. Without backpropagation, it gets 
difficult to capture the proper dynamic relationships of the sensors using radial basis 
functions. Moreover, as the training data increases, the RBFN training complexity 
becomes very high. So, it is not completely scalable. The paper also does not deal with 



   
 

   

 

varying dimensions of input data along the timeline. 

The proposed methodology is the most related to the work of Cheng et. al [5]. 
The authors of the paper have proposed an automatic VM framework for fabwide VM 
deployment and illustrated the automated VM refreshment concept on CVD tools. The 
proposed framework was impressive, but very complicated and lacked interpretability. 
In this paper, we have tried to simplify the pipeline which can be scaled as and when 
needed while helping the users interpret some of the basic functionalities of the model. 

There are some other papers related to VM that might be interesting to the readers like 
the adaptive VM in [6], VM for run-to-run control [7], feedback control in VM [8], the 
reliance of VM system [9], and others [10–13], etc. Please note that most of the important 
concepts of VM have been incorporated into VMNet while keeping it as simplistic and 
generalized as possible. But every VM problem is different in nature and the framework 
should be adjusted to get the optimal performance. 

Problem Definition:  
A VM process consists of mainly two types of spaces: machine parameter space and 
process output or response space. Let the machine parameters space be defined as 𝒮 
which mostly represents the sensor readings of the process and response space be 
represented as Υ. The goal of the VM procedure is to find a mapping: 𝑓 ∶ 	𝒮	 → 	Υ. But 
in deployment conditions, we have access to only limited  sensor readings because we 
do not know the exact number of time steps at which the process ends. So, at any point 
(say after tb time steps), we are trying to observe how the response property will change 
after ta additional time steps. Based on this analysis, the process will be stopped after a 
certain number of time steps. For this reason, in practice, the problem can be defined as 
finding the following mapping: 𝑓 ∶ 	 𝒮+%, 	→ 	𝒮,-. 	→ 	Υ, where 𝒮+%, and 𝒮,-. are 
defined as the observed sensor readings and the simulated sensor readings, respectively. 
 

 

  
(a) Readings of sensor 65 of two random 
batches in the dataset. 

(b) Readings of sensor 48 of two random 
batches in the dataset. 
 

Figure 2. Sensor readings of two different batches in the dataset. 



   
 

   

 

 
 In Figure 2, we illustrate an example of the sensor readings present in the dataset2. Two 
different batches  are stopped at two different timesteps. But we do not know if stopping 
the processes at these timesteps was optimal. Manually analyzing the processes and 
stopping them is tedious and not optimal. VM can help us 
decide on predicting an optimal stopping time. In 
deployment, the idea is to collect the process parameters 
for 𝑡%  timesteps and simulate the process for additional 
𝑡/	(≫ 	 𝑡%) timesteps and predict the process outcome at 
the final timestep (𝑡/ 	+ 	𝑡% 	= 	𝑇). By varying ta we can 
analyze the response for stopping at different timesteps 
and then we can select a suitable ta that leads to a 
reasonable output. This is how the stopping time can be 
decided by taking help from VM. Moreover, we can 
notice that the two batches in Figure 3 have different 
sensor readings along the timeline. This indicates that 
there is a data drift observed in the dataset which can 
happen due to multiple reasons like recipe change, sensor 
modifications, data collection process updates, etc. Due 
to the data drift, the mapping problem becomes non-
trivial and a generalized VM framework should be able to 
capture this drift to make efficient predictions. 

In ML literature, this kind of sequential problem is termed as a many-to-many 
problem [14,15], as the problem takes multiple inputs and predicts multiple outputs in a 
sequential fashion as shown in Figure 3. In the proposed framework, these mappings are 
performed using a deep neural network (DNN) based model architecture. 

Preliminaries:  
In this section, we have described a few preliminary concepts that might be useful to 
understand the working principle of the proposed framework. 

Recurrent Neural Networks (RNNs):  

After DNNs started gaining popularity as an important estimation tool, the researchers 
realized there is a need for introducing a recurrent structure to the NN for handling 
recurring estimations with dynamic dimensions of inputs. In 1982, Hopfield [16]  
proposed a preliminary version of recurrent neural network (RNN) known as Hopfield 
Network in which recurrent structure was introduced in the nodes. The modern 
unfolding structure in RNNs was introduced by Jurgen [17]. But even though RNNs can 
be recurrently unfolded to any number of time steps, it was unable to capture long-term 
dependencies. This problem of long-term dependency retrieval was solved by Long 
Short-Term Memory (LSTM). 

 

2 For data secrecy issue, we have normalized all senor and response data within [0,1]. 
 

 

Figure 3.  Example of a 
many-to-many sequential 
problem. 



   
 

   

 

LSTM Structure: 
Proposed by Hochriter et. Al [18] in 1997, Long Short-Term Memory (LSTM) was one 
of the breakthrough models in the domain of deep learning. A structure of a typical 
LSTM cell is shown in Figure 4. The most interesting component of an LSTM  
cell are the three gates that control the flow of 
information along the timeline namely: forget gate, 
input gate and output gate. It has two data lines 
passing through the cell like conveyor belts: cell 
state and hidden state. Suppose we are focusing on 
the prediction of 𝑡$0  time step. We get the input 𝑥$  
and the two states from the last time step: hidden 
state (ℎ$1() and cell state (𝑐$1(). The first gate is the 
forget gate which determines how much of the 
previous data should be ignored. The forget state of the current prediction is denoted by 
𝑓$. It denotes a probability value that gets multiplied by the previous cell state. Then the 
input gate determines the amount of new information that should be introduced to the 
memory based on the current input and the input state is denoted by 𝑖$. After performing 
some calculations, the new information is added to the cell state. Finally, we get the 
current cell state and the output gate decides the value which is suitable to be used as 
the output of the current state and that value becomes the current hidden state (ℎ$). This 
hidden state becomes the output for the current cell and both ℎ$  and 𝑐$  are passed to the 
next time step. The goal of this introduction to LSTM was to give a brief intuition on 
how LSTM structure works, so we have not mentioned all the computations that are 
happening inside the cell. 

Uncertainty Estimation: 
When we are dealing with a real-life dataset, there can be two types of sources of 
uncertainty: data-based and model-based. 

Data-based uncertainty [19] originates from irregularities in the dataset. The 
dataset could contain one-to-many mapping that might hinder the training of the model. 
For example, two runs in the training set could have identical sensor data in the first few 
timesteps but lead to two different outcomes. This ambiguity can severely hinder the 
training and testing of the deep learning model. The sensor readings could also contain 
noise that could not be eliminated while cleaning the data. The second type of 
uncertainty [20] could originate from the model itself. The model can learn some regions 
of the dataset better than others leading to good performance in some regions and poor 
performance in other regions. This could happen due to a variety of reasons such as bias 
in the dataset, initialization, and training mechanism. 

In this study, we focus on the first type of uncertainty and aim to train a model 
that can learn the uncertainties along with the actual dataset. The method we use to 
learn the uncertainties is called Quantile Regression. One of the ways to train a model to 
learn quantile regression is by using pinball loss. 

Pinball Loss: 
Pinball loss [21,22] is a loss function used to train a model to learn quantile predictions. 
Let 𝑦< be the model prediction for 𝑞$0  quantile of a particular quantity, whereas the true 
value for the quantity is 𝑦, then the pinball loss (also known as quantile loss) of the 
prediction can be calculated according to Equation (3). 

 
Figure 4. Pictorial represent-
tation of an LSTM cell. 



   
 

   

 

 ℒ2(𝑦, 𝑦<) = ? 𝑞(𝑦 − 𝑦<), if	𝑦 ≥ 𝑦<,
(1 − 𝑞)(𝑦< − 	𝑦), otherwise. ( 3 ) 

Intuitionally, the equation assigns more loss to low-quantile predictions if the 
predictions are higher than the original value and less loss to low-quantile predictions if 
the predictions are lower than the original value. This formulation helps low-quantile 
predictions to be low in value. A similar situation occurs with high-quantile predictions 
but the loss levels get altered for the kind of predictions. 

Proposed Prediction Method:  
In this section, we provide the entire description of the proposed VM framework. 
VMNet starts with data preparation where the input data is processed to follow a 
particular order. In this process, some of the outliers are identified and removed from 
the dataset so that our DNN model does not get overfitted to the outlier observations. 
Then the dataset is divided into training, validation, and test data where training data is 
used to train the prediction model, validation data is used to identify the instant the 
model starts getting overfitted. The test data is completely hidden from the training 
process. The final model is applied to the test data to evaluate the model quality. The 
entire framework is described in Figure 5. 

 
Figure 5. Proposed VMNet framework for generating prediction model and deploying 
it in practice. 

 

Data Preparation: 
To perform virtual metrology on a long batch process, we need to collect the sensor 
readings after a fixed interval (say after every 𝜏 minutes) for every run until it ends. 
Each such run produces a batch of final product which can be identified by a unique 
batch ID. The individual batches are finally measured to form the process response that 
we are interested in predicting. Overall, we are supposed to have the output response 
values and associated fixed-interval sensor readings for every batch, but the number of 
time steps in the runs can vary as some batches might take more time than others. The 
dataset obtained for the present virtual metrology process comes in two parts: sensor 
information and metadata information. The sensor information contains the sensor 
readings in the order of one hundred sensors after every fixed interval for all the batches 
and the metadata information contains higher-level information about the batches and 
the process response measured for the runs. 



   
 

   

 

In order to keep the proprietary information secret, we have normalized all the 
sensor readings and the process output values between 0 and 1. We have also renamed 
all the sensors in terms of numbers (e.g. sensor_1, sensor_2, …), instead of their actual 
names. Finally, the data has been partitioned using a 75%-15%-15% scheme for 
training, validation, and testing of our model, respectively. 

Model Architecture: 
We have used a Long-Short Term Memory (LSTM) based architecture for the time 
series simulation and two branches of linear layers for sensor reading prediction and 
response prediction, respectively. The entire model configuration is shown in Figure 6. 
The model receives the first tb time steps of ground truth data (𝑥(, 𝑥3, . . . , 𝑥$") for the 
sensor readings. The LSTM module then encodes the information from the tb initial time 
steps and starts simulating from (𝑡% 	+ 	1)$0  time step till the end (𝑥$"'(

4 , 𝑥$"'3
4 , . . . , 𝑥*4 ). 

For each time step, a linear layer (MLP5) maps the hidden state of the LSTM to the 
sensor readings which is recursively fed back to the LSTM for prediction of the next 
timestep and at the end of the simulation, another linear layer (MLP6) maps the hidden 
states to the response values. The problem of mapping is extremely sparse as the dataset 
does not contain the intermediate response values. 
 

 

 
Figure 6. VMNet model architecture. There are three different components in the 
architecture: lookback sensor simulation, lookahead sensor simulation, and final 
response prediction. The loss propagation during backpropagation from the 
architecture is also explained in the diagram. 

Model Training: 
For training the proposed model, we need to use a loss function that can combine the 
losses from both simulations of the sensors and the final predictions. While training the 
model, we have created two separate phases for the LSTM component. One phase is 
called the lookback phase and the other phase is named as the lookahead phase. In 
lookback phase, the LSTM gets the ground truth sensor data for the first 𝑡%  time steps. 
After the lookback phase is over, the LSTM uses the final captured hidden state and cell 
state from the lookback phase and enters the lookahead phase. In the lookahead phase, 
we do not use any ground truth information. In this phase, we collect the hidden state of 



   
 

   

 

the LSTM at each time step, map the hidden state to the sensor readings using an MLP 
(MLP5), and the mapped sensor readings are recursively fed back to the LSTM as the 
input for the next time step. The difference between the lookback and lookahead phases 
is that lookback phase gets access to the ground truth sensor data for the initial 𝑡%  
timesteps, whereas in lookahead phase, the LSTM output is used as an approximation 
for the ground truth data. This lookback-lookahead system closely imitates the original 
deployment situation where we have access to the sensor readings of t time steps. Then 
we have to use the information captured from the observed sensor readings to predict 
the rest of the future readings. So, the lookahead part imitates how it will be predicted in 
deployment. At the final timestep (𝑇) of the lookahead, we also map the hidden 
representation of the LSTM to the process response values using a separate MLP 
(MLP6). 

For both lookback and lookahead, we compute the error with respect to the 
sensor predictions by comparing it with the original sensor readings of the dataset. At 
the final timestep (T), we also compute the error with respect to the predicted response. 
We categorize the losses that we get from the data and the prediction into three 
components: response loss (𝑙7), lookback loss (𝑙8%), lookahead loss (𝑙8/). The final loss 
is the sum of all these losses as shown in Equation (4). 

 𝐿𝑜𝑠𝑠 = 𝑙7 + 𝑙8/ + 𝑙8%. ( 4 ) 

Results:  
In this section, we present a brief description of the data used for training and testing the 
model, followed by the results obtained by our proposed method. 

Data Description: 
The raw data is first processed by the method mentioned in Section 5.1. Then the 
outliers are removed from the dataset based 
on runtime and some knowledge about 
different sensors. The final dataset consists 
of more than one thousand batches . Each run 
contains information from on the order of 
one hundred sensors along the runtime and 
three process response values that we are 
trying to predict. The examples of some of 
the sensor trends till 200 time steps are 
shown in Figure 7. 

In some data batches, the batch 
process continues until about 300 timesteps. 
The final problem can be treated as finding a 
mapping to the time series data of the sensors 
to the final response values. The frequency 
distributions of all these values are shown in 
Figure 8. 

 
Figure 7. Example of four sensor 
trends from the dataset. The wide 
band for the sensor readings represent 
the amount of variation seen in the 
dataset for the individual sensors. 



   
 

   

 

 
Figure 8. Frequency distribution of the response values in the available dataset, 
clearly stating that they vary from data to data. 

Neighborhood Exploration: 
Before starting with the model training, we need to have an idea about the difficulty of 
the problem in terms of the dataset. This kind of analysis can help us decide on a model 
to apply to the problem. One way to think about the difficulty of the given problem is 
that if the data agrees with the problem formulation, the batches which have similar 
sensor readings should have similar response values for prediction. To verify that we 
have used a neighborhood identification process to find out the nearest neighbor of 
every batch in the dataset. 

Let 𝑺𝒊 and 𝒀𝒊 denote the sensor readings and response values of batch 𝑖, 
respectively. Then the batch nearest to batch 𝑖 (batch 𝑗-) is computed using Equation 
(5), where 𝑁 is the number of sensors in the dataset. 

 𝑗- = argmin
:

|𝑺𝒊
$1𝑺%$|
=

. ( 5 ) 

Here, the superscript 𝑘 denotes the timestep. After retrieving the nearest neighbors 
(index 𝑗-) for all the batches, we check the differences in the response for the 
corresponding neighboring batches. The difference is represented in percentage and 
calculated from Equation (6), where 𝑑-

7
 denotes the percentage difference in response 

for batch 𝑖  from its nearest neighbor (batch 𝑗-). 

 𝑑-
7 = 2 ×

|>&'
(1>'

(|

>&'
('>'

( × 100. ( 6 ) 

We have computed the neighborhood response difference for every batch using 
this process and the histogram of the differences corresponding to all the values is 
presented in Figure 9. From the Figure, we can see that the maximum amount of batches 
have less than 10% response difference compared to their nearest neighbors. As the 
difference is not very high, this problem is solvable by deep learning techniques. Deep 
learning relies on the data for learning the inter-dependencies of the input variables and 



   
 

   

 

if the data is not having proper correlations among different samples, it can never work. 
This analysis provides us with the confidence that deep learning techniques might work 
in the current prediction process. 

 
 

  
(a) Neighborhood difference    

histogram for response 1. 
(b) Neighborhood difference    

histogram for response 2. 

 
(c) Neighborhood difference histogram for response 3. 

 
Figure 9. Neighborhood exploration results for the three responses under 
consideration. 

 

Model Performance: 
The main goal of the VM process is to predict the final process outputs as accurately as 
possible. For this reason, the performance of the model is tested using Mean Absolute 
Percentage Error (MAPE). A lower value of MAPE indicates a better prediction of the 
responses. It can be calculated using Equation (7) where 𝐴 represents the actual value 
and 𝐹 is the predicted or forecasted value: 

 𝑀𝐴𝑃𝐸 = |?1@|
?

× 100. ( 7 ) 

Table 1. Performance of the proposed model for predicting the three process outputs 
considered for the batch process. 



   
 

   

 

Performance Criterion Response 1 Response 2 Response 3 
MAPE (in %) 4.19 2.16 7.10 

 
The performance of the proposed model over the three process responses is 

displayed in Table 1. We are able to achieve a prediction error of < 5% for the first 
output and < 3% for the second output, while the error for the third output is < 8%. 
When we look at the distribution of error for different batches in Figure 10, we can see 
that there are certain data points outside the 100-th percentile marks of the boxplots. 

We obtain less than 10% MAPE on all the different process outputs under 
consideration. Our model performance also agrees with the difficulty of prediction as 
explained in Section 6.1.1. The third value is the most difficult to predict and we are 
able to get an average MAPE of 7.10% on that, followed by 4.19% for the first output 
and 2.16% for the second one. These prediction errors are acceptable in practice 
considering the complexity of the prediction problem involving time-varying sensors 
with around 250-260 timesteps and the prediction is achieved only after about one-fifth 
of the total process time has passed. 

Model Interpretation: 
Deep learning models are hard to interpret in terms of what functions they are 
computing to get the mapping. For example, the proposed model configuration 

 
Figure 10. Error distribution of different process responses. 

 
uses approximately one million trainable parameters which are learned during the 
training process. It is complicated to learn how the parameters get interconnected to 
provide the final predictions because of the layered nature of the model. So, in this 
section, we have mainly focused on suggesting some of the ways we can explore the 
working principles of the model through its inference on the data. 



   
 

   

 

Embedded Data Analysis with Meta-parameters: 
If we have some meta-parameters of interest, we can visualize the model inference on 
the basis of those meta-parameter values to check if the visualization agrees with the 
subject experts. This visualization can be used as a sanity check of the model 
performance. In the current process, we were interested to check if the prediction model 
could distinguish among different factories where the batches were processed. But this 
is a high-dimensional space and in order to visualize the inference, we need to map the 
data in two or three-dimensional space. For that reason, we have used t-SNE [23] plots – 
a commonly used machine learning-based dimensionality reduction technique – to 
visualize the differences. To perform the analysis, we have collected the hidden 
representations of the different batches at the final state in the LSTM and embedded the 
hidden representation in two dimensions using t-SNE. Then we labeled the batches 
based on the factory numbers in a two-dimensional plot as shown in Figure 11. 
Please note that inter-cluster distance in t-SNE should not be assumed to be actual 
distance. But intra-cluster distances are a measure of how close they are. As we can see 
in Figure 11, the model can find significant clustering in terms of factory which 
indicates that the trained model is able to differentiate among these batches . This 
distinction was in agreement with the subject experts of the process. So, it increases the 
reliability of the model under consideration. Moreover, if it was not showing expected 
results, there can be multiple routes to get the expected results. The users might need to 
re-train the prediction model on a larger dataset/new data (if there is a data drift due to 
sensor modifications) or identify and fix some noisy sensors. In other scenarios, the 
different subject experts might be interested in other meta-parameters. The same thing 
can be achieved using the above-mentioned procedure. 
 

 
 
Figure 11. Embedded representations of the batches produced in different factories in 
a two-dimensional space, indicating that data has a bias according to the factory.  

Sensitivity Analysis for Identifying Critical Sensors: 
For a batch process, it is interesting to observe how sensitive the model is with respect 
to the different sensors used in the process. We have performed some experimentation 
to see how our model performance changes with respect to the variations in the different 



   
 

   

 

sensor readings. To perform the sensitivity analysis, we have used the integrated 
gradients method [24] on the sensor data. Integrated gradients start by considering a 
baseline for the input sensor data and change the input linearly to get to the original 
value of the sensor data. In the process, it observes the changes happening in the process 
response predictions and computes the gradients for the sensor data for corresponding 
changes in the output data. The gradients are integrated to find an attribution score for 
each sensor which approximates the sensitivity of the sensor in model predictions. In 
the current situation, we have three different responses. We want to know which sensors 
are the most sensitive in predicting these three process outcomes. 

In Figure 12, we have shown the top 15 sensitive sensors affecting the prediction 
of the three process responses under consideration. We can see that most of the sensitive 
sensors (13 to be exact) are common to all three predictions. It suggests that these 
sensors should get more attention than the rest of them to achieve a better prediction of 
process responses. One immediate conclusion that we can draw from this analysis is 
that if we need to do quality control on the sensors so that the correct data is getting 
recorded, we can start with the most sensitive sensors first as the model is more 
sensitive to the changes in those sensors. So, if we can reduce the noise on these 
sensors, the model performance can be improved. In addition to making predictions, our 
approach is also capable of identifying key sensors affecting the prediction. 

 

 
  

(a) Top 15 sensitive sensors for 
predicting Response 1. 

 

(b) Top 15 sensitive sensors for 
predicting Response 2. 



   
 

   

 

 
 

(c) Top 15 sensitive sensors for predicting Response 3. 
 

Figure 12. Sensor sensitivity exploration for different predictions. 

Uncertainty-based Model for Better Deployment:  
In most of the batch processes involving stochastic simulations, we need to move 
towards more stochastic predictions over deterministic predictions for the models. It 
might be helpful to provide a range of values as predictions, rather than providing a 
single value. The main idea is to provide a range of predictions with a certain 
confidence to the user. To achieve that, we need to use a modified version of the model 
that is capable of providing ranges, instead of particular values. For the proposed 
framework, we have attempted to predict the 5-th, 50-th (median), and 95-th percentile 
predictions using a recent quantile-based machine learning approach [25]. The model has 
been trained using pinball loss [22]. We named the model as quantile model. As the 
model provides a range of uncertainty-based estimations with a certain confidence 
bound, it is extremely useful for deployment. 

To show the application of such a model, we have randomly selected a batch and 
analyzed the model predictions in Figure 13. The data for the first 100 timesteps of the 
process are recorded and used to predict three process responses thereafter until the end 
of the operation. It becomes interesting to note how the uncertainty bound (difference 
between 95% and 5% predictions) changes with timesteps. For all the responses, the 
original ground truth value for the batch is shown as a black circle in the plots and the 
blue line represents the median prediction over the timeline. The subplot at the bottom 
represents the uncertainty width for predictions at different time steps. For this batch, 
the quantile model is able to make accurate predictions and the uncertainty width is 
significantly low when it reaches the time step of the original ground truth. In 
deployment, the process can be stopped when the VM model provides a significantly 
small prediction uncertainty bound. While the difference in predictions between the 95-
th and 5-th quantile is relatively wide, the median prediction is quite close to the ground 
truth for all three responses. 

 



   
 

   

 

  

(a) Quantile model prediction for 
Response 1 for a random batch. 

(b) Quantile model prediction for 
Response 2 for a random batch. 

 
(c) Quantile model prediction for Response 3 for a random batch. 

 
Figure 13. Quantile model performance for a random batch in the dataset over three 
process responses. The predictions are made after 100 timesteps are executed for 
the remaining duration of the batch process. 

Conclusion:  
In this paper, we have proposed a generalized and scalable machine learning-based 
virtual metrology system named VMNet for a general time-consuming batch process. 
The system consists of data processing, outlier removal, model training, prediction, and 
interpretation steps. The prediction model is capable of handling scaled machine 
parameter dimensions and generating predictions of process outputs. Furthermore, we 
have proposed systematic processes to analyze data difficulty and model interpretations. 
A modified version of the prediction system (predicting quantile ranges, instead of a 
single value) is also proposed which is more suitable for deployment. The final 
prediction error for the three response values under consideration is found to be less 
than 10% which is acceptable after utilizing only one-fifth data of the entire batch 
timeline. 

Every long batch process is different in nature and the proposed framework 
might need some modifications to suit the problem under consideration. But this 



   
 

   

 

framework was developed keeping scalability, generalization, interpretability, and 
deployment in mind. So, the framework is easily extendable to cover a wide range of 
time-varying problems. In the future, it might be interesting to add a robustness analysis 
step before deploying the model. In deployment, it is important to properly analyze the 
robustness of the model to take care of data drift in the collected data over the years due 
to process changes and sensor updates. Moreover, an outlier detection module might 
help to improve the performance of the model significantly in the deployment where the 
incoming batch data should go through a binary classifier to be identified as an outlier 
or a non-outlier batch. The model should only process the non-outlier batches in the 
deployment. 

 
References 
[1] Chang, Y.-J.; Kang, Y.; Hsu, C.-L.; Chang, C.-T.; Chan, T. Y. Virtual Metrology 

Technique for Semiconductor Manufacturing. In The 2006 IEEE International 
Joint Conference on Neural Network Proceedings; IEEE, 2006; pp 5289–5293. 

[2] Kang, P.; Lee, H.; Cho, S.; Kim, D.; Park, J.; Park, C.-K.; Doh, S. A Virtual 
Metrology System for Semiconductor Manufacturing. Expert Syst. Appl. 2009, 36 
(10), 12554–12561. 

[3] Scopus. https://www.scopus.com (accessed 2022-11-12). 
[4] Hung, M.-H.; Lin, T.-H.; Cheng, F.-T.; Lin, R.-C. A Novel Virtual Metrology 

Scheme for Predicting CVD Thickness in Semiconductor Manufacturing. 
IEEE/ASME Trans. mechatronics 2007, 12 (3), 308–316. 

[5] Cheng, F.-T.; Huang, H.-C.; Kao, C.-A. Developing an Automatic Virtual 
Metrology System. IEEE Trans. Autom. Sci. Eng. 2011, 9 (1), 181–188. 

[6] Hirai, T.; Kano, M. Adaptive Virtual Metrology Design for Semiconductor Dry 
Etching Process through Locally Weighted Partial Least Squares. IEEE Trans. 
Semicond. Manuf. 2015, 28 (2), 137–144. 

[7] Kang, P.; Kim, D.; Lee, H.; Doh, S.; Cho, S. Virtual Metrology for Run-to-Run 
Control in Semiconductor Manufacturing. Expert Syst. Appl. 2011, 38 (3), 2508–
2522. 

[8] Khan, A. A.; Moyne, J. R.; Tilbury, D. M. Virtual Metrology and Feedback 
Control for Semiconductor Manufacturing Processes Using Recursive Partial 
Least Squares. J. Process Control 2008, 18 (10), 961–974. 

[9] Cheng, F.-T.; Chen, Y.-T.; Su, Y.-C.; Zeng, D.-L. Evaluating Reliance Level of a 
Virtual Metrology System. IEEE Trans. Semicond. Manuf. 2008, 21 (1), 92–103. 

[10] Lee, S.; Kang, P.; Cho, S. Probabilistic Local Reconstruction for K-NN 
Regression and Its Application to Virtual Metrology in Semiconductor 
Manufacturing. Neurocomputing 2014, 131, 427–439. 

[11] Su, Y.-C.; Lin, T.-H.; Cheng, F.-T.; Wu, W.-M. Accuracy and Real-Time 
Considerations for Implementing Various Virtual Metrology Algorithms. IEEE 
Trans. Semicond. Manuf. 2008, 21 (3), 426–434. 

[12] Susto, G. A.; Pampuri, S.; Schirru, A.; Beghi, A.; De Nicolao, G. Multi-Step 
Virtual Metrology for Semiconductor Manufacturing: A Multilevel and 
Regularization Methods-Based Approach. Comput. Oper. Res. 2015, 53, 328–
337. 

[13] Park, C.; Kim, Y.; Park, Y.; Kim, S. B. Multitask Learning for Virtual Metrology 
in Semiconductor Manufacturing Systems. Comput. Ind. Eng. 2018, 123, 209–
219. 

[14] Eger, S. Multiple Many-to-Many Sequence Alignment for Combining String-



   
 

   

 

Valued Variables: A G2P Experiment. In Proceedings of the 53rd Annual 
Meeting of the Association for Computational Linguistics and the 7th 
International Joint Conference on Natural Language Processing (Volume 1: 
Long Papers); 2015; pp 909–919. 

[15] Iwata, T.; Lloyd, J. R.; Ghahramani, Z. Unsupervised Many-to-Many Object 
Matching for Relational Data. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 38 
(3), 607–617. 

[16] Hopfield, J. J. Neural Networks and Physical Systems with Emergent Collective 
Computational Abilities. Proc. Natl. Acad. Sci. 1982, 79 (8), 2554–2558. 

[17] Schmidhuber, J. Habilitation Thesis: System Modeling and Optimization. Page 
150 ff Demonstr. Credit Assign. across Equiv. 1,200 layers an unfolded RNN 
1993. 

[18] Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 
1997, 9 (8), 1735–1780. 

[19] Chang, J.; Lan, Z.; Cheng, C.; Wei, Y. Data Uncertainty Learning in Face 
Recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision 
and Pattern Recognition; 2020; pp 5710–5719. 

[20] Busch, M.; Schnoes, F.; Elsharkawy, A.; Zaeh, M. F. Methodology for Model-
Based Uncertainty Quantification of the Vibrational Properties of Machining 
Robots. Robot. Comput. Integr. Manuf. 2022, 73, 102243. 

[21] Fox, M.; Rubin, H. Admissibility of Quantile Estimates of a Single Location 
Parameter. Ann. Math. Stat. 1964, 1019–1030. 

[22] Koenker, R.; Bassett Jr, G. Regression Quantiles. Econom. J. Econom. Soc. 1978, 
33–50. 

[23] Van der Maaten, L.; Hinton, G. Visualizing Data Using T-SNE. J. Mach. Learn. 
Res. 2008, 9 (11). 

[24] Sundararajan, M.; Taly, A.; Yan, Q. Axiomatic Attribution for Deep Networks. 
In International conference on machine learning; PMLR, 2017; pp 3319–3328. 

[25] Wang, Y.; Gan, D.; Sun, M.; Zhang, N.; Lu, Z.; Kang, C. Probabilistic Individual 
Load Forecasting Using Pinball Loss Guided LSTM. Appl. Energy 2019, 235, 
10–20. 

 
 


