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The gait cycle of 25-DOF humanoid robot, namely NAO robot, consists of single support phase (SSP) and double support phase (DSP). Both 

dynamic and stability analyses are carried out for this robot to determine its power consumption and dynamic stability margin, respectively. 

Constrained single-objective optimization problems are formulated for the SSP and DSP separately and solved using particle swarm 

optimization (PSO) and genetic algorithms (GA). A performance index, other than the fitness function, consisting of constraint values and 

maximum swing height, is also considered to compare PSO and GA-obtained optimal solutions. PSO is able to find the trajectories that offer 

higher swing height for nearly similar power consumption during SSP. A performance assessment of each algorithm based on the best fitness 

values in each generation across several runs is also carried out. These values are compared using the Wilcoxon rank-sum test, and PSO is 

found to be statistically better than GA. The optimal solutions from the simulations are tested using the Webots simulator to validate their 

efficacy on stability. Moreover, an investigation of the influence of gait parameters on power consumption during SSP and DSP reveals that 

the humanoid robot with a higher hip height, lower swing height, and slow pace consumes less power. The methodology developed in this is 

generic and can be easily extended to other robots. 

Keywords: NAO Humanoid Robot; Single Support Phase; Double Support Phase; Trajectory Planning; Optimization; Particle Swarm 

Optimization; Genetic Algorithm 

1.   Introduction  

The humanoid robot mimics humans and walks on two legs for better mobility compared to the wheeled robot and 

manipulator. It can navigate through a variety of terrains, including stairways, sloping surfaces, obstacles, ditches, etc. 

These advantages of having better mobility on uneven terrain have attracted many researchers. Research on humanoid 

robots in bipedal locomotion for efficient and balanced gait planning for optimal power and maximum stability has made 

substantial progress in the last three decades. NAO, a 25 degree of freedom (DOF) humanoid robot, could attract 

researchers due to its high walking speed, improved robustness, enhanced endurance, and programming capabilities. 

Researchers have long been interested in achieving a smooth walking pattern while using less power. Humanoid robotôs 

applications require completing the same task with better stability and less energy. In this study, an attempt is made to 

determine optimal gait parameters to minimize the power consumption by maintaining the dynamic balance margin (DBM) 
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of a 25 DOF NAO humanoid robot, version 6, developed by SoftBank robotics. Because a well-balanced gait cycle 

consuming a high amount of energy is not desirable. 

The gait cycle of a biped robot consists of single support phase (SSP) and double support phase (DSP). Most of the 

available literature on biped robots studied the SSP. Despite being a crucial phase, DSP received less attention, as it 

consumes about only ςπϷ of the total cycle time. DSP is essential in achieving steady locomotion when walking at a 

moderate speed compared to high speed. 1 The present work separately studied both cycles, viz. SSP and DSP of a 25 DOF 

NAO humanoid robot. The problem of DSP is solved by considering two separate SSPs. 2 Most of the studies considered 

the hip height constant throughout the walking motion; however, in this study, the hip trajectory is planned in x, y, and z 

directions using cubic polynomial equations. This helps to understand the effect of hip movement in 3D space on an energy-

efficient gait cycle. Robots' hip, swing leg, and arm motion were simplified using the cubic polynomial trajectories.  SSP 

or DSP is the phase between two consecutive DSP or SSP, respectively. To link to the next walking phases, position, 

velocity, and acceleration profiles are required at the start and end of the SSP or DSP. There are very limited studies related 

to the average speed required to maintain the desired DBM. An average speed is crucial for maintaining a DBM during 

walking, and at a higher speed, the torque fluctuations are much higher. The motor may fail due to a sudden change in 

torque within a given period, which may bring some jerky moments to the robot. Only a few studies considered the minimal 

torque change to produce smoothness in the motion. Hence, a suitable constraint is also considered to address the problem 

of torque fluctuation during higher speeds. Population-based optimization algorithms depend on the initial population and 

their respective parameters. However, an optimal solution may vary with the different initial populations. A l imited number 

of studies are available on the arms movement for improving stability. This study also considered the effect of arm swings 

on dynamic stability. Many investigators have not performed a statistical analysis, which is required to correctly understand 

their variations and suitability for a problem. The differences in the optimal solution for a problem provided by the 

algorithm over multiple runs will help in its selection for that problem.  

A Constrained single-objective optimization problem is formulated to minimize the power consumption while ensuring 

the dynamic stability and minimum torque fluctuation. The formulated single-objective optimization problem is solved 

using Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) to find the optimal gait parameters for minimum 

power consumption separately during the SSP and DSP. While solving the single-objective optimization problem, the 

maximum permissible change in torque within a given time interval is considered as a constraint to be satisfied in order to 

reduce the overloading or failure of the motor. One of the goals of this work is to determine the range of terminal velocities 

to maintain a desired dynamic balance while using the least amount of power. Minimum sagittal and lateral velocities are 

found out to keep the robot in motion without falling in SSP and DSP. The movement of both arms has been considered 

for better dynamic stability. A comparative and statistical analysis have been considered here for both algorithms. Wilcoxon 

rank-sum test is also performed to find the best algorithm statistically. Finally, a simulation in the Webots simulator has 

confirmed the stability and reported no violation in the joint limit for the proposed trajectories. 

The rest of the paper is organized as follows: Section 2 reviews the existing studies, and the mathematical formulation 

of the problem is discussed in Section 3. Section 4 deals with the mathematical statement of the single-objective 

optimization problem. Results are stated and discussed in Section 5, and concluding remarks are presented in section 6.  

2.   Existing Studies 

2.1.   Kinematic and Dynamic Analysis 

Robot kinematics is basic yet essential to understand the robot's movement in 3D space. Forward Kinematics (FK) deals 

with mapping the joint space into the 3D space. However, Inverse Kinematics (IK) relates the 3D space to joint space. IK 

is a relatively more complex task for a high DOF robotic system with its joints placed in series compared to its FK. Many 

researchers have tried different methodologies to solve the problem of IK. However, an analytical solution is always 

preferable to an iterative approach due to its accuracy and faster implementation. Researchers solved the IK of the NAO 

robot using vector algebra 3ï5, human mimicking system 6, the cartesian trajectory of human 7, and optimization process 8 

to convert the robot configuration from cartesian space to joint space. The inverse kinematics (IK) concept proposed by 

Nikolaos et al. 3 is employed in this study, as it provides exact analytical solutions that are useful for real-time execution.  

Dynamic analysis, in addition to kinematic analysis, is essential for improved robot control. Hashemi and Gaffari 4 

focused on kinematic analysis and dynamic modeling by approximating the trajectory using cubic splines for the NAO 

robot. Joint anglesô simulation and inertial forces were verified using experimental results. The inverse dynamics 5 was 

carried out in MSC Adams and verified on the NAO robotsô lower part with jointsô angles as experimental data. Torque 
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and power calculations are challenging for biped robots due to highly nonlinear dynamics. For the high DOF, several 

researchers have attempted to solve the dynamics of a humanoid robot using different techniques. Researchers used 

kinematic human motion data 9, SimMechanics of MATLAB toolbox 10, reference-model-based control design 11, MSC 

Adams 5, PD control law with gravity compensation 12, Lagrange-Euler formulation 13,14, Newton-Euler equations 15, 

Chaotic Recurrent Neural Network 16, and DôAlembertôs-based virtual work principle 17 to perform the inverse dynamics 

of biped robot. Lagrange-Euler formulation is used in this study to compute torque demand and average power consumption 

by the actuators of the NAO robot. 

2.2.   Stability Analysis 

Most bipedal systems had been modeled using analytical balancing techniques to maintain the dynamic balance by taking 

the help of a basic inverted pendulum (IP) 18 due to its simplicity, but the concept of the Zero-Moment Point (ZMP) 19 

technique could reach popularity due to its accuracy for the multi-body system. To declare a humanoid is dynamically 

balanced, the ZMP should always be lying inside the foot support polygon. ZMP computation is crucial at each point to 

stabilize the walking cycle of a robot. DBM 20, or stability margin, is a positive quantity that indicates how distant the ZMP 

is from the support polygon. The robot is marginally stable if the ZMP is seen to be extremely close to the support polygon's 

boundary; nevertheless, a larger value of DBM ensures greater stability.  

Chung et al. 21 improved the existing method of ZMP calculation using Denavit-Hartenberg (DH)-based recursive 

Lagrangian method. The proposed method accurately evaluated the rate of angular momentum in the ZMP formulation, 

and a simulation of walking and running motion provided more realistic bipedal motion. Robo-Erectus 22, a humanoid 

robot, was optimized for ZMP, inertia forces, and geometrical constraints to improve dynamically balanced locomotion, 

smooth transition, and stable walking. Liu and Urbann 23 modified the walking pattern of the NAO robot using the three-

dimensional motion of the upper body. They experimentally verified that the robot could walk with an almost stretched 

knee with enhanced dynamic balance.  

2.3.   Evolutionary Computation-based Studies 

Biped locomotion depends on several gait parameters. Researchers explored a range of strategies to reduce the energy 

consumption of a dynamically balanced gait cycle to determine the best gait parameters. The evaluation of geometric 

parameters, dynamic calculations, and controllability are highly nonlinear, so evolutionary optimization techniques were 

utilized to get the optimal parameters. In their review study, Gong et al. 24 discussed various potential improvements in the 

efficiency and quality of evolutionary gait optimization and future research directions. A gait cycle is a synchronized 

sequence of leg movement consisting of SSP and DSP 25. There are some transition phases between these two phases, viz. 

contact and swing phase. Figs. 1 (a) through (d) display the walking cycle of a biped robot. In SSP, the robot is supported 

by a single-leg, whereas in DSP, the robot is supported by both legs. Investigators have put in a lot of effort to explore the 

influence of SSP and DSP on the dynamically balanced and efficient walking cycle of a two-legged robot. 

 

 
Fig. 1. A schematic view showing four phases of a locomotion cycle of a biped robot: (a) Single Support Phase, (b) Contact Phase, (c) Double Support 

Phase, (d) Take-Off Phase (where L and R represent left and right feet, respectively)25 

Many researchers have studied the effects of SSP on the walking cycle of biped robots. The SSP 26ï28 was analyzed for 

ascending and descending staircases using soft-computing approaches to generate dynamically balanced gaits. However, 

these studies had not considered DSP. Vundavilli and Pratihar 29 had analytically modeled the gait and optimized it to 

maximize the DBM and minimize the power consumption using neural networks and fuzzy logic-based approaches. They 
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generated a dynamically balanced gait after considering the SSP and calculating DBM using the ZMP concept for a seven 

DOF biped robot during ditch crossing. The dynamically balanced gait generation of seven DOF biped robots was solved 

using genetic-neural and genetic fuzzy systems after analyzing the SSP for sloping surfaces by Vundavilli and Pratihar. 30 

A few investigators have studied the effects of DSP. Luo and Xia 31 studied both walking phases (SSP and DSP), and torso 

motion was controlled to reduce the energy consumption and maximize the dynamic stability at the landing. The simulation 

confirmed the feasibility of the proposed method. The walking efficiency was better with a forward tilting of the torso, 

whereas backward tilting increased power consumption. However, the robot movement during DSP was simplified by 

modeling it as an IP. DSP was analyzed by Rajendra and Pratihar 2 using PSO and GA during ascending and descending 

of a staircase. The lateral movement was not considered in this study. Raj et al. 32 used Real Coded GA (RCGA) to create 

an optimal set of walk parameters for the optimization of energy and stability of the NAO robot for SSP, DSP, and transition 

phases. They demonstrate a trade-off between stability and energy function. However, their investigations for the NAO 

robot consider a constant hip height from the ground. Many researchers have used PSO and GA to find the optimal 

trajectories for energy-efficient walking cycles. Dau et al. 33 generated optimal hip and foot trajectories using polynomial 

interpolation. GA was used to find the optimal key parameters to optimize it further to reduce energy consumption. The 

proposed method was verified on flat and slope walking simulations of NUSBIP-II biped robot. They had not considered 

the lateral movement. PSO 34 was used in the gait optimization for omnidirectional walking on a modified Kondo KHR-1 

humanoid robot. They also considered arm movement as well as different walking phases, but no additional optimization 

approaches were utilized to compare PSO performance. After assuring the least energy consumption, GA 35 was used along 

with the motion/force control scheme to generate the optimal trajectories for the seven-link biped walking on flat ground 

and sloping terrain. The study found that energy consumption increased with the increase in walking speed. However, a 

comparison of the performance of GA with different population-based optimization techniques might have been useful in 

determining better walking parameters. 

There had been a few prominent optimization methodologies utilized in decreasing excessive energy consumption, 

enhancing walking speed, finding the shortest path, and optimizing trajectories. Hemker et al.36 and Wolff et al. 37 had 

improved the walking speed of a 24 DOF and 17 DOF humanoid robot using the surrogate optimization method and 

evolutionary procedure, respectively. Muni et al. 38 used the Bacterial Foraging Optimization Algorithm (BFOA) to build 

the best navigation for the NAO humanoid robot. BFOA utilizes the foraging ability of bacteria to find the shortest path in 

the least amount of time. The proposed method was verified using simulation and an experimental platform. The iterative 

optimization method 39 was applied to a seven-link biped robot to solve the high energy consumption. The trunk trajectory 

was optimized when the given robot followed the desired ZMP trajectory, and then, an energy-efficient gait could be 

obtained with the security of a balanced cycle. Roussel et al. 40 generated gait patterns, which consumed minimum energy 

while body mass was concentrated on the hip of the humanoid robot. Silva and Machado et al. 41 analyzed energy 

consumption while keeping hip height and sagittal velocity constant. Channon et al. 42 analyzed the relationship between 

forward velocity and step length with respect to consumed energy. Uno et al. 43 took into account not just the least amount 

of energy utilized but also the minimum change in torque. The former gait resembled human motion more closely, whereas 

the later gait was more stable due to a smooth shift in link acceleration. 

3.   Mathematical Formulation of the Problem 

Fig. 2 shows the lower and upper parts of the NAO robot with the joint anglesô naming convention. It also shows the 

positions of lumped masses. The lower part of the NAO robot has eleven DOF, whereas the upper part has fourteen DOF. 

The pelvis joint is made common in both legs. Left and right ὌὭὴὣὥύὖὭὸὧὬ cannot move independently due to a single 

actuator moving this joint, which directly affects both the legs. Each leg has two joints at the hip, one joint at the knee, and 

two joints at the ankle. The R and L prefixes are used in conjunction with the joint angles' names to indicate their 

connections to the robot's Right and Left sides, respectively. NAO robotôs mass values and dimensions are taken from its 

official website. 44,45 ὶ represent the Center of Mass (CoM) position vectors 45 for the concentrated lumped masses ά  in 

kg on the Ὥ  limb.  
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Fig. 2. Line Diagram of the lower and upper parts of the NAO robot with lumped masses, CoM position, and joint anglesô naming convention. 

The robot's left and right halves are symmetrical, and the masses 45 of the corresponding limbs are the same on both sides. 

The NAO robot is made up of 25 lumped masses in total. Each leg consists of six lumped masses viz. Pelvis, Hip, Thigh, 

Tibia, Ankle, and Foot. Shoulder, Biceps, Elbow, Forearm, and Hand are the five lumped masses that make up each arm. 

Torso, Neck, and Head are the other three-lumped masses. The friction during SSP and DSP is assumed to be sufficient to 

prevent slipping. 

3.1.   Single support phase 

Fig. 3 shows the kinematic model for the lower and upper parts of the NAO robot during SSP. The swing leg trajectory is 

shown to move from ὼ to ὼ and attended a maximum swing height (Ὓ  in the mid of the trajectory. ὤ  is the hip 

height. DH parameters are used to assign a coordinate system to each joint of the robot, and kinematic analysis is carried 

out to realize the humanoid robot's motion. Four parameters 25 of classic DH convention, namely —ȟὨȟὥ and ‌ are used 

in translating the coordinate from Ὥ ρ  link to Ὥ  link. The transformation matrix of the Ὥ  link with respect to 

Ὥ ρ  link is expressed as follows: 

Ὕ Ὑέὸᾀȟ—ὝὶὥὲίᾀȟὨ Ὑέὸὼȟ‌ Ὕὶὥὲίὼȟὥ ρ 

Fig. 4 shows the overall dimensions of a 25 DOF Humanoid Robot, consisting of two legs, two hands, one torso, and one 

neck. It also shows DH parameter settings for the lower and upper parts of the robot. Tables 1 and 2 contain the information 

related to the link and joint parameters for the left and right leg, respectively. All the dimensions are in mm. The hip joint 

is located in the y-direction from the Pelvis at υπ άά (left hip) and υπ άά (right hip). The ᾀ-offset from the Pelvis is 

kept equal to ψυ άά. Length ὰ and ὰ represent thigh and tibia lengths, respectively. The IK solution for the left leg chain 

is explained below. The left leg chain is considered as a serial manipulator, where the left leg foot serves as the origin/base 

frame, and the torso is treated as an end-effector. The concept of carrying out the IK for NAO is taken from Kofinas et al. 
3. ὃὖȟὖȟὖ  denotes the translation in ὼ, ώ, and ᾀ directions by ὖ, ὖ, and ὖ, respectively. Ὑ ‰  represents the rotation 

matrix about Ὧ  axis by an angle ‰. 
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Table 1.  DH Parameters for left leg chain from ὒὊέέὸ to Pelvis 

Joint Frame — Ὠ ‌ ὥ 

Base ὒὊέέὸ ὃ πȟπȟτυȢρω 

Rotation matrix Ὑ  (“/2) Ὑ ( “) 

1 ὒὃὲὯὰὩὙέὰὰ — 0 ˊ/2 0 

2 ὒὃὲὯὰὩὖὭὸὧὬ — 0 0 ὰρπςȢωπ 

3 ὒὑὲὩὩὖὭὸὧὬ — 0 0 ὰ(100) 

4 ὒὌὭὴὖὭὸὧὬ — 0 “/2 0 

5 ὒὌὭὴὙέὰὰ — “/4 0 “/2 0 

6 ὒὌὭὴὣὥύὖὭὸὧὬ — “/2 0 3“/4 0 

Pelvis ὃ πȟ υπȟψυ 

Table 2. DH Parameters for right leg chain from Pelvis to ὙὊέέὸ 

Joint Frame — Ὠ ‌ ὥ 

Base ὖὩὰὺὭί ὃ πȟ υπȟψυ 

Rotation matrix Ὑ ( “/4) 

1 ὙὌὭὴὣὥύὖὭὸὧὬ — “/2 0 “/2 0 

2 ὙὌὭὴὙέὰὰ — “/4 0 “/2 ὰρππ 

3 ὙὌὭὴὖὭὸὧὬ — 0 0 ὰρπςȢωπ 

4 ὙὑὲὩὩὖὭὸὧὬ — 0 0 0 

5 ὙὃὲὯὰὩὖὭὸὧὬ —  0 “/2 0 

6 ὙὃὲὯὰὩὙέὰὰ —  0 0 0 

Rotation matrix Ὑ (“) Ὑ  ( “/2) 

ὙὊέέὸ ὃ πȟπȟτυȢρω 

 

Let Ὕ denotes the transformation matrix of Ὦ  joint with respect to Ὥ  joint. then Ὕ  Ὥί ὫὭὺὩὲ ὦώ  

Ὕ ὃ Ὑ
“

ς
Ὑ “ὝὝὝὝὝὝὃ  ς 

After removing the known homogeneous transformation matrices ὃ  and  ὃ  by pre- and post-multiplication to T 

maintaining their sequence. The new transformation matrix is denoted by Ὕ. A post-multiplication to Ὕ by “/4 in the x-

axis will help in aligning the z-axis with the yaw joint, and that transformation matrix is denoted by Ὕ. Both homogenous 

transformation matrices (Ὕ and Ὕ) are given below. 

Ὕ ὃ   Ὕ ὃ  σ 

4 ὝὙ
“

τ
 τ 

If the hip position is set at the origin, then d denotes the distance between the hip and ankle joint as 

Ὠ π Ὕ1ȟ4  π Ὕ2ȟ4 π Ὕ3ȟ4  υ 

The IK of the NAO Robot is solved analytically 3 using vector algebra to convert the robot configuration from Cartesian 

space to joint space as given below. 

—  “ ὧέί
ὰ ὰ Ὠ

ςὰὰ
   φ 

— ὸὥὲ
Ὕ2ȟ4

Ὕ3ȟ4
 χ 

Ὕ Ὑ
“

ς
Ὑ “ Ὕ ψ 

— ίὭὲ 
Ὕȟ ὰ ὰὧέί— ὰὝȟ ίὭὲ—

ὰίὭὲ— ὰ ὰὧέί—
 ω 
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— “ ίὭὲ 
Ὕȟ ὰ ὰὧέί— ὰὝȟ ίὭὲ—

ὰίὭὲ— ὰ ὰὧέί—
 ρπ 

Ὕ ὝὝ Ὕ ρρ 

—
“

τ
ὧέίὝȟ ρς 

— ίὭὲ
Ὕȟ

ίὭὲ—
“
τ

 
“

ς
 ρσ 

— ὧέί
Ὕȟ

ίὭὲ—
“
τ

 ρτ 

Eqs. (6) to (14) are used to find the joint angles for the left leg. Similarly, the required joint angles are computed using IK 

analytical solution 3 to reach ὙὊέέὸ from the known ὖὩὰὺὭί.  

When the robot is walking and considering only one walking cycle for the movement on plain ground, the joint angle 

is calculated from the hip and swing leg trajectories using IK. The joint angles from IK are utilized to carry out inverse 

dynamics. To compute torque requirements at different motors of the NAO robot, various components, such as inertia, 

Coriolis/centrifugal, and gravity, are taken into account. The angular velocity and acceleration of the joints are determined 

by numerical differentiation as per the given time interval. 

 
 

Fig. 3. A schematic view of the upper and lower part of the NAO robot during the Single Support Phase. 
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Fig. 4. DH Parameter setting and overall dimensions for the upper and lower part of the NAO robot. 

 

 

The inverse dynamics is solved using the Lagrange-Euler formulation 46 as given in Eq. (15).   

                                                                    

1 1 1

n n n

i ic c icd c d i

c c d

D q h q q C
= = =

t = + +ä ää                                                               (15) 

 where Ὥ ρȟςȟȣȟὲ ὮέὭὲὸί. Ὀ , Ὤ , and ὅ represent inertia, coriolis and centrifugal, and gravity terms, respectively, 

whose expressions are given in Eqs. (16) to (18).  

 

                                                                 

max ( , )

( )
n

T

ic jc j ji

j i c

D Tr U J U
=

= ä             (16) 

                                                                 

max ( , , )

( )
n

T

icd jcd j ji

j i c d

h Tr U J U
=

= ä                        (17) 

                                                                   ( )
n

j

i j ji j

j i

C m gU r
=

= -ä                 (18) 

where ὭȟὧȟὨ ρȟςȟȣȟὲ joints. J is the inertia tensor;  Ὗ ‬ὝȾ‬ή; g is the gravity column matrix, which is along the 

negative z-direction; ά  is the mass of Ὥ  link. 
j

j r  is the CoM position vector for the Ὦ  link. The whole robot is 

considered a seven-link model for dynamic analysis consisting of the left foot, left lower leg, left upper leg, torso, right 

upper leg, right lower leg, and right foot. It is assumed for the purpose of analysis to be a serial manipulator of 12 DOF 

starting from left foot (LFoot) to right foot (RFoot) (although eleven independent motors are connected to these joints and 

the pelvis joint is made common to both the legs).  ὒὊέέὸ is taken as a base, and the torso is considered as the end-effector 

of a serial manipulator, and after reaching the torso, the ὙὊέέὸ is considered as end-effector. Because the robot is walking 

in a straight path, both legs' hip yaw pitch angles are almost zero. Torque variations for both arms are also computed using 

Eq. (15). The force distributions of the foot on the ground could be reduced to the resultant force R, the point of attack, 

which needs to be in the sole of support polygon, as shown in Figs. 3 and 5. 
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Fig. 5. Definition of Zero Moment Point and Dynamic Balance Margin 47 

The ZMP is a location on the ground where the sum of all moments of forces and momentums becomes equal to zero. ZMP 

lying within the supporting polygon's sole helps the biped to keep it in its stable position. ὢ   and ὣ  represent ZMP 

in ὼ (along the length of the foot) and ώ (along the width of the foot) directions, respectively. ZMP along the ὼ and ώ-axes 

can be determined using Eqs. (19) and (20). Ὅ  denotes the moment of inertia of i th  joint (in kg-m2), ‫
Ȣ
 is the angular 

acceleration of joint i (in rad/s2), ά  denotes the mass of i th joint (in kg), (ὼ , ᾀ) are the coordinates of i th lumped mass, g is 

the acceleration due to gravity (in m/s2), ὲ is the total number of joints,  ᾀ
ȢȢ

 is the acceleration of i th lumped mass in the z-

direction (m/s2), and ὼ
ȢȢ

 is the acceleration of i th lumped mass in the x-direction (m/s2) 48.  

The forward and sideways motion of the robot are considered in ὼ and y-direction, respectively. ᾀ-axis is taken along 

the height of the robot. As previously stated, DBM is the minimum distance between the ZMP points and the support 

polygon's boundary, and ὢ   and ὣ  represent the DBM in ὼ and ώ direction, respectively. DBM in ὼ and ώ directions 

are calculated using Eqs. (21) and (22) based on support leg position and ZMP points. Moreover, the combined CoM of 

the whole robot is calculated using Eq. (23). DH parameters are useful in finding the CoM position of each link. In Eq (23), 

ὴ  ɴᴙ  is the position of the center of Ὥ  mass. άὴ is the momentum of the Ὥ  point mass. Differentiating the Eq. 

(23) yields Eq. (24). Total momentum ὖ of the robot by considering all the point masses is given in Eq. (25). The 

relationship between the velocity of the robot and linear momentum can be easily established using Eqs. (24) and (25). The 

equation of the translation motion of the robot can be obtained by differentiating Eq. (25) with respect to time. άὴ is the 

external force (Ὢ) in N acting on the Ὥ  point mass. The sum of all the external forces acting on the robot is denoted by Ὂ 

in Eq. (26). The gravitational force is equally applied to all the lumped masses of the body and will always be there 

regardless of the robot's motion; hence it can be considered separately from all other forces. The acceleration due to gravity 

is taken in the negative z-direction, and it is set equal to πȟπȟωȢψ  in Eq. (27). ὓ is the total mass of the robot in kg. 

Ὢ  ɴᴙ  represent the ground reaction force (represented by R in Figs. 3 and 5) and has its component in ὼȟώȟ and ᾀ-
direction. Fig. 6 shows the foot dimensions, lower and upper bounds of ZMP values based on the foot coordinates. 

 

 

Fig. 6. (a) NAO Robot foot dimension and (b) ZMPôs higher and lower bound based on the support leg coordinate. Superscript Ὄ ὥὲὨ ὒ represent the 

highest and lowest ZMP possible in the x and y directions based on the foot coordinates. The darker region shows a safe zone. 
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ZMP is important to verify that the generated gait is dynamically stable. Moreover, the locomotion of a biped robot to 

move from one place to another place requires suitable trajectory planning for the swing leg and hip to move ahead. Gait 

Pattern generation directly influences the quality of motion for a biped robot. As shown in Fig. 3, the swing legôs trajectory 

is designed using the cubic polynomial. These trajectories defined the forward advancement at any given point. The initial 

and final velocities are taken as zero to avoid any jerky movement. The swing legôs ankle trajectory for right leg can be 

represented by ὢ ὸȟπȢπυȟὤ ὢ . ὢ ὸ is the x-coordinate of the ankle position in the sagittal plane as a function 

of time and ὤ ὢ  is the movement of ᾀ-coordinates based on ὼ-coordinates; it helped in moving the leg in a vertical 

direction according to its ὼ-coordinates. Here, both x and z-coordinates are assumed to follow cubic polynomials. Similarly, 

hip trajectory in 3D space can be represented by ὢ ὸȟὣ ὸȟὤ ὸ . Hip motion in the sagittal, lateral, and vertical 

directions is planned as a cubic polynomial. Since the right leg is the swing leg during SSP, the right arm is moved in the 

opposite direction of the robot's movement. Only ὛὬέόὰὨὩὶὖὭὸὧὬ and ὉὰὦέύὙέὰὰ are utilized during the motion. 

ὛὬέόὰὨὩὶὙέὰὰ is kept constant at πȢςφ ὶὥὨ for the right and πȢςφ ὶὥὨ for the left arm. ὙὉὰὦέύὣὥύ is kept fixed at 

ρȢυ ὶὥὨ for the right and ρȢυ ὶὥὨ for the left arm. Left and right Wrist Yaw are kept at zero. Shoulder pitch and Elbow 
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Roll movement are assumed to follow cubic polynomials. Four boundary conditions are required for ankle, hip, and arm 

trajectories to find all the coefficients.  

Table 3 lists all the cubic trajectories and their respective boundary conditions for ankle, hip, and arm motion to find 

the unknown coefficients. Here, ὸ denotes the initial time. ὸ is the final time duration for one cycle. ὼ and ὼ are the 

initial and final positions of the swing leg, respectively. where ὼ ὼ Ὓ; and Ὓ is the Step Length kept equal to 0.06 

m. These two values, namely ὼ and ὼ are dependent on the distance covered by the swing leg. The swing leg traveled a 

distance from ὼ to ὼ equal to Stride length. Ὓ  denotes the maximum swing height achieved at the mid of the swing 

leg trajectory. The support leg is kept fixed at ὼ ȟπȢπυȟπ during the entire swing leg movement. The hip traveled 

from ὢ ὸ  to ὢ ὸ . Ὤ represents the initial and final hip height and is kept as same for the repeatability condition. 

ὠȟὠ and ὠ  are the starting velocities in ὼȟώȟ and ᾀ-directions, respectively. ὠȟὠ and ὠ  are the end velocities in 

ὼȟώȟ and ᾀ-directions, respectively. After getting the hip and swing leg trajectories, IK is used to find the joint angles of 

both the legs to reach the desired hip and swing foot position. Arm movements are provided directly at the joint space. The 

DH Parameter setting for the left and right arms is shown in Fig. 4. The joint and link parameters (in mm) for the left arm 

are given in Table 4. Shoulder offset Y (98 mm) and Elbow Offset Y (15 mm) need to be taken negative for the right arm.   

Table 3. Swing leg, ankle, hip, and arms trajectory planning, and their respective boundary conditions 

Sr. No. Ankle, hip, and armôs trajectories Boundary conditions 

ρ ὢ ὸ ὥ ὥ ὸ ὥ ὸ ὥ ὸ ὢ ὸ ὼ, ὢ ὸ ὼ, ὢ ὸ π, ὢ ὸ π 

ς ὤ ὸ ὦ ὦ ὢ ὦ ὢ ὦ ὢ  ὤ ὼ π, ὤ ὼ Ὓ π, ὤ ὼ Ὓ , ὤ ὼ π 

σ 
ὢ ὸ ὼ ὼ ὸ ὼ ὸ ὼ ὸ ὢ ὸ ὼ ὼ/4, ὢ ὸ ὼ σὼȾτ, ὢ ὸ ὠ , ὢ ὸ ὠ  

τ ὣ ὸ ώ ώ ὸ ώ ὸ ώ ὸ ὣ ὸ πȢπςυ Í, ὣ ὸ πȢπςυ Í, ὣ ὸ ὠ , ὣ ὸ ὠ  

υ ὤ ὸ ᾀ ᾀ ὸ ᾀ ὸ ᾀ ὸ ὤ ὸ Ὤ, ὤ ὸ Ὤ, ὤ ὸ ὠ , ὤ ὸ ὠ  

φ —  ὸ ή ή ὸ ή ὸ ήὸ — ὸ ς ὶὥὨ, — ὸ ρ ὶὥὨ, — ὸ π, — ὸ π 

χ —  ὸ ‌ ‌ ὸ ‌ ὸ ‌ὸ — ὸ πȢτς ὶὥὨ, — ὸ πȢφτ ὶὥὨ, — ὸ π, — ὸ π 

ψ —  ὸ ‍ ‍ ὸ ‍ ὸ ‍ὸ — ὸ ρ ὶὥὨ, — ὸ ς ὶὥὨ, — ὸ π, — ὸ π 

ω —  ὸ ‎ ‎ ὸ ‎ ὸ ‎ὸ — ὸ πȢφτ ὶὥὨ, — ὸ πȢτς ὶὥὨ, — ὸ π, — ὸ π 
cTrajectories are planned in cartesian space, jtrajectories are planned in joint-space 

Table 4. DH Parameters for the left-arm chain from ὒὛὬέόὰὨὩὶ to ὒὌὥὲὨ 

Joint Frame — Ὠ ‌ ὥ 

Base ὒὛὬέόὰὨὩὶ ὃ πȟωψȟρππ 

Rotation matrix Ὑ ( “/2) 

1 ὒὛὬέόὰὨὩὶὖὭὸὧὬ —  0 “/2 0 

2 ὒὛὬέόὰὨὩὶὙέὰὰ — “/2 0 “/2 ρυ 

Translation in z-axis A (0, 0, 105) 

3 ὒὉὰὦέύὣὥύ —  0 “/2 0 

4 ὒὉὰὦέύὙέὰὰ — “/2 ρςȢσ 0 υυȢωυ 

Rotation matrix Ὑ (“/2) Ὑ  (“/2) 

5 ὒὡὶὭίὸὣὥύ —  υχȢχυ “/2 0 

ὒὌὥὲὨ “/2 0 0 0 

 

All the starting and end velocities in ὼ, ώȟ and ᾀ directions are taken as decision variables, along with the hip height. Also, 

maximum swing height and time spent in SSP are considered as decision variables for stable gait planning. 

3.2.   Double support phase 

The DSP is analyzed using the concept of Rajendra and Pratihar 2. The schematic view of DSP is shown in Fig. 7. All the 

length, mass, and CoM position vectors are kept the same as that, as discussed above for the SSP. The DSP is assumed to 

be consisting of two SSPs, for the purpose of analysis. ὢ and ὢ  denote the distance of the projected point of the trunk 

mass from the left and right foot, respectively, in the sagittal plane. Similarly, ὣ and ὣ represent the distance of the 

projected point of the trunk mass from the left and right foot, respectively, in the lateral plane. The robot with 23 lumped 

masses (six on each leg, five on each arm and torso) is modeled as two serial manipulators having 12 masses each. On the 

torso, the neck and head masses are also taken into account. The movement of the robot and its dynamic balance are 

considered in both directions. The first SSP considered the left leg, left arm, and torso. At the same time, the second SSP 

is considered by taking the right leg, right arm, and torso. In DSP, the robot carries its total weight on both legs. The torso 
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mass ά  is distributed in two parts, namely ά  and ά  on the left and right legs, respectively. The load of 

the robot is distributed in the lateral plane based on the position of foot placement as given in Eqs. (28) and (29). 
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Similarly, it can be distributed in a sagittal plane based on foot position. Ὢ and Ὢ are the ground reaction force vectors 

acting between the tip of the leg and the ground, passing through the ZMP. The forces Ὢ and Ὢ are acting on the left and 

right leg, respectively. The feet are assumed to have hard point contacts with friction with the ground. Ὢ , Ὢ  and Ὢ  are 

the components of ground reaction force Ὢ in x, y, and z-direction, respectively, whereas Ὢ , Ὢ  and Ὢ  are the 

components of ground reaction force Ὢ in x, y, and z-direction, respectively. The external force vector Ὂ acting on the 

robot is assumed to have the components as Ὂ ὊȟὊȟὊ , which can be calculated using Eq. (26). The earlier study 2 

used a composition method 49 to determine the biped robotôs stability. They determined the whole modelôs ZMP by 

considering the intersection point of these two forces. If the forces were found to be parallel, then a concept of Virtual ZMP 
50 was also introduced on non-coincidental planes. 

This study utilized a slightly different approach. Forces and moments are balanced using a similar approach utilized 

for the SSP to find the ground reaction force and ZMP points separately for the left and right foot. Two ZMP positions are 

initially determined using Eqs. (19) and (20) for the left and right legs after considering it as two SSPs. The value of n in 

Eqs. (19) and (20) is taken as 12, ά  is replaced by ά or ά , depending on the left or right leg analysis, 

respectively. The determined ὴ and ὴ are the ZMP positions of left and right leg, respectively as shown in Fig. 7. Since 

the robot is assumed to walk on a flat surface, both  ὴ  ὥὲὨ ὴ  are kept equal to zero. The whole modelôs ZMP is 

determined by setting the x and y components of the moment about point ὴ ὴȟὴȟὴ  to zero 51. The equation is solved 

(Eqs. (30) and (31)) for ὴ and ὴ as follows: 
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ὴ is the position of the combined ZMP during DSP, and the value of ὴ is taken as zero in Eqs. (30) and (31). If the right 

leg becomes the swing leg, the vertical component of ground reaction force (Ὢ ) will be equal to zero, then ὴ and ὴ in 

Eqs. (30) and (31) would coincide with the ZMP of the left leg (Support Leg) and be considered as ὴ  and ὴ , respectively. 

It is to be noted that if the hip position lies within the double support polygon, then the robot will be dynamically balanced. 

However, to be stable during static standing, CoM's vertical projection on the ground should coincide with the ZMP lying 

within the support polygon 51. DBM during DSP is determined, as shown in Fig. 8 (b). 
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Fig. 7. A schematic view during the Double Support Phase 

The hip trajectory in the DSP followed a similar cubic polynomial, as explained during SSP. Once the hip trajectory 

and location of both feet are known, IK is utilized to find the joint angles required to reach the hip location from its foot 

position. Eqs. (6) to (14) could be used to find the joint angles for the left leg and a similar methodology can be utilized for 

the right leg except the ‌ȟ which would be equal to σ“/4, and ὌὭὴέὪὪίὩὸὣ (50 mm) and ὌὭὴέὪὪίὩὸὤ (85 mm) should be 

positive. The position of the hip is found with respect to ankle joints. The hip trajectory is assumed to follow cubic 

polynomial, as given in Table 5. The hip is moved from the position πȢπχȟπȢπςυȟὤ  to πȢρρȟπȢπςυȟὤ . The armsô 

movements are also provided, similar to SSP. Shoulder Roll, Elbow Yaw, Wrist Yaw are kept constant, as discussed above 

in SSP. Shoulder pitch and Elbow Roll movement are considered as cubic polynomials in the joint space, and to find the 

unknown coefficients, their respective boundary conditions are listed in Table 5. 

Table 5. Hip and arm's trajectory planning and their respective boundary conditions to find unknown coefficients. 

Sr. No. Hip, and armôs Trajectories Boundary conditions 

ρ ὢ ὸ ὼ ὼ ὸ ὼ ὸ ὼ ὸ ὢ ὸ πȢπχ Í, ὢ ὸ πȢρρ Í, ὢ ὸ ὠ , ὢ ὸ ὠ  

ς ὣ ὸ ώ ώ ὸ ώ ὸ ώ ὸ ὣ ὸ πȢπςυ Í, ὣ ὸ πȢπςυ Í, ὣ ὸ ὠ , ὣ ὸ ὠ  

σ ὤ ὸ ᾀ ᾀ ὸ ᾀ ὸ ᾀ ὸ ὤ ὸ Ὤ, ὤ ὸ Ὤ, ὤ ὸ ὠ , ὤ ὸ ὠ  

τ —  ὸ ή ή ὸ ή ὸ ήὸ — ὸ ρ ὶὥὨ, — ὸ ρȢυ ὶὥὨ, — ὸ π, — ὸ π 

υ —  ὸ ‌ ‌ ὸ ‌ ὸ ‌ὸ — ὸ πȢφτ ὶὥὨ, — ὸ πȢυπ ὶὥὨ, — ὸ π, — ὸ π 

φ 
—  ὸ ‍ ‍ ὸ ‍ ὸ ‍ὸ — ὸ ς ὶὥὨ, — ὸ ρȢυ ὶὥὨ, — ὸ π, — ὸ π 

χ —  ὸ ‎ ‎ ὸ ‎ ὸ ‎ὸ — ὸ πȢτς ὶὥὨ, — ὸ πȢυπ ὶὥὨ, — ὸ π, — ὸ π 

cTrajectories are planned in cartesian space, jtrajectories are planned in joint-space 

 

In DSP, the torso mass is divided into two parts, as explained above. When the hip is positioned between the legs, the 

mass values change based on its distance from the right and left foot. The lesser the distance from its next support leg, the 

more will be the torso mass for that leg. Just before this stage, the right leg was the swing leg, and in DSP, it touched the 
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ground, and the torso started to shift from the left to the right leg. The torso mass is distributed on both legs using Eqs. (28) 

and (29). The left and right legs are considered as serial manipulators of 6 DOF each. Joint angles are calculated using IK 

as explained above, for the left and right legs. The obtained joint angles are used to compute torque requirements using Eq. 

(15) separately for the left and right legs. Similarly, torque variations for both arms are also computed using Eq. (15). The 

DBM can be calculated after getting the combined ZMP points. The support polygon during DSP is larger than SSP, as 

shown in Fig 8.  

 

 

Fig. 8. a) Support polygon during Double Support Phase with Critical and Safe Zone for the ZMP points. b) minimum ὢ  and ὣ  values based on 

left foot, right foot, and ZMP coordinates. ὢȟὣ  and ὢȟὣ  are the left and right foot coordinates. 

Thus, the stability margin is higher in DSP, and the robot can take a higher speed to shift the torso from one leg to 

another. The area shown in the lighter and darker color marked the safe and critical regions for ZMP points, respectively, 

as shown in Fig. 8(a). The DBM is calculated during DSP by considering the minimum stability margin available in x and 

y-direction. The minimum distance considered for DBM during DSP will determine whether the robot will be stable or not. 

It is decided based on the ZMP points, left foot, and right foot coordinates, as shown in Fig. 8(b). 

4.   Mathematical Statement of Single Objective Optimization 

A single-objective optimization problem is formulated to reduce power consumption by maintaining dynamic stability and 

not exceeding a predefined maximum torque fluctuation during SSP and DSP separately. Moreover, each of the joint angles 

should lie within its respective range.  

4.1.   Single support phase 

When the robot is studied in the SSP, the predefined values for the initial ὢ  and final ὢ  hip locations are provided 

in ὼ-direction. The ώ-coordinate is kept fixed for both initial and final hip locations. The lateral sway motion of the hip is 

also considered to realize a 3D dynamic walking of the robot. Here, the robot is changing direction along the y-axis (refer 

to Fig. 3), and a positive and negative velocities will help to change the direction. However, the velocity (in the sagittal 

plane) must be positive throughout the walking motion when moving in a forward direction. For velocity in the ὼ-direction, 

we can take only positive values. Similar to vertical motion, if the hip height needs to be traveled upward or downward, a 

different combination of velocity is required. For carrying out the analysis in SSP, the Left foot having the coordinates of 

πȢπφȟπȢπυȟπ  is considered as a support leg. The Right leg (swing leg) is moved from πȢπȟπȢπυȟπ  to πȢρςȟπȢπυȟπ  

and covered a distance of πȢρς ά.  

The amount of power consumed by Ὥ  joint has been computed as the product of motor torque †  and angular 

velocity ή . The amount of heat loss is also computed, and the average power consumption over a cycle of time period Ὕ 

is considered as the objective function ὖ, as given in Eq. (32). Here, ὑ is constant, and its value is assumed 52 to be equal 

to 0.025. The single-objective optimization problem during SSP is mathematically stated as follows:  
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subject to 

ή ή ή  , 

Ў† ρȢς ὔά , 

ὢ πȢπ ά ȟ 

ὣ πȢπ ά ȟ 

ὢ πȢπυ ά ȟ 

ὣ πȢπς ά ȟ 

and  

πȢςυ ὼ πȢσρ ά ;  

 πȢπυ ὼȟ ὼ πȢπυ ά/ÓÅÃ ;  

πȢππρὼ ȟὼ πȢς ά/ÓÅÃ  ;  

 πȢς ὼȟὼ πȢς ά/ÓÅÃ ; 

 πȢπρυὼ πȢπσπ ά ;  

 πȢτ ὼ τ ίὩὧ; 

where, 1 2 9, ,...,x x x  are the decision variables,  

 ή  ρȢρτȟ πȢσψȟ ρȢυσȟ πȢπωȟ ρȢρωȟ πȢσωȟ πȢχωȟ ρȢυσȟ πȢρπȟ ρȢρψȟ πȢχφ ὶὥὨ  

and, ή πȢχτȟπȢχωȟπȢτψȟςȢρρȟπȢωςȟπȢχφȟπȢσψȟπȢτψȟςȢρςȟπȢωσȟπȢσω ὶὥὨ 

 

The parameter: ὼ represents hip height. ὼ and ὼ denote the initial and final velocities associated with the hip height, 

respectively. ὼ and ὼ represent the initial and final sagittal velocities, whereas ὼ and ὼ indicate the initial and final 

lateral velocities. ὼ and ὼ denote the maximum swing height and time spent in a SSP, respectively. ή  and ή  are 

the minimum and maximum joint rotations measured in ὶὥὨὭὥὲ for Ὥ joint (refer to Fig. 4). The first joint of ή corresponds 

to ὌὭὴὣὥύὖὭὸὧὬ and other jointsô values are counted for the left and right legs by following the order from the hip to ankle 

jointôs angle limit. These values are taken from the official website 44.  

A cycle time is divided into ten equal parts. Superscripts άὭὲ and ὃὺὫ represent the minimum DBM and Average 

DBM during cycle time. Combining both the constraints for DBM (minimum and average), the robot should never attain 

a zero DBM and maintain an average value either equal to or more than 50% of the maximum possible DBM. Ў†  is the 

maximum possible torque fluctuation for Ὥ  joint in Ὦ  time interval. The lower and upper bounds for hip height are 

selected based on the reachable space by the robot without violating the joint limit constraints. The maximum hip height 

achievable with the stretched leg is πȢσστ ά; however, the robot could not move at this height. A suitable upper bound for 

hip height is considered, and the two more decision variables associated with it could further increase or decrease it without 

violating the joint limits. The NAO Devils Team from Germany achieved a maximum forward speed of 0.4447 ά/ίὩὧ in 

RoboCup 2010, as reported 53 in the literature, and the initial and final velocities are kept within this range. For the purposes 

of this study, the maximum swing height and single support time are specified as 0.030 m and 4 seconds, respectively.  

4.2.   Double support phase 

A single-objective optimization problem for DSP is also formulated to minimize the power consumption (refer to Eq. (32)), 

when the torso shifts its position from the Left (previous support leg) to the Right Leg (next support leg). The positions of 

the left and right feet considered during DSP are πȢπφȟπȢπυȟπ and πȢρςȟ πȢπυȟπ , respectively. The hip is moved 

from position πȢπχȟπȢπςυȟὤ  to πȢρρȟπȢπςυȟὤ . The hip movement is in three-dimensional space, as in SSP. The 

single-objective optimization problem during DSP is defined as follows:  
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Minimize P  (refer to Eq. (32) 

 

subject to 

ή ή ή  

Ў† ρȢς ὔά ȟ 

ὢ πȢπ ά ȟ 

ὣ πȢπ ά ȟ 

ὢ πȢπψ ά ȟ 

ὣ πȢπψ ά ȟ 

 

and  

πȢςυ ὼ πȢσρ ά ;  

 πȢπυ ὼȟ ὼ πȢπυ ά/ÓÅÃ ;  

πȢππρὼ ȟὼ πȢς ά/ÓÅÃ ;  

 πȢς ὼȟὼ πȢς ά/ÓÅÃ ; 

 πȢς ὼ ς ίὩὧέὲὨί; 

 

Here, 1 2 8, ,...,x x x  are the decision variables. The parameters used here are the same as that of the already defined for the 

SSP case. However, here, ὼ represents time spent in DSP, and there is no swing height trajectory since both legs are on 

the ground. Moreover, the stability margin during DSP is expected to be more than that of SSP, so the constraints functions 

related to average DBM are modified accordingly. ή  and ή  are the minimum and maximum joint rotations possible 

for ή joint, which was kept the same as that mentioned for SSP.  

4.3.   Constraints considered during the single and double support phase 

We considered the following six functional constraints for single-objective optimization during SSP and DSP. The first 

two constraints are related to joint limits and torque fluctuation. The last four constraints are focused on the DBM. 

¶ The joints should move within their allowable ranges. The violation of these constraints would affect the walking 

motion. 

¶ The fluctuation of torque should be within the specified limit. The violation of these constraints means the robot needs 

a sudden torque requirement, which might affect the motion due to the motorôs failure.  

¶ The motion should be dynamically stable. It must maintain a positive DBM in the ὼ and ώ directions during SSP and 

DSP in a cycle. The violation of these constraints affects the robot's stability and signifies that the robot is not balanced, 

at least in one-time intervals, despite maintaining the desired average balance margin. 

¶ The Average DBM in the ὼ and ώ directions should always be equal to or greater than 50% of the maximum possible 

stability margin during SSP. The Average DBM in both directions should be either equal to or greater than 0.08 m 

during DSP. Both DBM constraints will ensure dynamic stability throughout the motion.  

5.   Results and Discussion 

Metaheuristic algorithms are employed to solve this optimization problem. PSO 54 is one of the most popular swarm-based 

evolutionary algorithms used for optimization. Each swarm consists of several particles, which search in ὲ-dimensional 

space with different velocities. Each particle has the memory to track its current best position. As the generation progresses, 

it modifies its position by updating its velocity, while comparing it with the swarmôs global best. The PSO algorithm in the 

MATLAB environment is obtained from Yarpiz-Academic Source Codes and Tutorials 55. The constant inertia weight, 

personal learning coefficient (cognitive parameter), and global learning coefficient (social parameter) are taken as 1, 1.5, 

and 2, respectively. The swarm size and the maximum number of iterations are considered as 50 and 200, respectively. 

GA is another popular optimization technique for finding the optimum solution. Binary-coded GA is not suitable for 

representing large dimensions with continuous search space. Thus, an RCGA is used in this study to deal with the real 
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parameters. Several versions of RCGA are available in the literature with different crossover and mutation operators. 

Different versions of RCGA were used in this study, but RCGA consists of simulated binary crossover (SBX) 56, and 

polynomial mutation 57 is found to be more efficient. The generated solutions for the next iteration depend on the probability 

distribution, which was assumed to be polynomial in nature. The distribution indices for simulated binary crossover and 

polynomial mutation are taken as 2 and 20, respectively. A population size of 50 and 200 generations are considered to get 

an optimal solution. 

The performance and optimal solutions obtained by both optimization algorithms are discussed separately for SSP and 

DSP. The optimal solutions obtained using PSO and GA are also evaluated to compute the constraints value and a few 

desirable parameters, as given in Tables 7 and 9 for SSP and DSP, respectively.  For these two walking phases, the solutions 

obtained by PSO and GA are examined for their influences on power consumption. The PSO and GA solutionsô 

improvement across the generations of gait parameters is utilized to find a relationship between power consumption and 

gait parameters.  

Apart from that, the performance of algorithms is also compared over several runs. Eleven sets of the initial population 

were generated at random. Both GA and PSO are used to optimize separately using one set of the initial population. There 

are 11 sets of results for the GA and PSO, each from all 11 sets of the initial population. The GA and PSO are started from 

the same initial population in each run. Their median performance is recorded to give equal opportunity to both algorithms 

to find a better solution. The population's 5th and 7th initial sets are found to be responsible for the median performance 

during SSP and DSP, respectively. These optimal solutions are reported in Tables 6 and 8 for SSP and DSP, respectively. 

The SSP and DSP are analyzed separately to study the effects of hip height, swing height, and terminal velocities in sagittal 

and lateral planes. PSO is found to be marginally better than the GA during SSP and DSP.  

5.1.   Single support phase 

As explained above, GA and PSO algorithms are used to run with 11 sets of initial populations selected at random. These 

initial sets are found to give the best to worst performance (based on the final value of the objective function) using GA 

and PSO. Both the GA and PSO are found to yield the median performance for the 5th set of the initial population. Table 6 

shows the optimal solutions for SSP using PSO and GA for the median performance from the 5th set of the initial population.  

Table 6. The outcome of the single objective optimization (in SSP) 

Decision variables 
Optimal value using 

PSO 

Optimal value using 

GA 

ὼ ά  πȢσρ πȢσρ 

ὼ άȾίὩὧ πȢππςπ πȢππυ 

ὼ άȾίὩὧ πȢππστ πȢπππ 

ὼ άȾίὩὧ πȢππψπ πȢππσρ 

ὼ άȾίὩὧ πȢππςυ πȢππρχ 

ὼ άȾίὩὧ πȢπςτσ πȢπσφτ 

ὼ άȾίὩὧ πȢπςυφ πȢπρσυ 

ὼ ά  πȢπρυ πȢπρυ 

ὼ ίὩὧ τ τ 

 

Total average power consumption obtained using PSO and GA (median performance) is seen to be equal to 1.283 W 

and 1.303 W, respectively. Since there are 11 runs of each GA and PSO, the best value obtained in each generation was 

stored. We can further calculate three more values from these 11 sets of GA and PSO in each generation, viz. minimum of 

the best (άὭὲὄὩίὸȟ  average of the best ὃὺὫὄὩίὸ, maximum of the best (άὥὼὄὩίὸ). These three values obtained from 

each algorithm's best values over the generations, namely the minimum, average, and maximum of the best, provided a lot 

of information on its dynamics. Figs. 9 (a) and (b) show the best performance of the PSO and GA over the generations. 

The PSO is found to be better than GA because even for starting with the different initial populations, it has been 

successful in finding the same globally optimum solution. The PSO is found to perform marginally better than GA, due to 

being a better tool for both the local and global searches during optimization. However, GA got the better average very 

near to the minimum of the best optimal solution in each generation, but its error base with the maximum and minimum of 

the best values is significant compared to PSO. It is not found to be as good as the PSO, as it needs to be run multiple times 

to get the globally optimum solution. The optimal solutions obtained by both the algorithms slightly vary in sagittal and 

lateral velocities (refer to Table 6), which showed that there could be more combinations of connecting velocities during 
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an exchange of phases and still consume a similar amount of power. A study of these optimal solutions for power 

consumption would provide more information.  

 

 

 
 

    (a)             (b) 

Fig. 9. The maximum of the best, average of the best, and a minimum of the best of the objective function in each generation obtained by (a) PSO and 

the (b) GA during the 11 runs in SSP. 

5.1.1.   Comparison of the obtained optimal solutions based on the performance metrics 

The final optimal solutions obtained from PSO and GA are compared based on six defined performance indices (other than 

fitness function). The constraint functions and maximum swing height are considered as a way to measure the effectiveness 

and quality of the optimal solution. 

Table 7. Comparison of the result based on the performance index (in SSP) 

Sr. No. Performance Index 
Algorithm 

PSO GA 

ρ Ў†  (Nm) 0.4492 0.5143 

ς ὢ  (m) 0.0307 0.0308 

σ ὣ  (m) 0.0085 0.0084 

τ ὢ  (m) 0.0641 0.0591 

υ ὣ  (m) 0.0200 0.0200 

 Maximum swing height 

Achieved Ὓ  m) 

Average Power Consumption (W) 

PSO GA 

φ πȢπρυ ρȢςψσ ρȢσπσ 
χ πȢπρψ ρȢςως ρȢσσσ 
ψ πȢπςς ρȢσπψ ρȢτσω 
ω πȢπςτ ρȢσρχ ρȢφφχ 
ρπ πȢπςφ ρȢυψψ ςȢφπυ 
ρρ πȢπςψ ςȢτυσ σȢρυς 

 

Ў†  denotes the maximum change in torque recorded for any joint in any given interval. This value should be as low as 

possible. The optimal PSO-solution reduced the torque fluctuation by nearly 13% compared to the optimal GA-solution. 

The minimum DBM in the x and y directions are very close to each other. However, PSO is able to get a better average of 

DBM in the x-direction by 5 mm compared to that of the GA. Serial numbers 6-11 in Table 7 list the amount of average 

power required to achieve certain maximum swing heights determined by the potential solutions of PSO and GA, 

respectively. It is worth noting that PSO outperformed GA in terms of identifying the best combination of decision 

variables, resulting in reduced power consumption for comparable swing height. One of the interesting things to note here 

that PSO solution can achieve a maximum swing height of 0.024 m while consuming only 1.317 W (refer to Fig. 13), 

which is only ςȢφϷ higher than the optimal one. The power consumption yielded by the GA is seen to be ςφȢυχϷ higher 
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than that obtained by the PSO for reaching the same swing height. A detailed discussion related to the effect of higher 

swing height on power consumption is carried out in section 5.1.5. 

PSO found the walking trajectories that offered the higher swing height while consuming a similar amount of power, 

enabling the robot to avoid obstacles without extra power consumption. The optimal solution found by PSO has also 

minimized the torque fluctuations while providing an improved stability margin compared to GA. Thus, the PSO solutions 

are superior and proved their effectiveness during the optimization compared to that of the GA during SSP.  

5.1.2.   Effect of hip motion on power consumption  

Power consumption is reduced with an increase in hip height. The leg gets straighter with the higher hip height, and the 

joint anglesô variations are less, directly affecting the torque variation and angular velocity. The knee joint 58 is considered 

the primary source of energy consumption. There is less torque demand at knee joints due to the higher hip height, reducing 

overall power consumption. The design variables: ὼ, ὼ and ὼ are responsible for the trajectory of hip vertical motion. 

Fig. 10 shows these decision variables' variations with respect to objective function using PSO (left) and GA (right). Omran 

et al. 59  studied the effect of the vertical motion of the CoM on energy consumption and reported a natural up/down 

oscillation of CoM that resulted into a reduction in torque. Mandava and Vundavilli 60 found that the straight hip trajectory 

has a better stability margin than the cubic polynomial trajectory. Minimum power consumption and maximum stability 

margin required different vertical motions of CoM. The optimization algorithm found the minimum average power 

consumption without violating the stability margin. Both PSO and GA provided more solutions for negative ὼ and positive 

ὼ velocity, which will generate a negative slope for the hip trajectory. Solutions provided by GA and PSO are in a very 

close interval, and those values are less than πȢππυ άȾίὩὧ, which signifies nearly a straight line trajectory with variation 

within a few mm. It is also observed that a higher stability margin is available with the lower CoM. The hip travels closer 

to the ground to lower the CoM, thereby increasing stability and preventing the violation of stability constraints. The 

solution provided by PSO is better due to the low variation of hip trajectory compared to GA. As explained in section 5.1.1, 

the PSO solution is able to find a better average of ὢ  for similar average power consumption.  

 

 
Fig. 10. Variations of the objective function with hip height (ὼ), initial velocity (ὼ  and final velocity (ὼ) of hip height, as shown for all the feasible 

solutions obtained using PSO (left) and GA (right) (in SSP). 

5.1.3.   Effects of initial and final forward velocities on power consumption 

Fig. 11 shows the variations for sagittal velocities obtained using PSO and GA. The initial and final sagittal velocities help 

in connecting the previous and next walking phases, respectively. It is assumed that the robot's initial sagittal velocity in 

SSP is received from DSP, and the final sagittal velocity in SSP would be transferred to the next DSP. PSO and GA 

provided the initial and final velocities ranging from 0.002 to 0.008 m/sec. Initial and final velocities beyond this range 


