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The gait cycle of 25-DOF humanoid robot, namely NAO robot, consists of single support phase (SSP) and double support phase (DSP). Both 

dynamic and stability analyses are carried out for this robot to determine its power consumption and dynamic stability margin, respectively. 

Constrained single-objective optimization problems are formulated for the SSP and DSP separately and solved using particle swarm 

optimization (PSO) and genetic algorithms (GA). A performance index, other than the fitness function, consisting of constraint values and 

maximum swing height, is also considered to compare PSO and GA-obtained optimal solutions. PSO is able to find the trajectories that offer 

higher swing height for nearly similar power consumption during SSP. A performance assessment of each algorithm based on the best fitness 

values in each generation across several runs is also carried out. These values are compared using the Wilcoxon rank-sum test, and PSO is 

found to be statistically better than GA. The optimal solutions from the simulations are tested using the Webots simulator to validate their 

efficacy on stability. Moreover, an investigation of the influence of gait parameters on power consumption during SSP and DSP reveals that 

the humanoid robot with a higher hip height, lower swing height, and slow pace consumes less power. The methodology developed in this is 

generic and can be easily extended to other robots. 

Keywords: NAO Humanoid Robot; Single Support Phase; Double Support Phase; Trajectory Planning; Optimization; Particle Swarm 

Optimization; Genetic Algorithm 

1.   Introduction 

The humanoid robot mimics humans and walks on two legs for better mobility compared to the wheeled robot and 

manipulator. It can navigate through a variety of terrains, including stairways, sloping surfaces, obstacles, ditches, etc. 

These advantages of having better mobility on uneven terrain have attracted many researchers. Research on humanoid 

robots in bipedal locomotion for efficient and balanced gait planning for optimal power and maximum stability has made 

substantial progress in the last three decades. NAO, a 25 degree of freedom (DOF) humanoid robot, could attract 

researchers due to its high walking speed, improved robustness, enhanced endurance, and programming capabilities. 

Researchers have long been interested in achieving a smooth walking pattern while using less power. Humanoid robot’s 

applications require completing the same task with better stability and less energy. In this study, an attempt is made to 

determine optimal gait parameters to minimize the power consumption by maintaining the dynamic balance margin (DBM) 
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of a 25 DOF NAO humanoid robot, version 6, developed by SoftBank robotics. Because a well-balanced gait cycle 

consuming a high amount of energy is not desirable. 

The gait cycle of a biped robot consists of single support phase (SSP) and double support phase (DSP). Most of the 

available literature on biped robots studied the SSP. Despite being a crucial phase, DSP received less attention, as it 

consumes about only 20% of the total cycle time. DSP is essential in achieving steady locomotion when walking at a 

moderate speed compared to high speed. 1 The present work separately studied both cycles, viz. SSP and DSP of a 25 DOF 

NAO humanoid robot. The problem of DSP is solved by considering two separate SSPs. 2 Most of the studies considered 

the hip height constant throughout the walking motion; however, in this study, the hip trajectory is planned in x, y, and z 

directions using cubic polynomial equations. This helps to understand the effect of hip movement in 3D space on an energy-

efficient gait cycle. Robots' hip, swing leg, and arm motion were simplified using the cubic polynomial trajectories.  SSP 

or DSP is the phase between two consecutive DSP or SSP, respectively. To link to the next walking phases, position, 

velocity, and acceleration profiles are required at the start and end of the SSP or DSP. There are very limited studies related 

to the average speed required to maintain the desired DBM. An average speed is crucial for maintaining a DBM during 

walking, and at a higher speed, the torque fluctuations are much higher. The motor may fail due to a sudden change in 

torque within a given period, which may bring some jerky moments to the robot. Only a few studies considered the minimal 

torque change to produce smoothness in the motion. Hence, a suitable constraint is also considered to address the problem 

of torque fluctuation during higher speeds. Population-based optimization algorithms depend on the initial population and 

their respective parameters. However, an optimal solution may vary with the different initial populations. A limited number 

of studies are available on the arms movement for improving stability. This study also considered the effect of arm swings 

on dynamic stability. Many investigators have not performed a statistical analysis, which is required to correctly understand 

their variations and suitability for a problem. The differences in the optimal solution for a problem provided by the 

algorithm over multiple runs will help in its selection for that problem.  

A Constrained single-objective optimization problem is formulated to minimize the power consumption while ensuring 

the dynamic stability and minimum torque fluctuation. The formulated single-objective optimization problem is solved 

using Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) to find the optimal gait parameters for minimum 

power consumption separately during the SSP and DSP. While solving the single-objective optimization problem, the 

maximum permissible change in torque within a given time interval is considered as a constraint to be satisfied in order to 

reduce the overloading or failure of the motor. One of the goals of this work is to determine the range of terminal velocities 

to maintain a desired dynamic balance while using the least amount of power. Minimum sagittal and lateral velocities are 

found out to keep the robot in motion without falling in SSP and DSP. The movement of both arms has been considered 

for better dynamic stability. A comparative and statistical analysis have been considered here for both algorithms. Wilcoxon 

rank-sum test is also performed to find the best algorithm statistically. Finally, a simulation in the Webots simulator has 

confirmed the stability and reported no violation in the joint limit for the proposed trajectories. 

The rest of the paper is organized as follows: Section 2 reviews the existing studies, and the mathematical formulation 

of the problem is discussed in Section 3. Section 4 deals with the mathematical statement of the single-objective 

optimization problem. Results are stated and discussed in Section 5, and concluding remarks are presented in section 6.  

2.   Existing Studies 

2.1.   Kinematic and Dynamic Analysis 

Robot kinematics is basic yet essential to understand the robot's movement in 3D space. Forward Kinematics (FK) deals 

with mapping the joint space into the 3D space. However, Inverse Kinematics (IK) relates the 3D space to joint space. IK 

is a relatively more complex task for a high DOF robotic system with its joints placed in series compared to its FK. Many 

researchers have tried different methodologies to solve the problem of IK. However, an analytical solution is always 

preferable to an iterative approach due to its accuracy and faster implementation. Researchers solved the IK of the NAO 

robot using vector algebra 3–5, human mimicking system 6, the cartesian trajectory of human 7, and optimization process 8 

to convert the robot configuration from cartesian space to joint space. The inverse kinematics (IK) concept proposed by 

Nikolaos et al. 3 is employed in this study, as it provides exact analytical solutions that are useful for real-time execution.  

Dynamic analysis, in addition to kinematic analysis, is essential for improved robot control. Hashemi and Gaffari 4 

focused on kinematic analysis and dynamic modeling by approximating the trajectory using cubic splines for the NAO 

robot. Joint angles’ simulation and inertial forces were verified using experimental results. The inverse dynamics 5 was 

carried out in MSC Adams and verified on the NAO robots’ lower part with joints’ angles as experimental data. Torque 
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and power calculations are challenging for biped robots due to highly nonlinear dynamics. For the high DOF, several 

researchers have attempted to solve the dynamics of a humanoid robot using different techniques. Researchers used 

kinematic human motion data 9, SimMechanics of MATLAB toolbox 10, reference-model-based control design 11, MSC 

Adams 5, PD control law with gravity compensation 12, Lagrange-Euler formulation 13,14, Newton-Euler equations 15, 

Chaotic Recurrent Neural Network 16, and D’Alembert’s-based virtual work principle 17 to perform the inverse dynamics 

of biped robot. Lagrange-Euler formulation is used in this study to compute torque demand and average power consumption 

by the actuators of the NAO robot. 

2.2.   Stability Analysis 

Most bipedal systems had been modeled using analytical balancing techniques to maintain the dynamic balance by taking 

the help of a basic inverted pendulum (IP) 18 due to its simplicity, but the concept of the Zero-Moment Point (ZMP) 19 

technique could reach popularity due to its accuracy for the multi-body system. To declare a humanoid is dynamically 

balanced, the ZMP should always be lying inside the foot support polygon. ZMP computation is crucial at each point to 

stabilize the walking cycle of a robot. DBM 20, or stability margin, is a positive quantity that indicates how distant the ZMP 

is from the support polygon. The robot is marginally stable if the ZMP is seen to be extremely close to the support polygon's 

boundary; nevertheless, a larger value of DBM ensures greater stability.  

Chung et al. 21 improved the existing method of ZMP calculation using Denavit-Hartenberg (DH)-based recursive 

Lagrangian method. The proposed method accurately evaluated the rate of angular momentum in the ZMP formulation, 

and a simulation of walking and running motion provided more realistic bipedal motion. Robo-Erectus 22, a humanoid 

robot, was optimized for ZMP, inertia forces, and geometrical constraints to improve dynamically balanced locomotion, 

smooth transition, and stable walking. Liu and Urbann 23 modified the walking pattern of the NAO robot using the three-

dimensional motion of the upper body. They experimentally verified that the robot could walk with an almost stretched 

knee with enhanced dynamic balance.  

2.3.   Evolutionary Computation-based Studies 

Biped locomotion depends on several gait parameters. Researchers explored a range of strategies to reduce the energy 

consumption of a dynamically balanced gait cycle to determine the best gait parameters. The evaluation of geometric 

parameters, dynamic calculations, and controllability are highly nonlinear, so evolutionary optimization techniques were 

utilized to get the optimal parameters. In their review study, Gong et al. 24 discussed various potential improvements in the 

efficiency and quality of evolutionary gait optimization and future research directions. A gait cycle is a synchronized 

sequence of leg movement consisting of SSP and DSP 25. There are some transition phases between these two phases, viz. 

contact and swing phase. Figs. 1 (a) through (d) display the walking cycle of a biped robot. In SSP, the robot is supported 

by a single-leg, whereas in DSP, the robot is supported by both legs. Investigators have put in a lot of effort to explore the 

influence of SSP and DSP on the dynamically balanced and efficient walking cycle of a two-legged robot. 

 

 
Fig. 1. A schematic view showing four phases of a locomotion cycle of a biped robot: (a) Single Support Phase, (b) Contact Phase, (c) Double Support 

Phase, (d) Take-Off Phase (where L and R represent left and right feet, respectively)25 

Many researchers have studied the effects of SSP on the walking cycle of biped robots. The SSP 26–28 was analyzed for 

ascending and descending staircases using soft-computing approaches to generate dynamically balanced gaits. However, 

these studies had not considered DSP. Vundavilli and Pratihar 29 had analytically modeled the gait and optimized it to 

maximize the DBM and minimize the power consumption using neural networks and fuzzy logic-based approaches. They 
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generated a dynamically balanced gait after considering the SSP and calculating DBM using the ZMP concept for a seven 

DOF biped robot during ditch crossing. The dynamically balanced gait generation of seven DOF biped robots was solved 

using genetic-neural and genetic fuzzy systems after analyzing the SSP for sloping surfaces by Vundavilli and Pratihar. 30 

A few investigators have studied the effects of DSP. Luo and Xia 31 studied both walking phases (SSP and DSP), and torso 

motion was controlled to reduce the energy consumption and maximize the dynamic stability at the landing. The simulation 

confirmed the feasibility of the proposed method. The walking efficiency was better with a forward tilting of the torso, 

whereas backward tilting increased power consumption. However, the robot movement during DSP was simplified by 

modeling it as an IP. DSP was analyzed by Rajendra and Pratihar 2 using PSO and GA during ascending and descending 

of a staircase. The lateral movement was not considered in this study. Raj et al. 32 used Real Coded GA (RCGA) to create 

an optimal set of walk parameters for the optimization of energy and stability of the NAO robot for SSP, DSP, and transition 

phases. They demonstrate a trade-off between stability and energy function. However, their investigations for the NAO 

robot consider a constant hip height from the ground. Many researchers have used PSO and GA to find the optimal 

trajectories for energy-efficient walking cycles. Dau et al. 33 generated optimal hip and foot trajectories using polynomial 

interpolation. GA was used to find the optimal key parameters to optimize it further to reduce energy consumption. The 

proposed method was verified on flat and slope walking simulations of NUSBIP-II biped robot. They had not considered 

the lateral movement. PSO 34 was used in the gait optimization for omnidirectional walking on a modified Kondo KHR-1 

humanoid robot. They also considered arm movement as well as different walking phases, but no additional optimization 

approaches were utilized to compare PSO performance. After assuring the least energy consumption, GA 35 was used along 

with the motion/force control scheme to generate the optimal trajectories for the seven-link biped walking on flat ground 

and sloping terrain. The study found that energy consumption increased with the increase in walking speed. However, a 

comparison of the performance of GA with different population-based optimization techniques might have been useful in 

determining better walking parameters. 

There had been a few prominent optimization methodologies utilized in decreasing excessive energy consumption, 

enhancing walking speed, finding the shortest path, and optimizing trajectories. Hemker et al.36 and Wolff et al. 37 had 

improved the walking speed of a 24 DOF and 17 DOF humanoid robot using the surrogate optimization method and 

evolutionary procedure, respectively. Muni et al. 38 used the Bacterial Foraging Optimization Algorithm (BFOA) to build 

the best navigation for the NAO humanoid robot. BFOA utilizes the foraging ability of bacteria to find the shortest path in 

the least amount of time. The proposed method was verified using simulation and an experimental platform. The iterative 

optimization method 39 was applied to a seven-link biped robot to solve the high energy consumption. The trunk trajectory 

was optimized when the given robot followed the desired ZMP trajectory, and then, an energy-efficient gait could be 

obtained with the security of a balanced cycle. Roussel et al. 40 generated gait patterns, which consumed minimum energy 

while body mass was concentrated on the hip of the humanoid robot. Silva and Machado et al. 41 analyzed energy 

consumption while keeping hip height and sagittal velocity constant. Channon et al. 42 analyzed the relationship between 

forward velocity and step length with respect to consumed energy. Uno et al. 43 took into account not just the least amount 

of energy utilized but also the minimum change in torque. The former gait resembled human motion more closely, whereas 

the later gait was more stable due to a smooth shift in link acceleration. 

3.   Mathematical Formulation of the Problem 

Fig. 2 shows the lower and upper parts of the NAO robot with the joint angles’ naming convention. It also shows the 

positions of lumped masses. The lower part of the NAO robot has eleven DOF, whereas the upper part has fourteen DOF. 

The pelvis joint is made common in both legs. Left and right 𝐻𝑖𝑝𝑌𝑎𝑤𝑃𝑖𝑡𝑐ℎ cannot move independently due to a single 

actuator moving this joint, which directly affects both the legs. Each leg has two joints at the hip, one joint at the knee, and 

two joints at the ankle. The R and L prefixes are used in conjunction with the joint angles' names to indicate their 

connections to the robot's Right and Left sides, respectively. NAO robot’s mass values and dimensions are taken from its 

official website. 44,45 𝑟𝑖 represent the Center of Mass (CoM) position vectors 45 for the concentrated lumped masses 𝑚𝑖 in 

kg on the 𝑖𝑡ℎ limb.  
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Fig. 2. Line Diagram of the lower and upper parts of the NAO robot with lumped masses, CoM position, and joint angles’ naming convention. 

The robot's left and right halves are symmetrical, and the masses 45 of the corresponding limbs are the same on both sides. 

The NAO robot is made up of 25 lumped masses in total. Each leg consists of six lumped masses viz. Pelvis, Hip, Thigh, 

Tibia, Ankle, and Foot. Shoulder, Biceps, Elbow, Forearm, and Hand are the five lumped masses that make up each arm. 

Torso, Neck, and Head are the other three-lumped masses. The friction during SSP and DSP is assumed to be sufficient to 

prevent slipping. 

3.1.   Single support phase 

Fig. 3 shows the kinematic model for the lower and upper parts of the NAO robot during SSP. The swing leg trajectory is 

shown to move from 𝑥𝑖 to 𝑥𝑓 and attended a maximum swing height (𝑆ℎ
𝑚𝑎𝑥) in the mid of the trajectory. 𝑍𝐻 is the hip 

height. DH parameters are used to assign a coordinate system to each joint of the robot, and kinematic analysis is carried 

out to realize the humanoid robot's motion. Four parameters 25 of classic DH convention, namely 𝜃𝑖, 𝑑𝑖 , 𝑎𝑖 and 𝛼𝑖 are used 

in translating the coordinate from (𝑖 − 1)𝑡ℎ link to 𝑖𝑡ℎ link. The transformation matrix of the 𝑖𝑡ℎ link with respect to 

(𝑖 − 1)𝑡ℎ link is expressed as follows: 

𝑇𝑖−1
𝑖 = 𝑅𝑜𝑡(𝑧, 𝜃𝑖)𝑇𝑟𝑎𝑛𝑠(𝑧, 𝑑𝑖)𝑅𝑜𝑡(𝑥, 𝛼𝑖)𝑇𝑟𝑎𝑛𝑠(𝑥, 𝑎𝑖) (1) 

Fig. 4 shows the overall dimensions of a 25 DOF Humanoid Robot, consisting of two legs, two hands, one torso, and one 

neck. It also shows DH parameter settings for the lower and upper parts of the robot. Tables 1 and 2 contain the information 

related to the link and joint parameters for the left and right leg, respectively. All the dimensions are in mm. The hip joint 

is located in the y-direction from the Pelvis at 50 𝑚𝑚 (left hip) and −50 𝑚𝑚 (right hip). The 𝑧-offset from the Pelvis is 

kept equal to 85 𝑚𝑚. Length 𝑙1 and 𝑙2 represent thigh and tibia lengths, respectively. The IK solution for the left leg chain 

is explained below. The left leg chain is considered as a serial manipulator, where the left leg foot serves as the origin/base 

frame, and the torso is treated as an end-effector. The concept of carrying out the IK for NAO is taken from Kofinas et al. 
3. 𝐴(𝑃𝑥 , 𝑃𝑦 , 𝑃𝑧) denotes the translation in 𝑥, 𝑦, and 𝑧 directions by 𝑃𝑥, 𝑃𝑦, and 𝑃𝑧, respectively. 𝑅𝑘(𝜙) represents the rotation 

matrix about 𝑘𝑡ℎ axis by an angle 𝜙. 
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Table 1.  DH Parameters for left leg chain from 𝐿𝐹𝑜𝑜𝑡 to Pelvis 

Joint Frame 𝜃 𝑑 𝛼 𝑎 

Base 𝐿𝐹𝑜𝑜𝑡 𝐴 (0, 0, 45.19) 

Rotation matrix 𝑅𝑦 (𝜋/2) 𝑅𝑧 (−𝜋) 

1 𝐿𝐴𝑛𝑘𝑙𝑒𝑅𝑜𝑙𝑙 𝜃6 0 π/2 0 

2 𝐿𝐴𝑛𝑘𝑙𝑒𝑃𝑖𝑡𝑐ℎ 𝜃5 0 0 𝑙2(102.90) 

3 𝐿𝐾𝑛𝑒𝑒𝑃𝑖𝑡𝑐ℎ 𝜃4 0 0 𝑙1(100) 

4 𝐿𝐻𝑖𝑝𝑃𝑖𝑡𝑐ℎ 𝜃3 0 −𝜋/2 0 

5 𝐿𝐻𝑖𝑝𝑅𝑜𝑙𝑙 𝜃2 − 𝜋/4 0 𝜋/2 0 

6 𝐿𝐻𝑖𝑝𝑌𝑎𝑤𝑃𝑖𝑡𝑐ℎ 𝜃1 + 𝜋/2 0 3𝜋/4 0 

Pelvis 𝐴 (0, − 50, 85) 

Table 2. DH Parameters for right leg chain from Pelvis to 𝑅𝐹𝑜𝑜𝑡 

Joint Frame 𝜃 𝑑 𝛼 𝑎 

Base 𝑃𝑒𝑙𝑣𝑖𝑠 𝐴 (0, − 50, −85) 

Rotation matrix 𝑅𝑥 (−𝜋/4) 

1 𝑅𝐻𝑖𝑝𝑌𝑎𝑤𝑃𝑖𝑡𝑐ℎ 𝜃1 − 𝜋/2 0 −𝜋/2 0 

2 𝑅𝐻𝑖𝑝𝑅𝑜𝑙𝑙 𝜃7 − 𝜋/4 0 𝜋/2 −𝑙1(100) 

3 𝑅𝐻𝑖𝑝𝑃𝑖𝑡𝑐ℎ 𝜃8 0 0 −𝑙2(102.90) 

4 𝑅𝐾𝑛𝑒𝑒𝑃𝑖𝑡𝑐ℎ 𝜃9 0 0 0 

5 𝑅𝐴𝑛𝑘𝑙𝑒𝑃𝑖𝑡𝑐ℎ 𝜃10 0 −𝜋/2 0 

6 𝑅𝐴𝑛𝑘𝑙𝑒𝑅𝑜𝑙𝑙 𝜃11 0 0 0 

Rotation matrix 𝑅𝑧 (𝜋) 𝑅𝑦 (−𝜋/2) 

𝑅𝐹𝑜𝑜𝑡 𝐴 (0, 0, −45.19) 

 

Let 𝑇𝑖
𝑗
 denotes the transformation matrix of 𝑗𝑡ℎ joint with respect to 𝑖𝑡ℎ joint. then 𝑇𝐿𝐹𝑜𝑜𝑡

𝑃𝑒𝑙𝑣𝑖𝑠  𝑖𝑠 𝑔𝑖𝑣𝑒𝑛 𝑏𝑦  

𝑇 = 𝐴𝐿𝐹𝑜𝑜𝑡
0 𝑅𝑦 (

𝜋

2
) 𝑅𝑧(−𝜋)𝑇0

1𝑇1
2𝑇2

3𝑇3
4𝑇4

5𝑇5
6𝐴6

𝑃𝑒𝑙𝑣𝑖𝑠  (2) 

After removing the known homogeneous transformation matrices 𝐴𝐿𝐹𝑜𝑜𝑡
0  and  𝐴6

𝑃𝑒𝑙𝑣𝑖𝑠 by pre- and post-multiplication to T 

maintaining their sequence. The new transformation matrix is denoted by 𝑇̂. A post-multiplication to 𝑇̂ by −𝜋/4 in the x-

axis will help in aligning the z-axis with the yaw joint, and that transformation matrix is denoted by 𝑇̃. Both homogenous 

transformation matrices (𝑇̂ and 𝑇̃) are given below. 

𝑇̂ = (𝐴𝐿𝐹𝑜𝑜𝑡
0 )−1  𝑇 (𝐴6

𝑃𝑒𝑙𝑣𝑖𝑠)
−1

 (3) 

T̃ = 𝑇̂𝑅𝑥 (−
𝜋

4
) (4) 

If the hip position is set at the origin, then d denotes the distance between the hip and ankle joint as 

𝑑 = √[(0 − 𝑇̃(1,4)  )
2

+ (0 − 𝑇̃(2,4))
2

+ (0 − 𝑇̃(3,4))
2

] (5) 

The IK of the NAO Robot is solved analytically 3 using vector algebra to convert the robot configuration from Cartesian 

space to joint space as given below. 

𝜃4 =  ± (𝜋 − 𝑐𝑜𝑠−1 (
𝑙1

2 + 𝑙2
2 − 𝑑2

2𝑙1𝑙2

)  ) (6) 

𝜃6 = 𝑡𝑎𝑛−1 (−
𝑇̃(2,4)

𝑇̃(3,4)

) (7) 

𝑇′ = (𝑅𝑦 (−
𝜋

2
) 𝑅𝑧(−𝜋))

−1

𝑇̃ (8) 

𝜃5 = 𝑠𝑖𝑛−1 (
𝑇(2,4)

′ (𝑙2 + 𝑙1 𝑐𝑜𝑠 𝜃4) − 𝑙1𝑇(1,4)
′ 𝑠𝑖𝑛 𝜃4

𝑙1
2 𝑠𝑖𝑛2 𝜃4 + (𝑙2 + 𝑙1 𝑐𝑜𝑠 𝜃4)2

) (9) 
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𝜃5 = 𝜋 − 𝑠𝑖𝑛−1 (
𝑇(2,4)

′ (𝑙2 + 𝑙1 𝑐𝑜𝑠 𝜃4) − 𝑙1𝑇(1,4)
′ 𝑠𝑖𝑛 𝜃4

𝑙1
2 𝑠𝑖𝑛2 𝜃4 + (𝑙2 + 𝑙1 𝑐𝑜𝑠 𝜃4)2

) (10) 

𝑇′′ = (𝑇1
2𝑇2

3)−1𝑇′ (11) 

𝜃2 =
𝜋

4
− 𝑐𝑜𝑠−1 𝑇(3,2)

′′  (12) 

𝜃1 = 𝑠𝑖𝑛−1 (−
𝑇(3,3)

′′

𝑠𝑖𝑛 (𝜃2 −
𝜋
4

)
 ) −

𝜋

2
 (13) 

𝜃3 = 𝑐𝑜𝑠−1 (
𝑇(1,2)

′′

𝑠𝑖𝑛 (𝜃2 −
𝜋
4

)
) (14) 

Eqs. (6) to (14) are used to find the joint angles for the left leg. Similarly, the required joint angles are computed using IK 

analytical solution 3 to reach 𝑅𝐹𝑜𝑜𝑡 from the known 𝑃𝑒𝑙𝑣𝑖𝑠.  

When the robot is walking and considering only one walking cycle for the movement on plain ground, the joint angle 

is calculated from the hip and swing leg trajectories using IK. The joint angles from IK are utilized to carry out inverse 

dynamics. To compute torque requirements at different motors of the NAO robot, various components, such as inertia, 

Coriolis/centrifugal, and gravity, are taken into account. The angular velocity and acceleration of the joints are determined 

by numerical differentiation as per the given time interval. 

 
 

Fig. 3. A schematic view of the upper and lower part of the NAO robot during the Single Support Phase. 
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Fig. 4. DH Parameter setting and overall dimensions for the upper and lower part of the NAO robot. 

 

 

The inverse dynamics is solved using the Lagrange-Euler formulation 46 as given in Eq. (15).   

                                                                    

1 1 1

n n n

i ic c icd c d i

c c d

D q h q q C
= = =

 = + +                                                                (15) 

 where 𝑖 = 1,2, … , 𝑛 𝑗𝑜𝑖𝑛𝑡𝑠. 𝐷ic, ℎ𝑖𝑐𝑑 , and 𝐶𝑖 represent inertia, coriolis and centrifugal, and gravity terms, respectively, 

whose expressions are given in Eqs. (16) to (18).  

 

                                                                 

max ( , )

( )
n

T

ic jc j ji

j i c

D Tr U J U
=

=              (16) 

                                                                 

max ( , , )

( )
n

T

icd jcd j ji

j i c d

h Tr U J U
=

=                         (17) 

                                                                   ( )
n

j

i j ji j

j i

C m gU r
=

= −                 (18) 

where 𝑖, 𝑐, 𝑑 = 1,2, … , 𝑛 joints. J is the inertia tensor;  𝑈𝑖𝑗=𝜕 𝑇/𝜕𝑞𝑗𝑖
0 ; g is the gravity column matrix, which is along the 

negative z-direction; 𝑚𝑖 is the mass of 𝑖𝑡ℎ link. 
j

j r  is the CoM position vector for the 𝑗𝑡ℎ link. The whole robot is 

considered a seven-link model for dynamic analysis consisting of the left foot, left lower leg, left upper leg, torso, right 

upper leg, right lower leg, and right foot. It is assumed for the purpose of analysis to be a serial manipulator of 12 DOF 

starting from left foot (LFoot) to right foot (RFoot) (although eleven independent motors are connected to these joints and 

the pelvis joint is made common to both the legs).  𝐿𝐹𝑜𝑜𝑡 is taken as a base, and the torso is considered as the end-effector 

of a serial manipulator, and after reaching the torso, the 𝑅𝐹𝑜𝑜𝑡 is considered as end-effector. Because the robot is walking 

in a straight path, both legs' hip yaw pitch angles are almost zero. Torque variations for both arms are also computed using 

Eq. (15). The force distributions of the foot on the ground could be reduced to the resultant force R, the point of attack, 

which needs to be in the sole of support polygon, as shown in Figs. 3 and 5. 
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Fig. 5. Definition of Zero Moment Point and Dynamic Balance Margin 47 

The ZMP is a location on the ground where the sum of all moments of forces and momentums becomes equal to zero. ZMP 

lying within the supporting polygon's sole helps the biped to keep it in its stable position. 𝑋ZMP  and 𝑌ZMP represent ZMP 

in 𝑥 (along the length of the foot) and 𝑦 (along the width of the foot) directions, respectively. ZMP along the 𝑥 and 𝑦-axes 

can be determined using Eqs. (19) and (20). 𝐼𝑖   denotes the moment of inertia of ith  joint (in kg-m2), 𝜔
.

𝑖  is the angular 

acceleration of joint i (in rad/s2), 𝑚𝑖 denotes the mass of ith joint (in kg), (𝑥𝑖 , 𝑧𝑖) are the coordinates of ith lumped mass, g is 

the acceleration due to gravity (in m/s2), 𝑛 is the total number of joints,  𝑧
..

𝑖 is the acceleration of ith lumped mass in the z-

direction (m/s2), and 𝑥
..

𝑖 is the acceleration of ith lumped mass in the x-direction (m/s2) 48.  

The forward and sideways motion of the robot are considered in 𝑥 and y-direction, respectively. 𝑧-axis is taken along 

the height of the robot. As previously stated, DBM is the minimum distance between the ZMP points and the support 

polygon's boundary, and 𝑋DBM  and 𝑌DBM represent the DBM in 𝑥 and 𝑦 direction, respectively. DBM in 𝑥 and 𝑦 directions 

are calculated using Eqs. (21) and (22) based on support leg position and ZMP points. Moreover, the combined CoM of 

the whole robot is calculated using Eq. (23). DH parameters are useful in finding the CoM position of each link. In Eq (23), 

𝑝𝑖 ∈  ℝ3×1 is the position of the center of 𝑖𝑡ℎ mass. 𝑚𝑖𝑝̇𝑖 is the momentum of the 𝑖𝑡ℎ point mass. Differentiating the Eq. 

(23) yields Eq. (24). Total momentum 𝑃′ of the robot by considering all the point masses is given in Eq. (25). The 

relationship between the velocity of the robot and linear momentum can be easily established using Eqs. (24) and (25). The 

equation of the translation motion of the robot can be obtained by differentiating Eq. (25) with respect to time. 𝑚𝑖𝑝𝑖̈ is the 

external force (𝑓𝑖) in N acting on the 𝑖𝑡ℎ point mass. The sum of all the external forces acting on the robot is denoted by 𝐹 

in Eq. (26). The gravitational force is equally applied to all the lumped masses of the body and will always be there 

regardless of the robot's motion; hence it can be considered separately from all other forces. The acceleration due to gravity 

is taken in the negative z-direction, and it is set equal to [0, 0, −9.8]𝑇 in Eq. (27). 𝑀 is the total mass of the robot in kg. 

𝑓 ∈  ℝ3×1 represent the ground reaction force (represented by R in Figs. 3 and 5) and has its component in 𝑥, 𝑦, and 𝑧-

direction. Fig. 6 shows the foot dimensions, lower and upper bounds of ZMP values based on the foot coordinates. 

 

 

Fig. 6. (a) NAO Robot foot dimension and (b) ZMP’s higher and lower bound based on the support leg coordinate. Superscript 𝐻 𝑎𝑛𝑑 𝐿 represent the 

highest and lowest ZMP possible in the x and y directions based on the foot coordinates. The darker region shows a safe zone. 

 



10 P. Gupta, D.K. Pratihar & K. Deb 

 

 

                                                                     1

1

( )

( )

i n

i i i i i i i i

i
ZMP i n

i i

i

I m x z g m x z

X

m z g

=

=

=

=

 + − −

=

−





        (19) 

                                                                      1

1

( )

( )

i n

i i i i i i i i

i
ZMP i n

i i

i

I m y z g m y z

Y

m z g

=

=

=

=

 + − −

=

−





        (20)                                                                                                      

                                                                               

𝑋𝐷𝐵𝑀 = {
(𝑋𝑖 + 0.1) − 𝑋𝑍𝑀𝑃 ,          𝑖𝑓 𝑋𝑍𝑀𝑃  ∈ [𝑋𝑖 , 𝑋𝑖 + 0.1]

𝑋𝑍𝑀𝑃 − (𝑋𝑖 − 0.05), 𝑖𝑓 𝑋𝑍𝑀𝑃 ∈ [𝑋𝑖 − 0.05, 𝑋𝑖)

0                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (21) 

𝑌𝐷𝐵𝑀 = {
(𝑌𝑖 + 0.04) − 𝑌𝑍𝑀𝑃 ,          𝑖𝑓 𝑌𝑍𝑀𝑃  ∈ [𝑌𝑖 , 𝑌𝑖 + 0.04]

𝑌𝑍𝑀𝑃 − (𝑌𝑖 − 0.04), 𝑖𝑓 𝑌𝑍𝑀𝑃 ∈ [𝑌𝑖 − 0.04, 𝑌𝑖)

0                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (22) 
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                       P F =                                               (26) 

                P Mg f = +                                             (27) 

ZMP is important to verify that the generated gait is dynamically stable. Moreover, the locomotion of a biped robot to 

move from one place to another place requires suitable trajectory planning for the swing leg and hip to move ahead. Gait 

Pattern generation directly influences the quality of motion for a biped robot. As shown in Fig. 3, the swing leg’s trajectory 

is designed using the cubic polynomial. These trajectories defined the forward advancement at any given point. The initial 

and final velocities are taken as zero to avoid any jerky movement. The swing leg’s ankle trajectory for right leg can be 

represented by [𝑋𝐴(𝑡), −0.05, 𝑍𝐴(𝑋𝐴)]𝑇. 𝑋𝐴(𝑡) is the x-coordinate of the ankle position in the sagittal plane as a function 

of time and 𝑍𝐴(𝑋𝐴) is the movement of 𝑧-coordinates based on 𝑥-coordinates; it helped in moving the leg in a vertical 

direction according to its 𝑥-coordinates. Here, both x and z-coordinates are assumed to follow cubic polynomials. Similarly, 

hip trajectory in 3D space can be represented by [𝑋𝐻(𝑡), 𝑌𝐻(𝑡), 𝑍𝐻(𝑡)]𝑇 . Hip motion in the sagittal, lateral, and vertical 

directions is planned as a cubic polynomial. Since the right leg is the swing leg during SSP, the right arm is moved in the 

opposite direction of the robot's movement. Only 𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑃𝑖𝑡𝑐ℎ and 𝐸𝑙𝑏𝑜𝑤𝑅𝑜𝑙𝑙 are utilized during the motion. 

𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑅𝑜𝑙𝑙 is kept constant at −0.26 𝑟𝑎𝑑 for the right and 0.26 𝑟𝑎𝑑 for the left arm. 𝑅𝐸𝑙𝑏𝑜𝑤𝑌𝑎𝑤 is kept fixed at 

1.5 𝑟𝑎𝑑 for the right and −1.5 𝑟𝑎𝑑 for the left arm. Left and right Wrist Yaw are kept at zero. Shoulder pitch and Elbow 
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Roll movement are assumed to follow cubic polynomials. Four boundary conditions are required for ankle, hip, and arm 

trajectories to find all the coefficients.  

Table 3 lists all the cubic trajectories and their respective boundary conditions for ankle, hip, and arm motion to find 

the unknown coefficients. Here, 𝑡𝑖 denotes the initial time. 𝑡𝑓 is the final time duration for one cycle. 𝑥𝑖 and 𝑥𝑓 are the 

initial and final positions of the swing leg, respectively. where 𝑥𝑓 = 𝑥𝑖 + 𝑆𝐿; and 𝑆𝐿 is the Step Length kept equal to 0.06 

m. These two values, namely 𝑥𝑖 and 𝑥𝑓 are dependent on the distance covered by the swing leg. The swing leg traveled a 

distance from 𝑥𝑖 to 𝑥𝑓 equal to Stride length. 𝑆ℎ
𝑚𝑎𝑥 denotes the maximum swing height achieved at the mid of the swing 

leg trajectory. The support leg is kept fixed at [𝑥𝑖 +
𝑥𝑓

2
, 0.05,0]

𝑇

during the entire swing leg movement. The hip traveled 

from 𝑋𝐻(𝑡𝑖) to 𝑋𝐻(𝑡𝑓). ℎ represents the initial and final hip height and is kept as same for the repeatability condition. 

𝑉𝑠
𝑋, 𝑉𝑠

𝑌 and 𝑉𝑠
𝑍 are the starting velocities in 𝑥, 𝑦, and 𝑧-directions, respectively. 𝑉𝑒

𝑋, 𝑉𝑒
𝑌 and 𝑉𝑒

𝑍 are the end velocities in 

𝑥, 𝑦, and 𝑧-directions, respectively. After getting the hip and swing leg trajectories, IK is used to find the joint angles of 

both the legs to reach the desired hip and swing foot position. Arm movements are provided directly at the joint space. The 

DH Parameter setting for the left and right arms is shown in Fig. 4. The joint and link parameters (in mm) for the left arm 

are given in Table 4. Shoulder offset Y (98 mm) and Elbow Offset Y (15 mm) need to be taken negative for the right arm.   

Table 3. Swing leg, ankle, hip, and arms trajectory planning, and their respective boundary conditions 

Sr. No. Ankle, hip, and arm’s trajectories Boundary conditions 

1𝑐  𝑋𝐴 (𝑡) = 𝑎0 + 𝑎1 𝑡 + 𝑎2 𝑡2 + 𝑎3 𝑡3 𝑋𝐴(𝑡𝑖) = 𝑥𝑖, 𝑋𝐴(𝑡𝑓) = 𝑥𝑓, 𝑋̇𝐴(𝑡𝑖) = 0, 𝑋̇𝐴(𝑡𝑓) = 0 

2𝑐  𝑍𝐴 (𝑡) = 𝑏0 + 𝑏1 𝑋𝐴 + 𝑏2 𝑋𝐴
2 + 𝑏3 𝑋𝐴

3 𝑍𝐴(𝑥𝑖) = 0, 𝑍𝐴(𝑥𝑖 + 𝑆𝐿) = 0, 𝑍𝐴(𝑥𝑚) = 𝑆ℎ
𝑚𝑎𝑥, 𝑍̇𝐴(𝑥𝑚) = 0 

3𝑐  
𝑋𝐻  (𝑡) = 𝑥0 + 𝑥1 𝑡 + 𝑥2 𝑡2 + 𝑥3 𝑡3 𝑋𝐻(𝑡𝑖) = 𝑥𝑖 + 𝑥𝑓/4, 𝑋𝐻(𝑡𝑓) = 𝑥𝑖 + 3𝑥𝑓/4, 𝑋̇𝐻(𝑡𝑖) = 𝑉𝑠

𝑋, 𝑋̇𝐻(𝑡𝑓) = 𝑉𝑒
𝑋 

4𝑐  𝑌𝐻  (𝑡) = 𝑦0 + 𝑦1 𝑡 + 𝑦2 𝑡2 + 𝑦3 𝑡3 𝑌𝐻(𝑡𝑖) = 0.025 m, 𝑌𝐻(𝑡𝑓) = 0.025 m, 𝑌̇𝐻(𝑡𝑖) = 𝑉𝑠
𝑌, 𝑌𝐻(𝑡𝑓) = 𝑉𝑒

𝑌 

5𝑐  𝑍𝐻  (𝑡) = 𝑧0 + 𝑧1 𝑡 + 𝑧2 𝑡2 + 𝑧3 𝑡3 𝑍𝐻(𝑡𝑖) = ℎ, 𝑍𝐻(𝑡𝑓) = ℎ, 𝑍̇𝐻(𝑡𝑖) = 𝑉𝑠
𝑍, 𝑍̇𝐻(𝑡𝑓) = 𝑉𝑒

𝑍 

6𝑗  𝜃12 (𝑡) = 𝑞0 + 𝑞1 𝑡 + 𝑞2 𝑡2 + 𝑞3𝑡3 𝜃12(𝑡𝑖) = 2 𝑟𝑎𝑑, 𝜃12(𝑡𝑓) = 1 𝑟𝑎𝑑, 𝜃̇12(𝑡𝑖) = 0, 𝜃̇12(𝑡𝑓) = 0 

7𝑗  𝜃15 (𝑡) = 𝛼0 + 𝛼1 𝑡 + 𝛼2 𝑡2 + 𝛼3𝑡3 𝜃15(𝑡𝑖) = −0.42 𝑟𝑎𝑑, 𝜃15(𝑡𝑓) = −0.64 𝑟𝑎𝑑, 𝜃̇15(𝑡𝑖) = 0, 𝜃̇15(𝑡𝑓) = 0 

8𝑗  𝜃18 (𝑡) = 𝛽0 + 𝛽1 𝑡 + 𝛽2 𝑡2 + 𝛽3𝑡3 𝜃18(𝑡𝑖) = 1 𝑟𝑎𝑑, 𝜃18(𝑡𝑓) = 2 𝑟𝑎𝑑, 𝜃̇18(𝑡𝑖) = 0, 𝜃̇18(𝑡𝑓) = 0 

9𝑗  𝜃21 (𝑡) = 𝛾0 + 𝛾1 𝑡 + 𝛾2 𝑡2 + 𝛾3𝑡3 𝜃21(𝑡𝑖) = 0.64 𝑟𝑎𝑑, 𝜃21(𝑡𝑓) = 0.42 𝑟𝑎𝑑, 𝜃̇21(𝑡𝑖) = 0, 𝜃̇21(𝑡𝑓) = 0 
cTrajectories are planned in cartesian space, jtrajectories are planned in joint-space 

Table 4. DH Parameters for the left-arm chain from 𝐿𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟 to 𝐿𝐻𝑎𝑛𝑑 

Joint Frame 𝜃 𝑑 𝛼 𝑎 

Base 𝐿𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟 𝐴 (0, 98, 100) 

Rotation matrix 𝑅𝑥 (−𝜋/2) 

1 𝐿𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑃𝑖𝑡𝑐ℎ 𝜃12 0 𝜋/2 0 

2 𝐿𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑅𝑜𝑙𝑙 𝜃13 + 𝜋/2 0 𝜋/2 15 

Translation in z-axis A (0, 0, 105) 

3 𝐿𝐸𝑙𝑏𝑜𝑤𝑌𝑎𝑤 𝜃14 0 −𝜋/2 0 

4 𝐿𝐸𝑙𝑏𝑜𝑤𝑅𝑜𝑙𝑙 𝜃15 − 𝜋/2 −12.3 0 55.95 

Rotation matrix 𝑅𝑧 (𝜋/2) 𝑅𝑦 (𝜋/2) 

5 𝐿𝑊𝑟𝑖𝑠𝑡𝑌𝑎𝑤 𝜃16 57.75 −𝜋/2 0 

𝐿𝐻𝑎𝑛𝑑 −𝜋/2 0 0 0 

 

All the starting and end velocities in 𝑥, 𝑦, and 𝑧 directions are taken as decision variables, along with the hip height. Also, 

maximum swing height and time spent in SSP are considered as decision variables for stable gait planning. 

3.2.   Double support phase 

The DSP is analyzed using the concept of Rajendra and Pratihar 2. The schematic view of DSP is shown in Fig. 7. All the 

length, mass, and CoM position vectors are kept the same as that, as discussed above for the SSP. The DSP is assumed to 

be consisting of two SSPs, for the purpose of analysis. 𝑋𝐿 and 𝑋𝑅 denote the distance of the projected point of the trunk 

mass from the left and right foot, respectively, in the sagittal plane. Similarly, 𝑌𝐿 and 𝑌𝑅 represent the distance of the 

projected point of the trunk mass from the left and right foot, respectively, in the lateral plane. The robot with 23 lumped 

masses (six on each leg, five on each arm and torso) is modeled as two serial manipulators having 12 masses each. On the 

torso, the neck and head masses are also taken into account. The movement of the robot and its dynamic balance are 

considered in both directions. The first SSP considered the left leg, left arm, and torso. At the same time, the second SSP 

is considered by taking the right leg, right arm, and torso. In DSP, the robot carries its total weight on both legs. The torso 
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mass 𝑚𝑇𝑜𝑟𝑠𝑜 is distributed in two parts, namely 𝑚𝑇𝑜𝑟𝑠𝑜𝐿
 and 𝑚𝑇𝑜𝑟𝑠𝑜𝑅

 on the left and right legs, respectively. The load of 

the robot is distributed in the lateral plane based on the position of foot placement as given in Eqs. (28) and (29). 
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Torso L
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m Y
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Y Y
=

+
                                                                     (28) 
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          (29) 

       

Similarly, it can be distributed in a sagittal plane based on foot position. 𝑓𝐿 and 𝑓𝑅 are the ground reaction force vectors 

acting between the tip of the leg and the ground, passing through the ZMP. The forces 𝑓𝐿 and 𝑓𝑅  are acting on the left and 

right leg, respectively. The feet are assumed to have hard point contacts with friction with the ground. 𝑓𝐿𝑥
, 𝑓𝐿𝑦

 and 𝑓𝐿𝑧
 are 

the components of ground reaction force 𝑓𝐿 in x, y, and z-direction, respectively, whereas 𝑓𝑅𝑥
, 𝑓𝑅𝑦

 and 𝑓𝑅𝑧
 are the 

components of ground reaction force 𝑓𝑅 in x, y, and z-direction, respectively. The external force vector 𝐹 acting on the 

robot is assumed to have the components as 𝐹 = [𝐹𝑥, 𝐹𝑦, 𝐹𝑧]
𝑇
, which can be calculated using Eq. (26). The earlier study 2 

used a composition method 49 to determine the biped robot’s stability. They determined the whole model’s ZMP by 

considering the intersection point of these two forces. If the forces were found to be parallel, then a concept of Virtual ZMP 
50 was also introduced on non-coincidental planes. 

This study utilized a slightly different approach. Forces and moments are balanced using a similar approach utilized 

for the SSP to find the ground reaction force and ZMP points separately for the left and right foot. Two ZMP positions are 

initially determined using Eqs. (19) and (20) for the left and right legs after considering it as two SSPs. The value of n in 

Eqs. (19) and (20) is taken as 12, 𝑚𝑇𝑜𝑟𝑠𝑜 is replaced by 𝑚𝑇𝑜𝑟𝑠𝑜𝐿
or 𝑚𝑇𝑜𝑟𝑠𝑜𝑅

, depending on the left or right leg analysis, 

respectively. The determined 𝑝𝐿  and 𝑝𝑅 are the ZMP positions of left and right leg, respectively as shown in Fig. 7. Since 

the robot is assumed to walk on a flat surface, both  𝑝𝐿𝑧 𝑎𝑛𝑑 𝑝𝑅𝑧  are kept equal to zero. The whole model’s ZMP is 

determined by setting the x and y components of the moment about point 𝑝 = [𝑝𝑥, 𝑝𝑦 , 𝑝𝑧]
𝑇
 to zero 51. The equation is solved 

(Eqs. (30) and (31)) for 𝑝𝑥 and 𝑝𝑦 as follows: 
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𝑝 is the position of the combined ZMP during DSP, and the value of 𝑝𝑧 is taken as zero in Eqs. (30) and (31). If the right 

leg becomes the swing leg, the vertical component of ground reaction force (𝑓𝑅𝑧) will be equal to zero, then 𝑝𝑥 and 𝑝𝑦 in 

Eqs. (30) and (31) would coincide with the ZMP of the left leg (Support Leg) and be considered as 𝑝𝐿𝑥 and 𝑝𝐿𝑦 , respectively. 

It is to be noted that if the hip position lies within the double support polygon, then the robot will be dynamically balanced. 

However, to be stable during static standing, CoM's vertical projection on the ground should coincide with the ZMP lying 

within the support polygon 51. DBM during DSP is determined, as shown in Fig. 8 (b). 
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Fig. 7. A schematic view during the Double Support Phase 

The hip trajectory in the DSP followed a similar cubic polynomial, as explained during SSP. Once the hip trajectory 

and location of both feet are known, IK is utilized to find the joint angles required to reach the hip location from its foot 

position. Eqs. (6) to (14) could be used to find the joint angles for the left leg and a similar methodology can be utilized for 

the right leg except the 𝛼6, which would be equal to 3𝜋/4, and 𝐻𝑖𝑝𝑜𝑓𝑓𝑠𝑒𝑡𝑌 (50 mm) and 𝐻𝑖𝑝𝑜𝑓𝑓𝑠𝑒𝑡𝑍 (85 mm) should be 

positive. The position of the hip is found with respect to ankle joints. The hip trajectory is assumed to follow cubic 

polynomial, as given in Table 5. The hip is moved from the position [0.07, 0.025, 𝑍𝐻]𝑇 to [0.11, −0.025, 𝑍𝐻]𝑇. The arms’ 

movements are also provided, similar to SSP. Shoulder Roll, Elbow Yaw, Wrist Yaw are kept constant, as discussed above 

in SSP. Shoulder pitch and Elbow Roll movement are considered as cubic polynomials in the joint space, and to find the 

unknown coefficients, their respective boundary conditions are listed in Table 5. 

Table 5. Hip and arm's trajectory planning and their respective boundary conditions to find unknown coefficients. 

Sr. No. Hip, and arm’s Trajectories Boundary conditions 

1𝑐 𝑋𝐻  (𝑡) = 𝑥0 + 𝑥1 𝑡 + 𝑥2 𝑡2 + 𝑥3 𝑡3 𝑋𝐻(𝑡𝑖) = 0.07 m, 𝑋𝐻(𝑡𝑓) = 0.11 m, 𝑋̇𝐻(𝑡𝑖) = 𝑉𝑠
𝑋, 𝑋̇𝐻(𝑡𝑓) = 𝑉𝑒

𝑋 

2𝑐 𝑌𝐻  (𝑡) = 𝑦0 + 𝑦1 𝑡 + 𝑦2 𝑡2 + 𝑦3 𝑡3 𝑌𝐻(𝑡𝑖) = 0.025 m, 𝑌𝐻(𝑡𝑓) = −0.025 m, 𝑌̇𝐻(𝑡𝑖) = 𝑉𝑠
𝑌, 𝑌𝐻(𝑡𝑓) = 𝑉𝑒

𝑌 

3𝑐 𝑍𝐻  (𝑡) = 𝑧0 + 𝑧1 𝑡 + 𝑧2 𝑡2 + 𝑧3 𝑡3 𝑍𝐻(𝑡𝑖) = ℎ, 𝑍𝐻(𝑡𝑓) = ℎ, 𝑍̇𝐻(𝑡𝑖) = 𝑉𝑠
𝑍, 𝑍̇𝐻(𝑡𝑓) = 𝑉𝑒

𝑍 

4𝑗  𝜃12 (𝑡) = 𝑞0 + 𝑞1 𝑡 + 𝑞2 𝑡2 + 𝑞3𝑡3 𝜃12(𝑡𝑖) = 1 𝑟𝑎𝑑, 𝜃12(𝑡𝑓) = 1.5 𝑟𝑎𝑑, 𝜃̇12(𝑡𝑖) = 0, 𝜃̇12(𝑡𝑓) = 0 

5𝑗  𝜃15 (𝑡) = 𝛼0 + 𝛼1 𝑡 + 𝛼2 𝑡2 + 𝛼3𝑡3 𝜃15(𝑡𝑖) = −0.64 𝑟𝑎𝑑, 𝜃15(𝑡𝑓) = −0.50 𝑟𝑎𝑑, 𝜃̇15(𝑡𝑖) = 0, 𝜃̇15(𝑡𝑓) = 0 

6𝑗  
𝜃18 (𝑡) = 𝛽0 + 𝛽1 𝑡 + 𝛽2 𝑡2 + 𝛽3𝑡3 𝜃18(𝑡𝑖) = 2 𝑟𝑎𝑑, 𝜃18(𝑡𝑓) = 1.5 𝑟𝑎𝑑, 𝜃̇18(𝑡𝑖) = 0, 𝜃̇18(𝑡𝑓) = 0 

7𝑗  𝜃21 (𝑡) = 𝛾0 + 𝛾1 𝑡 + 𝛾2 𝑡2 + 𝛾3𝑡3 𝜃21(𝑡𝑖) = 0.42 𝑟𝑎𝑑, 𝜃21(𝑡𝑓) = 0.50 𝑟𝑎𝑑, 𝜃̇21(𝑡𝑖) = 0, 𝜃̇21(𝑡𝑓) = 0 

cTrajectories are planned in cartesian space, jtrajectories are planned in joint-space 

 

In DSP, the torso mass is divided into two parts, as explained above. When the hip is positioned between the legs, the 

mass values change based on its distance from the right and left foot. The lesser the distance from its next support leg, the 

more will be the torso mass for that leg. Just before this stage, the right leg was the swing leg, and in DSP, it touched the 
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ground, and the torso started to shift from the left to the right leg. The torso mass is distributed on both legs using Eqs. (28) 

and (29). The left and right legs are considered as serial manipulators of 6 DOF each. Joint angles are calculated using IK 

as explained above, for the left and right legs. The obtained joint angles are used to compute torque requirements using Eq. 

(15) separately for the left and right legs. Similarly, torque variations for both arms are also computed using Eq. (15). The 

DBM can be calculated after getting the combined ZMP points. The support polygon during DSP is larger than SSP, as 

shown in Fig 8.  

 

 

Fig. 8. a) Support polygon during Double Support Phase with Critical and Safe Zone for the ZMP points. b) minimum 𝑋𝐷𝐵𝑀 and 𝑌𝐷𝐵𝑀 values based on 

left foot, right foot, and ZMP coordinates. [𝑋𝑙 , 𝑌𝑙] and [𝑋𝑟 , 𝑌𝑟] are the left and right foot coordinates. 

Thus, the stability margin is higher in DSP, and the robot can take a higher speed to shift the torso from one leg to 

another. The area shown in the lighter and darker color marked the safe and critical regions for ZMP points, respectively, 

as shown in Fig. 8(a). The DBM is calculated during DSP by considering the minimum stability margin available in x and 

y-direction. The minimum distance considered for DBM during DSP will determine whether the robot will be stable or not. 

It is decided based on the ZMP points, left foot, and right foot coordinates, as shown in Fig. 8(b). 

4.   Mathematical Statement of Single Objective Optimization 

A single-objective optimization problem is formulated to reduce power consumption by maintaining dynamic stability and 

not exceeding a predefined maximum torque fluctuation during SSP and DSP separately. Moreover, each of the joint angles 

should lie within its respective range.  

4.1.   Single support phase 

When the robot is studied in the SSP, the predefined values for the initial (𝑋𝐻
𝑖 ) and final (𝑋𝐻

𝑖 ) hip locations are provided 

in 𝑥-direction. The 𝑦-coordinate is kept fixed for both initial and final hip locations. The lateral sway motion of the hip is 

also considered to realize a 3D dynamic walking of the robot. Here, the robot is changing direction along the y-axis (refer 

to Fig. 3), and a positive and negative velocities will help to change the direction. However, the velocity (in the sagittal 

plane) must be positive throughout the walking motion when moving in a forward direction. For velocity in the 𝑥-direction, 

we can take only positive values. Similar to vertical motion, if the hip height needs to be traveled upward or downward, a 

different combination of velocity is required. For carrying out the analysis in SSP, the Left foot having the coordinates of 

[0.06,0.05,0]𝑇 is considered as a support leg. The Right leg (swing leg) is moved from [0.0, −0.05,0]𝑇 to [0.12, −0.05,0]𝑇 

and covered a distance of 0.12 𝑚.  

The amount of power consumed by 𝑖𝑡ℎ joint has been computed as the product of motor torque (𝜏𝑖) and angular 

velocity (𝑞̇𝑖). The amount of heat loss is also computed, and the average power consumption over a cycle of time period 𝑇 

is considered as the objective function 𝑃, as given in Eq. (32). Here, 𝐾 is constant, and its value is assumed 52 to be equal 

to 0.025. The single-objective optimization problem during SSP is mathematically stated as follows:  
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subject to 

𝑞min
 𝑖 ≤ 𝑞𝐽𝑜𝑖𝑛𝑡𝐴𝑛𝑔𝑙𝑒

𝑖 ≤ 𝑞max
 𝑖  , 

∆𝜏𝑖𝑗
𝑚𝑎𝑥 ≤ 1.2 𝑁𝑚 , 

𝑋𝐷𝐵𝑀
𝑚𝑖𝑛 > 0.0 𝑚 , 

𝑌𝐷𝐵𝑀
𝑚𝑖𝑛 > 0.0 𝑚 , 

𝑋𝐷𝐵𝑀
𝐴𝑣𝑔

≥ 0.05 𝑚 , 

𝑌𝐷𝐵𝑀
𝐴𝑣𝑔

≥ 0.02 𝑚 , 

and  

0.25 ≤ 𝑥1 ≤ 0.31 (𝑚);  

 −0.05 ≤ 𝑥2,  𝑥3 ≤ 0.05 (𝑚/sec );  

0.001 ≤ 𝑥4 , 𝑥5 ≤ 0.2 (𝑚/sec ) ;  

 −0.2 ≤ 𝑥6, 𝑥7 < 0.2 (𝑚/sec ); 

 0.015 ≤ 𝑥8 ≤ 0.030 (𝑚);  

 0.4 ≤ 𝑥9 ≤ 4 (𝑠𝑒𝑐); 

where, 1 2 9, ,...,x x x  are the decision variables,  

 𝑞𝑚𝑖𝑛
𝑖 =  [−1.14, −0.38, −1.53, −0.09, −1.19, −0.39, −0.79, −1.53, −0.10, −1.18, −0.76]𝑇 (𝑟𝑎𝑑)  

and, 𝑞𝑚𝑎𝑥
𝑖 = [0.74, 0.79, 0.48, 2.11, 0.92, 0.76, 0.38, 0.48, 2.12, 0.93, 0.39]𝑇 (𝑟𝑎𝑑) 

 

The parameter: 𝑥1 represents hip height. 𝑥2 and 𝑥3 denote the initial and final velocities associated with the hip height, 

respectively. 𝑥4 and 𝑥5 represent the initial and final sagittal velocities, whereas 𝑥6 and 𝑥7 indicate the initial and final 

lateral velocities. 𝑥8 and 𝑥9 denote the maximum swing height and time spent in a SSP, respectively. 𝑞𝑚𝑖𝑛
 𝑖  and 𝑞𝑚𝑎𝑥

 𝑖  are 

the minimum and maximum joint rotations measured in 𝑟𝑎𝑑𝑖𝑎𝑛 for 𝑖𝑡ℎjoint (refer to Fig. 4). The first joint of 𝑞𝑖 corresponds 

to 𝐻𝑖𝑝𝑌𝑎𝑤𝑃𝑖𝑡𝑐ℎ and other joints’ values are counted for the left and right legs by following the order from the hip to ankle 

joint’s angle limit. These values are taken from the official website 44.  

A cycle time is divided into ten equal parts. Superscripts 𝑚𝑖𝑛 and 𝐴𝑣𝑔 represent the minimum DBM and Average 

DBM during cycle time. Combining both the constraints for DBM (minimum and average), the robot should never attain 

a zero DBM and maintain an average value either equal to or more than 50% of the maximum possible DBM. ∆𝜏𝑖𝑗
𝑚𝑎𝑥  is the 

maximum possible torque fluctuation for 𝑖𝑡ℎ joint in 𝑗𝑡ℎ time interval. The lower and upper bounds for hip height are 

selected based on the reachable space by the robot without violating the joint limit constraints. The maximum hip height 

achievable with the stretched leg is 0.334 𝑚; however, the robot could not move at this height. A suitable upper bound for 

hip height is considered, and the two more decision variables associated with it could further increase or decrease it without 

violating the joint limits. The NAO Devils Team from Germany achieved a maximum forward speed of 0.4447 𝑚/𝑠𝑒𝑐 in 

RoboCup 2010, as reported 53 in the literature, and the initial and final velocities are kept within this range. For the purposes 

of this study, the maximum swing height and single support time are specified as 0.030 m and 4 seconds, respectively.  

4.2.   Double support phase 

A single-objective optimization problem for DSP is also formulated to minimize the power consumption (refer to Eq. (32)), 

when the torso shifts its position from the Left (previous support leg) to the Right Leg (next support leg). The positions of 

the left and right feet considered during DSP are [0.06, 0.05, 0]𝑇and [0.12, − 0.05, 0]𝑇, respectively. The hip is moved 

from position [0.07, 0.025, 𝑍𝐻]𝑇 to [0.11, −0.025, 𝑍𝐻]𝑇. The hip movement is in three-dimensional space, as in SSP. The 

single-objective optimization problem during DSP is defined as follows:  
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Minimize P  (refer to Eq. (32) 

 

subject to 

𝑞min
 𝑖 ≤ 𝑞𝐽𝑜𝑖𝑛𝑡𝐴𝑛𝑔𝑙𝑒

𝑖 ≤ 𝑞max
 𝑖  

∆𝜏𝑖𝑗
𝑚𝑎𝑥 ≤ 1.2 𝑁𝑚 , 

𝑋𝐷𝐵𝑀
𝑚𝑖𝑛 > 0.0 𝑚 , 

𝑌𝐷𝐵𝑀
𝑚𝑖𝑛 > 0.0 𝑚 , 

𝑋𝐷𝐵𝑀
𝐴𝑣𝑔

≥ 0.08 𝑚 , 

𝑌𝐷𝐵𝑀
𝐴𝑣𝑔

≥ 0.08 𝑚 , 

 

and  

0.25 ≤ 𝑥1 ≤ 0.31 (𝑚);  

 −0.05 ≤ 𝑥2,  𝑥3 ≤ 0.05 (𝑚/sec );  

0.001 ≤ 𝑥4 , 𝑥5 ≤ 0.2 (𝑚/sec );  

 −0.2 ≤ 𝑥6, 𝑥7 ≤ 0.2 (𝑚/sec ); 

 0.2 ≤ 𝑥8 ≤ 2 (𝑠𝑒𝑐𝑜𝑛𝑑𝑠); 

 

Here, 1 2 8, ,...,x x x  are the decision variables. The parameters used here are the same as that of the already defined for the 

SSP case. However, here, 𝑥8 represents time spent in DSP, and there is no swing height trajectory since both legs are on 

the ground. Moreover, the stability margin during DSP is expected to be more than that of SSP, so the constraints functions 

related to average DBM are modified accordingly. 𝑞min
 𝑖  and 𝑞max

 𝑖  are the minimum and maximum joint rotations possible 

for 𝑞𝑖 joint, which was kept the same as that mentioned for SSP.  

4.3.   Constraints considered during the single and double support phase 

We considered the following six functional constraints for single-objective optimization during SSP and DSP. The first 

two constraints are related to joint limits and torque fluctuation. The last four constraints are focused on the DBM. 

• The joints should move within their allowable ranges. The violation of these constraints would affect the walking 

motion. 

• The fluctuation of torque should be within the specified limit. The violation of these constraints means the robot needs 

a sudden torque requirement, which might affect the motion due to the motor’s failure.  

• The motion should be dynamically stable. It must maintain a positive DBM in the 𝑥 and 𝑦 directions during SSP and 

DSP in a cycle. The violation of these constraints affects the robot's stability and signifies that the robot is not balanced, 

at least in one-time intervals, despite maintaining the desired average balance margin. 

• The Average DBM in the 𝑥 and 𝑦 directions should always be equal to or greater than 50% of the maximum possible 

stability margin during SSP. The Average DBM in both directions should be either equal to or greater than 0.08 m 

during DSP. Both DBM constraints will ensure dynamic stability throughout the motion.  

5.   Results and Discussion 

Metaheuristic algorithms are employed to solve this optimization problem. PSO 54 is one of the most popular swarm-based 

evolutionary algorithms used for optimization. Each swarm consists of several particles, which search in 𝑛-dimensional 

space with different velocities. Each particle has the memory to track its current best position. As the generation progresses, 

it modifies its position by updating its velocity, while comparing it with the swarm’s global best. The PSO algorithm in the 

MATLAB environment is obtained from Yarpiz-Academic Source Codes and Tutorials 55. The constant inertia weight, 

personal learning coefficient (cognitive parameter), and global learning coefficient (social parameter) are taken as 1, 1.5, 

and 2, respectively. The swarm size and the maximum number of iterations are considered as 50 and 200, respectively. 

GA is another popular optimization technique for finding the optimum solution. Binary-coded GA is not suitable for 

representing large dimensions with continuous search space. Thus, an RCGA is used in this study to deal with the real 



           Analysis and Optimization of Gait Cycle of 25-DOF NAO Robot using PSO & GA  17 

 

 

parameters. Several versions of RCGA are available in the literature with different crossover and mutation operators. 

Different versions of RCGA were used in this study, but RCGA consists of simulated binary crossover (SBX)  56, and 

polynomial mutation 57 is found to be more efficient. The generated solutions for the next iteration depend on the probability 

distribution, which was assumed to be polynomial in nature. The distribution indices for simulated binary crossover and 

polynomial mutation are taken as 2 and 20, respectively. A population size of 50 and 200 generations are considered to get 

an optimal solution. 

The performance and optimal solutions obtained by both optimization algorithms are discussed separately for SSP and 

DSP. The optimal solutions obtained using PSO and GA are also evaluated to compute the constraints value and a few 

desirable parameters, as given in Tables 7 and 9 for SSP and DSP, respectively.  For these two walking phases, the solutions 

obtained by PSO and GA are examined for their influences on power consumption. The PSO and GA solutions’ 

improvement across the generations of gait parameters is utilized to find a relationship between power consumption and 

gait parameters.  

Apart from that, the performance of algorithms is also compared over several runs. Eleven sets of the initial population 

were generated at random. Both GA and PSO are used to optimize separately using one set of the initial population. There 

are 11 sets of results for the GA and PSO, each from all 11 sets of the initial population. The GA and PSO are started from 

the same initial population in each run. Their median performance is recorded to give equal opportunity to both algorithms 

to find a better solution. The population's 5th and 7th initial sets are found to be responsible for the median performance 

during SSP and DSP, respectively. These optimal solutions are reported in Tables 6 and 8 for SSP and DSP, respectively. 

The SSP and DSP are analyzed separately to study the effects of hip height, swing height, and terminal velocities in sagittal 

and lateral planes. PSO is found to be marginally better than the GA during SSP and DSP.  

5.1.   Single support phase 

As explained above, GA and PSO algorithms are used to run with 11 sets of initial populations selected at random. These 

initial sets are found to give the best to worst performance (based on the final value of the objective function) using GA 

and PSO. Both the GA and PSO are found to yield the median performance for the 5th set of the initial population. Table 6 

shows the optimal solutions for SSP using PSO and GA for the median performance from the 5th set of the initial population.  

Table 6. The outcome of the single objective optimization (in SSP) 

Decision variables 
Optimal value using 

PSO 

Optimal value using 

GA 

𝑥1 (𝑚) 0.31 0.31 

𝑥2 (𝑚/𝑠𝑒𝑐) −0.0020 −0.005 

𝑥3 (𝑚/𝑠𝑒𝑐) 0.0034 0.000 

𝑥4 (𝑚/𝑠𝑒𝑐) 0.0080 0.0031 

𝑥5 (𝑚/𝑠𝑒𝑐) 0.0025 0.0017 

𝑥6 (𝑚/𝑠𝑒𝑐) 0.0243 0.0364 

𝑥7 (𝑚/𝑠𝑒𝑐) −0.0256 −0.0135 

𝑥8 (𝑚) 0.015 0.015 

𝑥9 (𝑠𝑒𝑐) 4 4 

 

Total average power consumption obtained using PSO and GA (median performance) is seen to be equal to 1.283 W 

and 1.303 W, respectively. Since there are 11 runs of each GA and PSO, the best value obtained in each generation was 

stored. We can further calculate three more values from these 11 sets of GA and PSO in each generation, viz. minimum of 

the best (𝑚𝑖𝑛𝐵𝑒𝑠𝑡),  average of the best (𝐴𝑣𝑔𝐵𝑒𝑠𝑡), maximum of the best (𝑚𝑎𝑥𝐵𝑒𝑠𝑡). These three values obtained from 

each algorithm's best values over the generations, namely the minimum, average, and maximum of the best, provided a lot 

of information on its dynamics. Figs. 9 (a) and (b) show the best performance of the PSO and GA over the generations. 

The PSO is found to be better than GA because even for starting with the different initial populations, it has been 

successful in finding the same globally optimum solution. The PSO is found to perform marginally better than GA, due to 

being a better tool for both the local and global searches during optimization. However, GA got the better average very 

near to the minimum of the best optimal solution in each generation, but its error base with the maximum and minimum of 

the best values is significant compared to PSO. It is not found to be as good as the PSO, as it needs to be run multiple times 

to get the globally optimum solution. The optimal solutions obtained by both the algorithms slightly vary in sagittal and 

lateral velocities (refer to Table 6), which showed that there could be more combinations of connecting velocities during 
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an exchange of phases and still consume a similar amount of power. A study of these optimal solutions for power 

consumption would provide more information.  

 

 

 
 

    (a)             (b) 

Fig. 9. The maximum of the best, average of the best, and a minimum of the best of the objective function in each generation obtained by (a) PSO and 

the (b) GA during the 11 runs in SSP. 

5.1.1.   Comparison of the obtained optimal solutions based on the performance metrics 

The final optimal solutions obtained from PSO and GA are compared based on six defined performance indices (other than 

fitness function). The constraint functions and maximum swing height are considered as a way to measure the effectiveness 

and quality of the optimal solution. 

Table 7. Comparison of the result based on the performance index (in SSP) 

Sr. No. Performance Index 
Algorithm 

PSO GA 

1 ∆𝜏𝑚𝑎𝑥 (Nm) 0.4492 0.5143 

2 𝑋𝐷𝐵𝑀
𝑚𝑖𝑛  (m) 0.0307 0.0308 

3 𝑌𝐷𝐵𝑀
𝑚𝑖𝑛  (m) 0.0085 0.0084 

4 𝑋𝐷𝐵𝑀
𝐴𝑣𝑔

 (m) 0.0641 0.0591 

5 𝑌𝐷𝐵𝑀
𝐴𝑣𝑔

 (m) 0.0200 0.0200 

 Maximum swing height 

Achieved (𝑆ℎ
𝑚𝑎𝑥 m) 

Average Power Consumption (W) 

PSO GA 

6 0.015 1.283 1.303 
7 0.018 1.292 1.333 
8 0.022 1.308 1.439 
9 0.024 1.317 1.667 
10 0.026 1.588 2.605 
11 0.028 2.453 3.152 

 

∆𝜏𝑚𝑎𝑥 denotes the maximum change in torque recorded for any joint in any given interval. This value should be as low as 

possible. The optimal PSO-solution reduced the torque fluctuation by nearly 13% compared to the optimal GA-solution. 

The minimum DBM in the x and y directions are very close to each other. However, PSO is able to get a better average of 

DBM in the x-direction by 5 mm compared to that of the GA. Serial numbers 6-11 in Table 7 list the amount of average 

power required to achieve certain maximum swing heights determined by the potential solutions of PSO and GA, 

respectively. It is worth noting that PSO outperformed GA in terms of identifying the best combination of decision 

variables, resulting in reduced power consumption for comparable swing height. One of the interesting things to note here 

that PSO solution can achieve a maximum swing height of 0.024 m while consuming only 1.317 W (refer to Fig. 13), 

which is only 2.6% higher than the optimal one. The power consumption yielded by the GA is seen to be 26.57% higher 
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than that obtained by the PSO for reaching the same swing height. A detailed discussion related to the effect of higher 

swing height on power consumption is carried out in section 5.1.5. 

PSO found the walking trajectories that offered the higher swing height while consuming a similar amount of power, 

enabling the robot to avoid obstacles without extra power consumption. The optimal solution found by PSO has also 

minimized the torque fluctuations while providing an improved stability margin compared to GA. Thus, the PSO solutions 

are superior and proved their effectiveness during the optimization compared to that of the GA during SSP.  

5.1.2.   Effect of hip motion on power consumption  

Power consumption is reduced with an increase in hip height. The leg gets straighter with the higher hip height, and the 

joint angles’ variations are less, directly affecting the torque variation and angular velocity. The knee joint 58 is considered 

the primary source of energy consumption. There is less torque demand at knee joints due to the higher hip height, reducing 

overall power consumption. The design variables: 𝑥1, 𝑥2 and 𝑥3 are responsible for the trajectory of hip vertical motion. 

Fig. 10 shows these decision variables' variations with respect to objective function using PSO (left) and GA (right). Omran 

et al. 59  studied the effect of the vertical motion of the CoM on energy consumption and reported a natural up/down 

oscillation of CoM that resulted into a reduction in torque. Mandava and Vundavilli 60 found that the straight hip trajectory 

has a better stability margin than the cubic polynomial trajectory. Minimum power consumption and maximum stability 

margin required different vertical motions of CoM. The optimization algorithm found the minimum average power 

consumption without violating the stability margin. Both PSO and GA provided more solutions for negative 𝑥2 and positive 

𝑥3 velocity, which will generate a negative slope for the hip trajectory. Solutions provided by GA and PSO are in a very 

close interval, and those values are less than ±0.005 𝑚/𝑠𝑒𝑐, which signifies nearly a straight line trajectory with variation 

within a few mm. It is also observed that a higher stability margin is available with the lower CoM. The hip travels closer 

to the ground to lower the CoM, thereby increasing stability and preventing the violation of stability constraints. The 

solution provided by PSO is better due to the low variation of hip trajectory compared to GA. As explained in section 5.1.1, 

the PSO solution is able to find a better average of 𝑋𝐷𝐵𝑀 for similar average power consumption.  

 

 
Fig. 10. Variations of the objective function with hip height (𝑥1), initial velocity (𝑥2) and final velocity (𝑥3) of hip height, as shown for all the feasible 

solutions obtained using PSO (left) and GA (right) (in SSP). 

5.1.3.   Effects of initial and final forward velocities on power consumption 

Fig. 11 shows the variations for sagittal velocities obtained using PSO and GA. The initial and final sagittal velocities help 

in connecting the previous and next walking phases, respectively. It is assumed that the robot's initial sagittal velocity in 

SSP is received from DSP, and the final sagittal velocity in SSP would be transferred to the next DSP. PSO and GA 

provided the initial and final velocities ranging from 0.002 to 0.008 m/sec. Initial and final velocities beyond this range 
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introduce sudden acceleration to the robot, leading to increased torque requirements and, consequently, higher power 

consumption.  

 

 

 
Fig. 11. Variations of the objective function with initial (𝑥4), and final (𝑥5) sagittal velocities, as shown for all the feasible solutions obtained using PSO 

(left) and GA (right) (in SSP). 

5.1.4.   Effects of initial and final lateral velocities on power consumption 

Upper body movement in the lateral direction plays an important role in balancing the robot. A higher value in the robot’s 

lateral velocity increases the power consumption due to higher acceleration. However, an optimal value is required to 

ensure the desired dynamic balance. Once the robot enters into SSP, the upper body should stay there for some time while 

helping the movement in 𝑥 direction. At the end, it moves back towards the middle of the legs, signaling the start of the 

DSP. 𝑦 = 0.025 is the point from which the upper body entered into SSP, and it should bring itself at the same point 

fulfilling all the constraints.  

 
Fig. 12. Variations of the objective function with initial (𝑥6), and final (𝑥7) lateral velocities, as shown for all the feasible solutions obtained using PSO 

(left) and GA (right) (in SSP). 

 

A positive and negative velocity will help the robot to swing at the right time to change direction. PSO has provided nearly 

equal initial and final lateral velocities, which can be utilized to connect other phases smoothly. Though an initial and final 
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velocity during SSP and DSP cannot guarantee the nature of the velocity profile during walking, it can be used to connect 

two different phases to avoid any jerky motion during the exchange. The same velocity while entering and exiting from 

SSP or DSP helps in switching the walking phases better. Fig. 12 shows these variations of the design variables as obtained 

from PSO and GA. An increase in these velocities would increase power consumption. There is a limited range of lateral 

velocities for the minimum power consumption, and due to this fact that the initial and final hip locations at switching 

points are kept fixed. Only lateral velocities could prevent the violation of the stability margin. The higher stability margin 

in the y-direction depends on these two velocities.  

5.1.5.   Effect of Swing leg height on power consumption 

Swing height helps in avoiding collisions with obstacles and allows larger step sizes. Fig. 13 shows the swing leg height 

variations obtained using PSO and GA over the generations. GA found the walking trajectories that raised the swing height 

up to 2 mm for nearly the same power consumption. At the same time, this range is seen to be substantially higher, up to 9 

mm, in the case of solutions provided by PSO. As discussed in section 5.1.1, serial numbers 6-11 in Table 7 provide 

information on average power consumption against the swing height. This also exhibits the effectiveness of solutions 

provided by each algorithm on the achieved swing height.  

PSO is better at finding the combination of all the decision variables to consume nearly the same power for the higher 

swing leg. Moreover, similar power consumption for a slightly higher swing height is due to the fixed step length. It was 

also reported that most of the work is done at the hip joint 61 related to power consumption. Most of the power consumption 

by hip joints is utilized in swinging the leg from the initial to the final positions, whereas the height is maintained by the 

swing leg’s knee and ankle pitch joint. However, a high swing height generally consumes more power beyond these ranges, 

as the swing leg’s ankle and hip pitch must be adjusted to help track the swing leg trajectory. When the decision variables: 

sagittal and lateral velocities, are combined with hip trajectory, a new walking trajectory is created that allows a higher 

step height.  Here, PSO is able to find better solutions compared to that of the GA, in this case. 

 

 
Fig. 13. Variations of the objective function with maximum height (𝑥8) achieved by swing leg, as shown for all the feasible solutions obtained using PSO 

(left) and GA (right) (in SSP). 

5.1.6.   Effect of time spent in single support phase on power consumption 

Fig. 14 shows the variation of the objective function with time spent in SSP for all the feasible solutions obtained using 

PSO (left) and GA (right). The optimal power consumption is mostly dependent on the average speed, which can be 

calculated as the ratio of distance covered in a walking phase to the elapsed time. The distance is kept constant, and the 

power consumption depends on the time spent in SSP. A higher time spent in SSP signifies a slower speed, and it is evident 

that the robot is consuming less power at a slow pace, as shown in Fig. 14.  However, an extremely slow speed adversely 

affects the dynamic stability. Both algorithms have shown similar trends. The power could be seen increasing exponentially 

with a shorter duration. The angular velocity and torque both got increased, which affected the power consumption. 
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Fig. 14. Variations of the objective function with time spent (𝑥9) in single support phase, as shown for all the feasible solutions obtained using PSO (left) 

and GA (right) (in SSP). 

5.2.   Double support phase 

The total average power consumptions obtained using PSO and GA are found to be equal to 1.0682 𝑊 and 1.0685 𝑊, 

respectively. The outcome of single-objective optimization with the decision variable during DSP is given in Table 8. 

These algorithms could find the different combinations of sagittal and lateral velocities for similar power consumption. 

Power consumption is mostly affected by the average speed of the robot. Both the algorithms provided similar results, but 

PSO is seen to perform marginally better than GA during DSP. The effects of various decision parameters on power 

consumption have been discussed below. Similar to SSP, during DSP also, both PSO and GA are run 11 times using eleven 

sets of the initial population. The best performance analysis of both algorithms is done in a similar way, as reported for 

SSP. Fig. 15 compares the average of the best collection with the minimum and maximum of best values in each generation 

for both algorithms during eleven run samples. PSO and GA both converge to nearly similar values. However, the PSO is 

able to perform better in each run compared to GA due to its low error base with the maximum and minimum of best 

values. The optimal solutions yielded by the two algorithms are also found to be very similar. It also proved that considering 

the DSP into two SSPs reduces the complexity, and both algorithms could quickly converge to find the globally optimal 

solution. 

 

Table 8. The outcome of the Single Objective Optimization (in DSP) 

Decision variables 
Optimal value using 

PSO 

Optimal value using 

GA 

𝑥1 (𝑚) 0.3100 0.3100 

𝑥2 (𝑚/𝑠𝑒𝑐) -0.0008 0.0002 

𝑥3 (𝑚/𝑠𝑒𝑐) 
-0.0055 -0.0052 

𝑥4 (𝑚/𝑠𝑒𝑐) 
0.0520 0.0582 

𝑥5 (𝑚/𝑠𝑒𝑐) 0.0010 0.0010 

𝑥6 (𝑚/𝑠𝑒𝑐) -0.0367 -0.0384 

𝑥7 (𝑚/𝑠𝑒𝑐) -0.0424 -0.0405 

𝑥8 (𝑠𝑒𝑐) 2 2 
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        (a)                                       (b) 

Fig. 15. The maximum of best, average of best, and minimum of best of the objective function in each generation obtained by (a) PSO and (b) GA during 

11 runs (in DSP). 

5.2.1.   Comparison of the obtained optimal solutions based on the performance metrics 

Table 9 lists all the values of the performance index as obtained from the final optimal solutions of each algorithm. As 

evident from the above discussion, both PSO and GA are found to give very similar results, as seen in the table below. The 

performance indices consisting of the constraints' values are very close for both algorithms. Though the PSO has given 

marginally better average power consumption, the GA is able to provide a much better value in terms of low fluctuation of 

torque (∆𝜏𝑚𝑎𝑥) and slightly higher average DBM in the x and y direction compared to PSO. PSO provided a better minimum 

value of the DBM in the x and y directions. GA solution is found to have a lower torque change and a higher average DBM 

at the cost of a minor increase in power consumption. GA is able to reduce the change in torque by 3% compared to PSO. 

GA is also able to improve the average DBM in the x and y-directions, nearly by 0.2 mm. This also shows that PSO and 

GA could minimize the power consumption without violating any constraints; however, GA is able to provide a similar 

power consumption but with better values in the performance index. The importance of GA in finding the optimal solution 

related to the walking trajectories of biped robots cannot be neglected. 

Table 9. Comparison of the result based on the performance index (in DSP) 

Sr. No. Performance Index 
Algorithm 

PSO GA 

1𝑎 ∆𝜏𝑚𝑎𝑥 (Nm) 0.6751 0.6554 

2𝑏 𝑋𝐷𝐵𝑀
𝑚𝑖𝑛  (m) 0.0734 0.0731 

3𝑏 𝑌𝐷𝐵𝑀
𝑚𝑖𝑛  (m) 0.0700 0.0699 

4𝑏 𝑋𝐷𝐵𝑀
𝐴𝑣𝑔

 (m) 0.0926 0.0928 

5𝑏 𝑌𝐷𝐵𝑀
𝐴𝑣𝑔

 (m) 0.0809 0.0811 

7𝑎 Avg Power Consumption (W) 1.0682 1.0685 
aLower the better. bHigher the better 

5.2.2.   Effect of hip motion on the power consumption 

A higher hip height consumes less energy for the reasons that were explained earlier. However, a much larger support area 

is available during DSP; therefore, a wide range of initial and final velocities can be seen in Fig. 16. The robot has utilized 

a positive initial velocity to increase its height to further reduce power consumption without violating any constraints. Both 

PSO and GA are able to find similar values related to hip height parameters. Fig.16 shows the variations of the solutions, 

as obtained from PSO and GA. A similar trend is also observed in Farzadpour et al. 62 during the study of DSP. 
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Fig. 16. Variations of the objective function with hip height (𝑥1), initial velocity (𝑥2) and final velocity (𝑥3) of hip height, as shown for all the feasible 

solutions obtained using PSO (left) and GA (right) (in DSP). 

    

5.2.3.   Effect of initial and final forward velocities on power consumption 

Fig. 17 shows the variations of sagittal velocities using PSO and GA. A much higher velocity range is obtained in DSP 

than that of SSP because of the larger support polygon. In DSP, the initial sagittal velocities for both algorithms varied 

from nearly 0.045 to 0.075 m/sec, whereas the final velocity varied from 0.001 to 0.02 m/sec. It shows that the wide ranges 

of walking speeds are available during DSP to connect an SSP. Despite different terminal velocities, the robot is able to 

consume a similar amount of power because power is mainly dependent on the average speed of the robot in that phase. 

 

 
 

Fig. 17. Variations of the objective function with initial (𝑥4), and final (𝑥5) sagittal velocities, as shown for all the feasible solutions obtained using PSO 

(left) and GA (right) (in DSP). 
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5.2.4.   Effect of initial and final lateral velocities on power consumption 

In DSP, the robot needs to travel from a positive y-direction to a negative y-direction, and thus, both initial and final 

velocities need to be negative. It is interesting to note that initial and final velocities obtained from both algorithms are 

varied from -0.035 m/sec to -0.075 m/sec, as shown in Fig 18. A similar value of initial and final velocities will help in 

connecting the previous and next walking phases smoothly. The lower initial velocity did not satisfy the stability 

constraints; thus, there is a less feasible solution near zero. Beyond the given ranges, the higher-end velocities consumed 

more power due to the higher acceleration. A few feasible solutions are found to exist with positive velocity but at higher 

power consumption. Positive velocity helps to attain a new position, and then, the velocity could be changed to move from 

one support leg to another.  

 
Fig. 18. Variations of the objective function with initial (𝑥6), and final (𝑥7) lateral velocities, as shown for all the feasible solutions obtained using PSO 

(left) and GA (right) (in DSP). 

5.2.5.   Effect of time spent in double support phase on power consumption 

The DSP is also more energy efficient at a slower speed, as evident from Fig. 19.  

 

 
 Fig. 19. Variations of the objective function with time spent (𝑥8) in double support phase, as shown for all the feasible solutions obtained using PSO 

(left) and GA (right) (in DSP).  
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A reduction in time spent in the DSP is more costly in power consumption, as it increases the average speed. Available 

solutions having a shorter duration could be selected if speed is the main criterion at the higher power consumption. One 

of the most intriguing aspects is the fact that there is a discontinuity in the solutions between some durations. The desired 

average stability margin constraint has been found to be violated for those periods due to the changes in trajectory. It is 

also observed that the robot's stability margin got reduced when it walked too quickly or too slowly. The robot's average 

speed also influences the desired DBM. 

5.3.   Statistical Analysis 

A Wilcoxon rank-sum test is carried out in addition to the performance analysis to declare the better algorithm out of these 

two. PSO is found to give better performance than GA during both the SSP and DSP of the humanoid robot. The statistical 

analysis is carried out using MATLAB. 

5.3.1.   Single support phase 

Two sets of GA and PSO fitness values (each consisting of eleven values) obtained at the final generation are used to 

perform the Wilcoxon rank-sum test in MATLAB. The rank-sum test produced a p-value equal to 0.000235. Since the p-

value is less than 0.05, there is enough evidence to reject the null hypothesis that PSO will turn out to be better than GA 

during SSP with a 5% significance level. Moreover, a left-sided test is also performed to assess the decrease in the median 

of PSO compared to GA at the 5% significance value. Both the p-value (0.000117) and the result of the hypothesis (was 

true) indicated the rejection of the null hypothesis of equal medians at the default 5% significance level. The rank-sum test 

statistic and z-statistic are found to be equal to 70 and −3.6772, respectively. This left-tailed alternative hypothesis further 

stated that the median of PSO is less than the median of GA during SSP. 

5.3.2.   Double support phase 

Wilcoxon rank-sum tests is also performed for DSP using eleven values of PSO and GA fitness values obtained at the final 

generation. The p-value obtained from the rank-sum test is seen to be equal to 0.0181. There is also enough evidence to 

reject the null hypothesis that PSO will be better than GA during DSP with a 5% significance level. The p-value (0.0181) 

and the result of the hypothesis (was true) in a left-tailed, alternative hypothesis indicated the rejection of the null hypothesis 

of equal medians at the 5% significance level. The values of the rank-sum test statistic and z-statistic are found to be 90 

and −2.3639, respectively. These values confirm that the median of PSO is less than that of GA during DSP. 

5.4.   Simulation Results 

A simulation is performed on the NAO humanoid robot in the Webots simulator. NAO is commanded to walk on the 

planned optimal hip, swing leg, and hand motion trajectory. The joint angles obtained using IK are written in a motion file, 

and each line corresponding to the next step is executed for each 40 ms. This is comparable with the functions provided by 

Softbank Robotics and will show a similar result if executed on the actual NAO robot.  The robot is able to walk without 

falling on the ground, which confirms that it is stable and does not violate any joint limit. The Webots simulator verified 

the optimal solution provided by PSO and GA for SSP and DSP. However, Figs. 20 (a) and (b) show the simulations for 

SSP and DSP, respectively, according to the optimal solution provided by PSO. 

 

  

 
(a) 
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(b) 

Fig. 20. a) Front and side views at each 1 second during SSP, b) Front view at every 0.25 seconds during DSP of NAO robot (from left to right) shown 

as captured from the Webots simulator. 

6.   Concluding Remarks 

This study has found optimal gait parameters for consuming minimum power for NAO biped robot for SSP and DSP, 

separately, while walking on an even floor after maintaining a high DBM. NAO robot’s hip movements are allowed in x, 

y, and z directions. Constrained optimization problems have been solved using PSO and GA for both phases, 𝑣𝑖𝑧., SSP and 

DSP separately. Joint limits violation and maximum allowable torque fluctuations have also been considered as constraints 

to avoid motor failure. The maximum allowed torque change has ensured smoothness at the torque level to lower the power 

consumption. After analyzing the optimal solutions, it has been found that the higher hip height helps to minimize power 

consumption by relieving the extra load from the ankle and knee joints. In contrast, a lower hip height has improved 

stability. A lower hip height brings the CoM of the robot closer to the ground, thus, affecting the dynamic stability. Robots 

walking at a slow speed with high hip height and low swing height would consume less power due to the lowest possible 

joint variation. The more time spent in a walking phase has helped the robot to move slowly and, thus, reduced the power 

consumption but at the cost of poor stability. During SSP and DSP, a natural oscillation of hip trajectory minimizes torque, 

but a straight hip trajectory closer to the ground has an enhanced stability margin. Thus, minimum power consumption and 

maximum DBM have been found to contradict each other.  

The robot can take the higher speed in DSP due to its larger support polygon, preventing falling. It has also been 

observed that the DBM could be significantly improved by suitable arms’ movement during SSP and DSP. Different 

sagittal and lateral velocities were available, but the optimal power consumption has mostly dependent on the average 

speed during a single or double support phase. Due to its larger support polygon, there were higher ranges of terminal 

velocities available during DSP. DSP should not be neglected because it is essential in maintaining steady locomotion, 

especially while walking at a moderate speed. In comparison to SSP, DSP has provided stability in a biped model over a 

large range of walking speeds. DBM has also been found to be directly affected by the average speed of the robot during 

SSP and DSP. An extremely fast or very slow-paced robot will have a poor stability margin. The findings of this study are 

in tune with the general experience of a human being walking on plain ground.  

The proposed work was also simulated in a suitable environment using 𝑊𝑒𝑏𝑜𝑡𝑠 simulator to confirm its effectiveness. 

Wilcoxon rank-sum test was performed using the two sets of samples (each set consists of eleven fitness values) obtained 

using PSO and GA at their final generation during SSP and DSP. The p-values were less than 0.05 in SSP and DSP to 

reject the null hypothesis that PSO is statistically significant in both cases. Moreover, a left-tailed, alternative hypothesis 

based on obtained p-value and the result of the hypothesis has indicated the rejection of the null hypothesis of equal medians 

at the 5% significance level. This confirms that the median of PSO is less than the median of GA during SSP and DSP. 

The PSO found the minimum power consumption during SSP and offered a better value in the performance index, which 

was defined based on the constraint functions and swing height. PSO solution has found the minimum torque change within 

the time interval, better average stability margin, and maximum height achieved by the swing leg for nearly similar power 

consumption. Though PSO was able to find the globally optimum value for power consumption during DSP, GA has 

provided marginally better torque fluctuation as compared to PSO. The PSO algorithm has been found to be better than 

GA due to its capability to search both globally and locally. The GA is better known for finding an optimal global solution.  

The optimal solution of a single-objective optimization problem has mainly depended on the space of the design 

variable, and the minimum values have been found using a different combination of these variables. However, there might 

be a need for more stability or speed, and then a multi-objective optimization problem could be formulated to optimize the 

power and dynamic stability margin. A multi-objective optimization problem to minimize power and maximize DBM will 

be formulated and studied in the future to allow a designer to choose a suitable solution depending on the need. Cubic 
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polynomial trajectories for hip motion have been utilized in this study. However, other trajectories can also be tried for the 

hip motion in 3D space, and its impacts on DBM and power consumption will be studied in the future. The constraints like 

maximum and minimum joint rotations possible have been considered here. However, the maximum and minimum angular 

velocities and acceleration can also be considered and have been kept in the scope for future study. This work aimed to 

obtain the optimal gait parameters and study its effect on power consumption for the humanoid robot’s motion in SSP and 

DSP separately. However, a continuous exchange of these phases for the robot’s motion can be considered and has been 

kept in the scope of future studies.  

References 

 

1.  X. Mu and Q. Wu, A complete dynamic model of five-link bipedal walking, in Proceedings of the 2003 American Control 

Conference, 2003. (2003), pp. 4926–4931. 

2.  R. Rajendra and D. Kumar Pratihar, Analysis of double support phase of biped robot and multi-objective optimization using 

genetic algorithm and particle swarm optimization algorithm, S¯ Adhan¯ a 40 (2015) 549–575. 

3.  N. Kofinas, E. Orfanoudakis and M. G. Lagoudakis, Complete Analytical Forward and Inverse Kinematics for the NAO 

Humanoid Robot, Journal of Intelligent and Robotic Systems: Theory and Applications 77 (2014) 251–264. 

4.  E. Hashemi and M. Ghaffari Jadidi, Dynamic modeling and control study of the nao biped robot with improved trajectory 

planning, Advanced Structured Materials 16 (2012) 671–688. 

5.  E. Hashemi and A. Khajepour, Kinematic and three-dimensional dynamic modeling of a biped robot, Proceedings of the 

Institution of Mechanical Engineers, Part K: Journal of Multi-Body Dynamics 231 (2017) 57–73. 

6.  M. Alibeigi, S. Rabiee and M. N. Ahmadabadi, Inverse Kinematics Based Human Mimicking System using Skeletal Tracking 

Technology, J Intell Robot Syst 85 (2017) 27–45. 

7.  S. Sakka, L. P. Poubel and D. Cehajic, Tasks prioritization for whole-body realtime imitation of human motion by humanoid 

robots, in Digital Intelligence (DI2014) (2014), pp. 1-5. 

8.  F. Wang, C. Tang, Y. Ou and Y. Xu, A real-time human imitation system, in Proceedings of the 10th World Congress on 

Intelligent Control and Automation (2012), pp. 3692–3697. 

9.  X. Lv, J. Chai and S. Xia, Data-driven inverse dynamics for human motion, ACM Trans Graph 35 (2016), pp 1-12. 

10.  C. Hernández-Santos, R. Soto and E. Rodríguez, Design and dynamic modeling of humanoid biped robot e-robot, in 

Proceedings - 2011 IEEE Electronics, Robotics and Automotive Mechanics Conference, CERMA 2011 (2011), pp. 191–196. 

11.  E. Kljuno and R. L. Williams, Humanoid Walking Robot: Modeling, Inverse Dynamics, and Gain Scheduling Control, Journal 

of Robotics 2010 (2010) 1–19. 

12.  C. Hernández-Santos, E. Rodriguez-Leal, R. Soto and J. L. Gordillo, Kinematics and dynamics of a new 16 DOF humanoid 

biped robot with active toe joint, Int J Adv Robot Syst 9 (2012) 190. 

13.  M. Rameez and L. A. Khan, Modeling and dynamic analysis of the biped robot, in ICCAS 2015 - 2015 15th International 

Conference on Control, Automation and Systems, Proceedings (2015), pp. 1149–1153. 

14.  A. K. Kashyap, D. R. Parhi and S. Kumar, Dynamic Stabilization of NAO Humanoid Robot Based on Whole-Body Control 

with Simulated Annealing, International Journal of Humanoid Robotics 17 (2020). 

15.  X. Bajrami, A. Dermaku, A. Shala and R. Likaj, Kinematics and dynamics modelling of the biped robot, IFAC Proceedings 

Volumes (IFAC-PapersOnline) 46 (2013) 69–73. 

16.  M. Folgheraiter and B. Aubakir, Design and Modeling of a Lightweight and Low Power Consumption Full-Scale Biped Robot, 

International Journal of Humanoid Robotics 15 (2018), pp 1850022(1)-1850022(32). 

17.  M. Khadiv, M. Ezati and S. A. A. Moosavian, A Computationally Efficient Inverse Dynamics Solution Based on Virtual Work 

Principle for Biped Robots, Iranian Journal of Science and Technology - Transactions of Mechanical Engineering 43 (2019) 

37–52. 

18.  S. Kajita and K. Tani, Study of dynamic biped locomotion on rugged terrain-derivation and application of the linear inverted 

pendulum mode, in Proceedings. 1991 IEEE International Conference on Robotics and Automation pp. 1405–1411. 

19.  M. Vukobratović and B. Borovac, Zero-moment point—thirty five years of its life, International Journal of Humanoid Robotics 

1 (2004) 157–173. 

20.  Y. J. Seo and Y. S. Yoon, Design of a Robust Dynamic Gait of the Biped Using the Concept of Dynamic Stability Margin, 

Robotica 13 (1995) 461–468. 

21.  H. J. Chung, J. H. Kim and Y. Xiang, Rate of angular momentum in ZMP using efficient DH-based recursive lagrangian, 

International Journal of Humanoid Robotics 15 (2018). 



           Analysis and Optimization of Gait Cycle of 25-DOF NAO Robot using PSO & GA  29 

 

 

22.  Changjiu Zhou, Pik Kong Yue, Jun Ni and Shan-Ben Chan, Dynamically stable gait planning for a humanoid robot to climb 

sloping surface, in IEEE Conference on Robotics, Automation and Mechatronics, 2004. (IEEE, 2004), pp. 341–346. 

23.  J. Liu and O. Urbann, Bipedal walking with dynamic balance that involves three-dimensional upper body motion, Rob Auton 

Syst 77 (2016) 39–54. 

24.  D. Gong, J. Yan and G. Zuo, A Review of Gait Optimization Based on Evolutionary Computation, Applied Computational 

Intelligence and Soft Computing 2010 (2010) 1–12. 

25.  D.K. Pratihar, Fundamentals of Robotics,1st ed., Narosa Publishing House Pvt. Ltd., New Delhi, India, 2017. 

26.  Tushar, P. R. Vundavilli and D. K. Pratihar, Dynamically balanced ascending gait generation of a biped robot negotiating 

staircase, in IEEE Region 10 Colloquium and 3rd International Conference on Industrial and Information Systems, ICIIS 2008 

(IEEE, 2008), pp. 1–6. 

27.  P. R. Vundavilli, S. K. Sahu and D. K. Pratihar, Online dynamically balanced ascending and descending gait generations of a 

biped robot using soft computing, International Journal of Humanoid Robotics 4 (2007) 777–814. 

28.  P. R. Vundavilli, S. K. Sahu and D. K. Pratihar, Dynamically balanced ascending and descending gaits of a two-legged robot, 

International Journal of Humanoid Robotics 4 (2007) 717–751. 

29.  P. R. Vundavilli and D. K. Pratihar, Dynamically balanced optimal gaits of a ditch-crossing biped robot, Rob Auton Syst 58 

(2010) 349–361. 

30.  P. R. Vundavilli and D. K. Pratihar, Soft computing-based gait planners for a dynamically balanced biped robot negotiating 

sloping surfaces, Appl Soft Comput 9 (2009) 191–208. 

31.  X. Luo, D. Xia and C. Zhu, Impact dynamics-based torso control for dynamic walking biped robots, International Journal of 

Humanoid Robotics 15 (2018). 

32.  M. Raj, V. B. Semwal and G. C. Nandi, Multiobjective optimized bipedal locomotion, International Journal of Machine 

Learning and Cybernetics 10 (2019) 1997–2013. 

33.  V.-H. Dau, C.-M. Chew and A.-N. Poo, Achieving energy-efficient bipedal walking trajectory through GA-based optimization 

of key parameters, International Journal of Humanoid Robotics 6 (2009) 609–629. 

34.  C. Niehaus, T. Röfer and T. Laue, Gait optimization on a humanoid robot using particle swarm optimization, in Proceedings of 

the Second Workshop on Humanoid Soccer Robots in Conjunction with The (2007), pp. 1–7. 

35.  L. Gong, R. Zhao, J. Liang, L. Li, M. Zhu, Y. Xu, X. Tai, X. Qiu, H. He, F. Guo, J. Yao, Z. Chen and C. Zhang, Generation of 

walking motions for the biped ascending slopes based on genetic algorithm, in Lecture Notes in Computer Science (Including 

Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Springer Verlag, 2018), pp. 201–209. 

36.  T. Hemker, M. Stelzer, O. von Stryk and H. Sakamoto, Efficient walking speed optimization of a humanoid robot, Int J Rob 

Res 28 (2009) 303–314. 

37.  K. Wolff, D. Sandberg and M. Wahde, Evolutionary optimization of a bipedal gait in a physical robot, in 2008 IEEE Congress 

on Evolutionary Computation, CEC 2008 (2008), pp. 440–445. 

38.  M. K. Muni, D. R. Parhi and P. B. Kumar, Improved motion planning of humanoid robots using bacterial foraging optimization, 

Robotica 39 (2021) 123–136. 

39.  L.-Y. Wang, Z. Liu, X.-J. Zeng and Y. Zhang, Gait control of humanoid robots via fuzzy logic and iterative optimization, in 

Proceedings of the 30th Chinese Control Conference (IEEE, 2011), pp. 3931–3936. 

40.  L. Roussel, C. Canudas-De-Wit and A. Goswami, Generation of energy optimal complete gait cycles for biped robots, in 

Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No. 98CH36146) (1998), pp. 2036–2041. 

41.  F. M. Silva and J. A. T. Machado, Energy analysis during biped walking, in Proceedings 1999 IEEE International Conference 

on Robotics and Automation (Cat. No. 99CH36288C) (1999), pp. 59–64. 

42.  P. H. Channon, S. H. Hopkins and D. T. Pham, A variational approach to the optimization of gait for a bipedal robot, Proc Inst 

Mech Eng C J Mech Eng Sci 210 (1996) 177–184. 

43.  Y. Uno, M. Kawato and R. Suzuki, Formation and control of optimal trajectory in human multijoint arm movement, Biological 

Cybernetics 1989 61:2 61 (1989) 89–101. 

44.  SoftBank Robotics Developer Center, Kinematics Data: Links, Joints, and Body Frames, Available at: 

https://developer.softbankrobotics.com/nao6/nao-documentation/nao-developer-guide/kinematics-data. [Accessed: 15-Aug-

2021]. 

45.  SoftBank Robotics Developer Center, The masses and CoM positions for NAO, Available at: 

https://developer.softbankrobotics.com/nao-naoqi-2-1/nao-documentation/nao-technical-guide/nao-h25/h25-masses. 

[Accessed: 15-Aug-2021]. 

46.  K. S. Fu, R. C. Gonzalez, and C. S. G. Lee, Robotics: control, sensing, vision, and intelligence, Vol. 1, Tata McGraw-Hill 

Education, New York, USA, 1987. 



30 P. Gupta, D.K. Pratihar & K. Deb 

 

 

47.  M. Vukobratović and J. Stepanenko, On the stability of anthropomorphic systems, Math Biosci 15 (1972) 1–37. 

48.  D. K. Pratihar, V. Pandu Ranga and R. Rajendra, Humanoid Body Control Using Neural Networks and Fuzzy Logic, in 

Humanoid Robotics: A Reference (2018), pp. 1–25. 

49.  Q. Li, A. Takanishi and I. Kato, A biped walking robot having a ZMP measurement system using universal force-moment 

sensors, in Proceedings IROS’91: IEEE/RSJ International Workshop on Intelligent Robots and Systems’ 91 (1991), pp. 1568–

1573. 

50.  P. Sardain and G. Bessonnet, Forces acting on a biped robot. Center of pressure-zero moment point, IEEE Transactions on 

Systems, Man, and Cybernetics-Part A: Systems and Humans 34 (2004) 630–637. 

51.  S. Kajita, H. Hirukawa, K. Harada and K. Yokoi, Introduction to Humanoid Robotics, in Springer Tracts in Advanced Robotics 

(Springer Berlin Heidelberg, Berlin, Heidelberg, 2014). 

52.  J. Nishii, K. Ogawa and R. Suzuki, The optimal gait pattern in hexapods based on energetic efficiency, in Proc. 3rd International 

Symposium on Artificial Life and Robotics, Beppu (1998), pp. 106–109. 

53.  J. Cristiano, D. Puig and M. A. Garcia, On the maximum walking speed of NAO humanoid robots, in XII Workshop of Physical 

Agents (2011), pp. 3–7. 

54.  J. Kennedy and R. Eberhart, Particle swarm optimization, Proceedings of ICNN’95 - International Conference on Neural 

Networks 4 (n.d.) 1942–1948. 

55.  Mostapha Kalami Heris, Particle Swarm Optimization in MATLAB, n.d. . Available at: URL: https://yarpiz.com/50/ypea102-

particle-swarm-optimization. [Accessed: 15-Aug-2021]. 

56.  K. Deb and R. B. Agrawal, Simulated binary crossover for continuous search space, Complex Systems 9 (1995) 115–148. 

57.  K. Deb, M. Goyal and others, A combined genetic adaptive search (GeneAS) for engineering design, Computer Science and 

Informatics 26 (1996) 30–45. 

58.  Z. Sun and N. Roos, An energy efficient dynamic gait for a Nao robot, in 2014 IEEE International Conference on Autonomous 

Robot Systems and Competitions (ICARSC) (2014), pp. 267–272. 

59.  S. Omran, S. Sakka and Y. Aoustin, Effects of COM Vertical Oscillation on Joint Torques during 3D Walking of Humanoid 

Robots, International Journal of Humanoid Robotics 13 (2016), pp 1650019(1)-1650019(18). 

60.  R. K. Mandava and P. R. Vundavilli, Study on influence of hip trajectory on the balance of a biped robot, Lecture Notes in 

Electrical Engineering 394 (2017) 265–272. 

61.  Y. Fujimoto, Minimum energy biped running gait and development of energy regeneration leg, in The 8th IEEE International 

Workshop on Advanced Motion Control, 2004. AMC ’04. (2004), pp. 415–420. 

62.  F. Farzadpour, M. Danesh and S. M. TorkLarki, Development of multi-phase dynamic equations for a seven-link biped robot 

with improved foot rotation in the double support phase, Proc Inst Mech Eng C J Mech Eng Sci 229 (2015) 3–17. 

  

 

 

Pushpendra Gupta is pursuing his Ph.D. in the Department of Mechanical Engineering of the 

Indian Institute of Technology Kharagpur, India. He received his M. Tech (Gold Medallist) in the 

Production Engineering Department from the National Institute of Technology Agartala, India in 

2015. He received his B. Tech in Mechanical and Automation Engineering from Maharshi 

Dayanand University Rohtak, India in 2011. He has also worked as a faculty member for two and 

a half years at MITRC Alwar, Rajasthan, India, prior joining to IIT Kharagpur. His current research 

as a PhD Research Scholar is focused on optimal gait generation in biped locomotion of humanoid 

robots. His research interests include humanoid robots, soft computing approaches, multi-, and 

many-objective optimization. 

 

Dr. Dilip Kumar Pratihar received his Ph.D. from Indian Institute of Technology Kanpur, India, 

in 2000. He received University Gold Medal, A.M. Das Memorial Medal, Institution of 

Engineers’ (I) Medal, INSA Teachers’ Award 2020, New Code of Education 2021 Award, 

Distinguished Alumnus Award 2021 from National Institute of Technology, Durgapur, India, 

Technologist of the Year 2022 Award from IEEE India Council, Institute Chair Professor Award 

2022 from, IIT Kharagpur, India, and others. He completed his post-doctoral studies in Japan, 

and then, in Germany under the Alexander von Humboldt (AvH) Fellowship Programme. He is working now as a Professor 

of Indian Institute of Technology Kharagpur, India. His research areas include Robotics, Soft Computing, Manufacturing 

Science, and others. He has made significant contributions in his fields of research. He has authored/co-authored three 

textbooks, four reference books and edited one book. He has developed three on-line NPTEL courses, such as “Traditional 



           Analysis and Optimization of Gait Cycle of 25-DOF NAO Robot using PSO & GA  31 

 

 

and Non-Traditional Optimization Tools”, “Robotics” and “Fuzzy Logic and Neural Networks”. He has guided 25 Ph.D.s. 

He has filed four patents, and been granted one Copyright. He has completed a number of sponsored projects. He is in 

editorial board of a few International Journals. He is an Associate Editor of two International Journals. He has been elected 

as a Fellow of Institution of Engineers (I), MASME and SMIEEE. 

 

Kalyanmoy Deb is University Distinguished Professor and Koenig Endowed Chair Professor at 

Department of Electrical and Computer Engineering in Michigan State University, USA. He was an 

International Visiting Professor at Indian Institute of Technology Kharagpur during the course of this 

study. Prof. Deb's research interests are in evolutionary optimization and their application in multi-

criterion optimization, modeling, and machine learning. He was awarded IEEE Evolutionary 

Computation Pioneer Award for his sustained work in EMO, Infosys Prize, TWAS Prize in 

Engineering Sciences, CajAstur Mamdani Prize, Distinguished Alumni Award from IIT Kharagpur, 

Edgeworth-Pareto award, Bhatnagar Prize in Engineering Sciences, and Bessel Research award from Germany. He is 

fellow of IEEE and ASME. He has published over 570 research papers with Google Scholar citation of over 189,000 with 

h-index 127. He is in the editorial board on 10 major international journals. More information about his research 

contribution can be found from https://www.coin-lab.org. 

 

https://www.coin-lab.org/

