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Abstract 

The Rotational Magnetorheological Abrasive Flow Finishing (R-MRAFF) technique achieves 

uniform, nano-level mirror finishes with high material removal rates, distinguishing it from other 

nano-finishing methods by combining rotational motion and magnetorheological abrasive particles 

during the nano-finishing process. Regression analysis is conducted to assess the influence of input 

process parameters, namely extrusion pressure (P), finishing cycles (N), rotational speed of magnet 

(S), and mesh size of abrasive (M) on the responses like percentage improvement in surface 

roughness (%Δ𝑅𝑎) and amount of material removed (MR). The obtained regression equations for 

%Δ𝑅𝑎, and MR are then used to formulate a multi-objective optimization problem, which is solved 

by an elitist non-dominated sorting genetic algorithm. The final results revealed a trade-off 

between these two objectives. The higher P, N, and S levels effectively generated a trade-off for 

the better surface finish and a good MR. However, the lower levels of M are adequate for both the 

responses. The study's findings, particularly the identified optimal parameters’ combinations, offer 

valuable insights for maximizing the potential of R-MRAFF, enabling the attainment of desired 

surface finish and material removal characteristics in a range of applications. This study can be 

extended to other complex manufacturing processes with multiple parameters and responses. 

Keywords: Nano-finishing, R-MRAFF Technique, Multi-objective Optimization, NSGA-II, 

Optimal Process Parameters 
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2.1 Introduction 

Nano-finishing, a cutting-edge surface refinement technique, meticulously eliminates a minute 

fraction of material from the surface, operating within the nano-meter range. This process produces 

a high-quality surface finish with excellent surface properties, particularly useful in the Electronic 

and Mechanical industries [1], [2]. Nano-finishing methods have various applications in multiple 

sectors, including aviation, automotive, biomedical, and electronics. In the realm of aviation 

engineering, impeccably polished copper mirrors find significant utility owing to their exceptional 

thermal conductivity and heat capacity. However, due to the inherent softness of copper, achieving 

nano-finishing on this material is highly difficult. 

To attain the better surface finish (SF), researchers applied different magnetorheological 

(MaR) procedures [3]. Nano-finishing techniques are harnessed to enhance the surface finish of 

engine components, yielding substantial benefits such as enhanced fuel efficiency and reduced 

emissions. Nanotechnology has also been used in paints to protect automobiles from scratches and 

other damage over time. Nanotechnology is also applied to other body components, including but 

not limited to chassis, engines, tires, and drive trains [4]. Within the biomedical industry, nano-

finishing plays a pivotal role in augmenting medical implants' surface finish, fostering improved 

biocompatibility, and significantly reducing rejection rates. It is required for the mating surfaces 

of biomedical implants such as shoulder, hip, knee, and ankle joints for appropriate functioning 

and longevity [5]. In the electronics industry, applying nano-finishing techniques is instrumental 

in enhancing electronic components' surface finish, culminating in notable improvements in 

reliability and overall performance. Nanotechnology has been applied to electronic components to 

enhance their performance and durability. Nanotechnology can improve the conductivity of 

materials used in electronic components, making them more efficient. Nanotechnology can also 

be used to create smaller and more powerful electronic devices. Figure 2.1 shows the different 

nano-finishing applications in various industries. 

A plethora of nano-finishing techniques exist, encompassing chemical mechanical 

polishing, electrochemical polishing, electropolishing, magnetic field-assisted finishing, MaR 

finishing, magnetorheological abrasive flow finishing [6], [7], and the rotational 

magnetorheological abrasive flow finishing process (R-MRAFF) [8]. R-MRAFF represents a 

highly advanced method that harmonizes rotational motion with MaR abrasive flow machining, 

delivering meticulous surface finishing and precise material removal rates. By employing an MaR 
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fluid infused with abrasive particles and a rotating magnetic field, R-MRAFF effectively eradicates 

material from the workpiece's surface. Notably surpassing its predecessors, R-MRAFF grants 

superior control over the material removal rate and surface finish by harnessing the synergistic 

potential of rotational motion and MaR abrasive particles. 

 

Figure 2.1 Applications of nano-finishing process in different industries. 

The capability of generating superior surface finishes on diverse materials, including hard and 

brittle substances, has propelled the recent surge of interest in this process. Nonetheless, the 

optimization of process parameters for achieving the desired output responses in R-MRAFF 

remains a persistent challenge. To address this, the present study employs, elitist non-dominated 

sorting genetic algorithm-II (NSGA-II) [9], a well-established multi-objective optimization 

algorithm, in an endeavor to optimize the process parameters of R-MRAFF. A detailed discussion 

about the working of NSGA-II is given in Section 4. The considered process parameters are 

extrusion pressure (P) in bar, number of finishing cycles (N), rotational speed of the magnet (S) in 

RPM, and mesh size of abrasive (M). Meanwhile, the output responses under scrutiny are the final 

surface finish (SF) and material removal (MR). Regression analysis is employed to model their 

relationship to establish a connection between the process parameters and output responses. 

Initially, a real-coded genetic algorithm maximized one response by keeping the other as a 

constraint function. Later, both the responses are maximized using the NSGA-II algorithm and 

obtained Pareto-Front (PF) shows a clear trade-off between the SF and MR. The proposed 
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approach offers a significant advantage over traditional trial-and-error methods, as it significantly 

reduces the time and cost associated with optimizing the process parameters of R-MRAFF. 

Moreover, this approach could be easily extended to other complex manufacturing processes that 

involve multiple process parameters and output responses. Overall, this chapter aims to provide a 

comprehensive understanding of the R-MRAFF process and the use of an evolutionary algorithm 

to optimize its process parameters.  

2.2 Rotational Magnetorheological Abrasive Flow Machining Process    

The preceding section underscored the paramount importance of nano-finishing processes in 

attaining exceptional surface quality across various sectors. Numerous products' functional 

requirements necessitate achieving a nano-level surface finish. Nano-finishing processes can be 

broadly classified into magnetic field-assisted and non-assisted methods. Magnetic field-assisted 

techniques encompass magnetic abrasive finishing, MaR finishing, and similar methodologies, 

while non-assisted methods include abrasive flow finishing. Among the magnetic field-assisted 

methods, MRAFF stands out as a well-established technique capable of achieving nano-meter 

surface finishes on diverse materials, such as brass, aluminium, stainless steel, and silicon nitride. 

One modification that aids in attaining the desired nano-finishing level involves incorporating 

rotational motion into the MRAFF process. Figure 2.2 (a) illustrates the schematic view of an 

MRAFF experimental setup. Figure 2.2 (b) showcases the R-MRAFF process's mechanism, 

highlighting the magnets' rotational movement. Additionally, Figure 2.2 (c) depicts the alteration 

in rheological behaviour, specifically the changes in yield stress and viscosity, of the MaR-

polishing fluid during the finishing process. 

 The quality of the finished surface in MaR fluid-based finishing processes is primarily 

influenced by the constituents of the MaR fluid and the applied magnetic field [11]. In their work, 

Sidpara and Jain [11] explored the correlation between rheological properties and surface finish 

quality in MaR fluid-based finishing processes. R-MRAFF employs a MaR fluid that possesses a 

distinctive characteristic of altering its viscosity and yield strength when it is subjected to a 

magnetic field. The magnetic field induces the formation of a microstructure within the fluid, 

enabling manipulation of the flow rate and direction. The presence of abrasive particles within the 

fluid facilitates the removal of material from the workpiece's surface. The concurrent rotation of 
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the magnetic field ensures an even distribution of the abrasive particles, resulting in a uniform 

surface finish. 

 

Figure 2.2 (a) A schematic representation of the experimental setup for MRAFF. (b) Mechanism 

of R-MRAFF process; (c) Observed changes in the rheological behaviour of the MaR-polishing 

fluid during the finishing process [10]. 

Consequently, the process utilizes a MaR fluid infused with abrasive particles and a rotating 

magnetic field to effectively eliminate material from the workpiece's surface. The distinctive 

amalgamation of rotational motion and MaR abrasive particles enables precise control over the 

material removal rate and surface finish, rendering it an ideal process for nano-finishing 

applications. R-MRAFF emerges as a significant nano-finishing technique, given its unparalleled 

ability to achieve high-quality surface finishes while ensuring precise control over the material 

removal rate. Compared to earlier processes, R-MRAFF offers enhanced control over the MR rate 

and SF, making it an appealing choice for accomplishing exceptional nano-level finishes. 

2.3 Recent Developments in MRAFF Process 

Rajput et al. [12] conducted a thorough examination of the different procedures and techniques 

used in MaR-fluid finishing processes and an assessment of their efficacy, too. The findings 

showed that this technique may produce extraordinary accuracy and surface quality without 

affecting the product's material topography. Karthikeyan et al. [13] investigated the in-vitro 

behaviour of stainless steel 316L treated to R-MRAFF in their investigation. They evaluated 

surface topography, roughness (Ra), and microhardness using experiments and analyses of treated 



6 

 

materials. Their results showed that the procedure improved surface quality, decreased roughness, 

and maintained or increased microhardness. These findings imply that the R-MRAFF technique 

has the potential to improve the performance of stainless-steel components in a variety of 

applications. In addition, Rajput et al. [14] devised a feature-based hybrid MRF planning system 

(FHMRF-PS) for the automated process planning of paraffin wax deposition in workpiece holes 

and pocket features prior to MRF. A case study on a Ti-6Al-4 V bone plate was performed to 

assess the efficiency and efficacy of the FHMRF-PS. The proposed process planning during MRF 

reduced the initial Ra value from 324.12 nm to 21.56 nm, illustrating the effectiveness of the 

designed FHMRF-PS.  

Kumar et al. [15] discovered that an F-to-S iron ratio of 1:1, a DC supply of 12 V, a work 

sample rotating speed of 200 rpm, and a linear feed rate of 0.1 mm/min were the best parameter 

combinations for producing high-quality surfaces on S.S.-316 L cylindrical work samples. 

Karthikeyan et al. [16] elevated the hemocompatibility of SS 316L by lowering surface roughness 

and boosting surface energy during the R-MRAFF process. The required surface polish of SS 316L 

was attained using the following process parameters: 0.5-tesla magnetic field intensity, 10% 

abrasive concentration, and 200 revolutions per minute of rotating speed. Choopani et al. [17]  

encountered the effectiveness of the R-MRAFF technique in obtaining the requisite nano-finishing 

for Al2024 tubes. Surprisingly, they attained a Ra value of 26.3 nm and an MR value of 41 mg in 

just 15 minutes, demonstrating the efficiency of this method. Furthermore, Kumar et al. [18] 

implemented the R-MRAFF technique to obtain a minimum Ra of 34.5 nm and a maximum 

percentage increase in Ra (%Δ𝑅𝑎) of 85.56% on a small steel gear. Furthermore, the finishing 

procedure efficiently removed the production flaws. 

In light of the reviewed research, it becomes evident that MaR-fluid finishing techniques 

possess significant potential. These techniques demonstrate the ability to achieve exceptional 

precision, enhance surface quality, reduce roughness, and improve material performance across 

diverse applications. The optimization of process parameters emerges as a critical factor, enabling 

the attainment of desired surface finishes and the elimination of manufacturing flaws. Thus, it is 

crucial to gain a comprehensive understanding of and effectively control the variables involved in 

these processes to ensure favorable outcomes. 

 

 



7 

 

2.4 Elitist Non-dominated Sorting Genetic Algorithm-II 

Elitist non-dominated sorting genetic algorithm II (NSGA-II) represents a state-of-the-art 

optimization algorithm rooted in evolutionary computing. Widely regarded as a benchmark 

technique in evolutionary computation, NSGA-II operates as a multi-objective optimization 

algorithm, enabling the simultaneous optimization of multiple objectives. Initially proposed by 

Deb et al. [9] in 2002 as an enhancement to the original NSGA algorithm, NSGA-II stands as a 

fast, efficient, and robust algorithm that has found extensive application in engineering, science, 

and economics. Its high efficiency and robustness make it an indispensable tool for optimizing 

complex systems and processes in industrial settings, capable of handling diverse optimization 

problems, including those involving non-linear and non-convex objective functions. 

Unlike single-objective optimization algorithms that aim to discover a single optimal 

combination of design variables, a multi-objective optimization algorithm, such as NSGA-II, seeks 

to uncover multiple solutions known as Pareto optimal solutions. These solutions form a set of 

"non-inferior" solutions in the objective space, wherein further improvement in one objective 

necessitates a compromise in at least one of the other objectives. Addressing the needs of most 

industrial applications, NSGA-II tackles the simultaneous resolution of two or more conflicting 

objectives, generating better Pareto-optimal solutions. By minimizing two or three objectives 

concurrently and accommodating constraints, NSGA-II produces a Pareto optimal set with 

numerous solutions that optimize both objectives to such an extent that no other solution can 

enhance any objective without deteriorating another. 

The primary advantage of NSGA-II lies in its capacity to identify a set of solutions that are 

non-dominated within the search space. Consequently, the algorithm discovers multiple solutions 

that are optimal in distinct ways rather than just a single optimal solution. This characteristic proves 

especially valuable in multi-objective optimization problems where the simultaneous optimization 

of multiple objectives is necessary, and no single solution can optimize all of them. The algorithm 

commences by generating an initial population of solutions evaluated based on their fitness in the 

search space. The fitness of a solution is determined by its ability to satisfy the various objectives 

of the optimization problem. Subsequently, the solutions are sorted into different levels of non-

domination, with the first level consisting of solutions that are not dominated by any other solution, 

followed by subsequent levels containing solutions that are dominated by those in the preceding 

level, and so forth. After sorting the solutions, NSGA-II employs selection, crossover, and 
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mutation operators to generate a new population of solutions that remain non-dominated within 

the search space. This iterative process continues until optimal solutions are discovered or the 

maximum number of iterations is reached. 

2.4.1 Working of NSGA-II 

NSGA-II operates by maintaining a population of candidate solutions and iteratively guiding them 

toward improved outcomes, making it an exemplary algorithm for multi-objective optimization. 

One of its key strengths lies in its ability to converge toward the true Pareto-front, which is 

accomplished through the effective utilization of crossover and mutation operators. Crossover 

combines two chromosomes to create offspring, while mutation introduces random changes at the 

gene level. This interplay between crossover and mutation enables the population to converge 

while simultaneously reintroducing genetic diversity to steer clear of local minima. In addition to 

convergence, NSGA-II achieves other important qualities, such as maintaining a uniformly 

distributed and diverse set of solutions. These objectives are facilitated by the implementation of 

crowding distance. By employing an efficient crowding-distance assignment approach, NSGA-II 

ensures a well-spread population of solutions, while the employment of fast, non-dominated 

sorting enhances the algorithm's convergence capabilities. These advantages have propelled 

NSGA-II into wide-ranging applications and subjected it to numerous comparative studies, 

validating its performance. NSGA-II favors solutions with a higher crowding distance over other 

solutions within the same Pareto-front. It also incorporates the concept of elitism, where the best 

solutions are safeguarded and carried over to the next generation. These elite solutions are never 

eliminated and directly advance to the subsequent generation. The remaining solutions are 

compared amongst themselves, considering both their crowding distance and rank, to determine 

the most favorable solution. This ensures a fixed population size, as illustrated in Figure 2.3. Here, 

𝑃𝑡  is the set of solutions obtained in generation 𝑡, 𝑄𝑡 is the solution set obtained using crossover 

and mutation operators on 𝑃𝑡. Non-dominated sorting is performed after considering offspring and 

parent solutions to get different Pareto-fronts. Crowding distance is used to maintain the diversity 

of the solutions on each front. 
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Figure 2.3 Working of NSGA-II. 

To obtain the Pareto-front for multi-objective optimization, NSGA-II follows a step-by-step 

procedure: 

1 Generate an initial random population, 𝑃. 

2 Evaluate each solution to obtain the fitness function. 

3 Perform non-dominated sorting based on non-domination criteria to find different PFs. 

4 Calculate crowding distance to preserve diversity on each front. 

5 Select individuals for the next generation based on their rank (lowest) and crowding 

distance (highest). 

6 Generate new solutions, 𝑄, from the previous generation using two operators, namely 

Crossover and Mutation. 

The NSGA-II algorithm repeats steps 2 through 6 until a predefined stopping criterion is met. 

Typically, this criterion is either reaching the maximum number of generations or failing to obtain 

a better Pareto-front compared to the previous iteration. 

2.5 Present Study 

In various industrial sectors, the design of experiments (DOE) [19]–[23]  is frequently employed 

for optimizing and developing manufacturing processes by examining the effect of multiple factors 

on a response. Das et al. [8] employed a DOE to evaluate the summary of responses, specifically 

MR and SF, using five levels of process parameters in their study on the R-MRAFF process. The 
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R-MRAFF method was utilized to finish the internal surface of cylindrical stainless steel (non-

magnetic) workpieces. The central composite design (CCD) employed four factors with five 

levels, yielding a total of 30 experiments comprising 16 factorial runs, eight axial runs, and six 

center runs. The first parameter, hydraulic extrusion pressure (P) in bar, was varied across five 

levels, namely 32.5, 35, 37.5, 40, and 42.5. The second parameter, the number of finishing cycles 

(N), ranged from 600, 800, 1000, 1200, to 1400. The third parameter, the rotational speed of the 

magnet (S) in RPM, varied across 50, 100, 150, 200, and 250. The fourth parameter, mesh size of 

abrasive (M), ranged from 90, 120, 150, 180, to 210. Table 2.1 displays the responses, along with 

their various levels of process parameters considered during the experimental design.  

Table 2.1 provided below includes measurements for both initial and final surface finishing 

(SF), and the percentage improvement in roughness denoted by %Δ𝑅𝑎 as shown in the sixth 

column. Additionally, the material removal (MR) was calculated by weighing the samples before 

and after the machining process, with the difference between the two measurements indicating the 

amount of material removed in 𝑚𝑔 from the sample. 

Table 2.1 Experimental results of R-MRAFF process on Surface Finish and Material Removal 

[8]. 

Run 

No. 

Extrusion 

pressure, 

P (bar) 

Finishing 

cycle, 

N 

RPM 

magnet, 

S 

Mesh size 

of SiC, 

M 

Surface Finish 

(in %Δ𝑅𝑎) 

Material 

Removal 

(mg) 

1 35 1200 100 120 90.00 12.3 

2 40 1200 200 180 90.48 13.7 

3 35 1200 200 180 81.08 8.1 

4 37.5 1000 150 150 91.30 20.9 

5 40 1200 200 120 91.89 23.5 

6 40 800 200 180 74.29 7.3 

7 40 800 100 180 87.23 11.4 

8 37.5 600 150 150 81.08 6.8 

9 37.5 1000 150 210 82.05 5.0 

10 37.5 1000 150 150 90.91 25.1 

11 37.5 1400 150 150 85.71 26.3 
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12 37.5 1000 150 150 90.00 23.2 

13 42.5 1000 150 150 90.70 15.3 

14 40 800 100 120 86.21 4.1 

15 35 1200 200 120 80.00 24.0 

16 37.5 1000 250 150 76.74 28.2 

17 35 800 200 120 71.43 20.5 

18 32.5 1000 150 150 75.86 8.1 

19 40 1200 100 180 95.15 20.5 

20 40 800 200 120 81.25 20.3 

21 37.5 1000 50 150 82.22 5.1 

22 37.5 1000 150 150 89.74 24.5 

23 35 800 100 120 93.94 8.62 

24 37.5 1000 150 150 85 20.5 

25 37.5 1000 150 150 92.31 18.5 

26 35 1200 100 180 92.17 19.9 

27 40 1200 100 120 92.31 18 

28 35 800 200 180 73.91 7.4 

29 37.5 1000 150 90 88.24 27.8 

30 35 800 100 180 85.29 11.5 

 

2.6 Results and Discussion  

Table 2.1 shows the SF and MR values obtained from the R-MRAFF experiments, which involved 

four factors at five levels using the CCD design. Figure 2.4 shows how the response variations are 

affected by each input parameter, using the mean values of both responses for a given process 

parameter level. During the increase in hydraulic pressure (𝑃) from 32.5 to 35 bar and 35 to 37.5 

bar, MR increased by 73.3% and 37.6%, respectively. Meanwhile, SF increased by 10.0% and 

3.3%, respectively. However, further increasing P from 37.5 bar to 40 bar caused a decrease in 

MR by 23.2% and an increase in SF by 1.2%. Increasing P from 40 to 42.5 bar increased MR and 

SF by 3.0% and 3.8%, respectively. While increasing the number of finishing cycles (N) from 600 
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to 800 and 800 to 1000, MR increased by 67.5% and 62.56%, respectively, while SF increased by 

0.75% and 5.5%. Increasing N from 1000 to 1200 caused a decrease in MR by 5.5% and an 

increase in SF by 3.3%. 

Increasing N from 1200 to 1400 resulted in an increase in MR by 50.28% and a decrease 

in SF by 3.8%. When the magnet's rotational speed (S) is increased from 50 to 100 RPM, the MR 

increases significantly by 160.6%, while the improvement in SF is only 9.8%. As S is raised from 

100 to 150 RPM, MR increased by 39.2%, but SF decreased by 3.7%. However, when S increased 

again from 150 to 200 RPM, MR and SF got worsened, declining by 15.7% and 7.32%, 

respectively. Conversely, when S is increased from 200 to 250 RPM, MR increases by 80.8%, but 

SF decreases by 4.7%. The increase in the Mesh size of the abrasive (M) from 90 to 120 has an 

adverse impact on both MR and SF, leading to a reduction of 41% and 2.7%, respectively. 

However, an increase in M from 120 to 150 resulted in an MR increase of 13%, while it barely 

affected the SF (almost 0.1%). Subsequently, an increase in M from 150 to 210 led to a decline in 

both MR and SF. The MR is decreased by 32% and 60%, respectively, while the SF is reduced 

by 1.2% and 3.4%, respectively. 

 

Figure 2.4 Effect of process parameters on response variation. 

This analysis of experimental data examined the effects of the process parameters on the response 

variation, and it has been discovered that MR is more strongly affected than SF due to changes in 

process parameters. This is so because MR measured the total amount of material removed (in 
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𝑚𝑔) from the surface, while SF focused on surface finishing at a nano-level, which has minimal 

variation. The least effect on MR is observed due to parameter P, whereas the least impact on SF 

is observed due to parameter M. Parameter S has a significant effect on both MR and SF at different 

levels. If we consider the changes in responses caused by altering the process parameters to 

different levels, regardless of whether the responses increased or decreased, the order in which the 

parameters impacted MR from the least to the most is M, N, P, and S, while for SF it is M, N, P, 

and S.  

2.6.1 Mathematical Modelling 

The regression equation for MR and SF are developed, and the coefficient of determination (𝑅2) 

for both are found to be approximately 83.93% and 80.72%, respectively. Using regression 

analysis, the dependent variables MR and SF are modelled as non-linear functions of four 

independent process parameters, which are given in Equations (2.1) and (2.2).  

 

𝑀𝑅 =  −688 +  30.4𝑃 +  0.0382𝑁 +  0.761𝑆 +  0.693𝑀 −  0.440 𝑃2 −  0.000038 𝑁2  −

 0.000605𝑆2  −  0.001751 𝑀2  +  0.00204 𝑃𝑁 +  0.00156 𝑃𝑆 +  0.0046  𝑃𝑀 −

 0.000133  𝑁𝑆 +  0.000003  𝑁𝑀 −  0.003003 𝑆𝑀      (2.1) 

 

 𝑆𝐹 =  −54 +  10.65 𝑃 −  0.0804 𝑁 −  0.560 𝑆 +  0.111 𝑀 −  0.195 𝑃2  −

 0.000030 𝑁2  −  0.000867 𝑆2  −  0.000835 𝑀2  +  0.00277𝑃𝑁 +  0.01599 𝑃𝑆 −

 0.0013 𝑃𝑀 +  0.000160 𝑁𝑆 +  0.000175 𝑁𝑀 −  0.000091 𝑆𝑀    (2.2) 

 

The comparison between the present regression analysis and Das et al.'s [8] model is also shown 

in Figure 2.5. The MR equations are closely related and well-fitted to all experimental data. 

However, there is a significant difference in the SF equations, with Equation (2.2) fitting all 

experimental data closely, while the previous model barely passes through any data point. The 

present model has clearly outperformed the earlier model in terms of goodness of fit. 
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Figure 2.5 Comparison of the goodness of fit of the regression equations on the experimental data 

points between the present study and the study conducted by Das et al. [8]. 

 

2.6.2 Effect of Process Parameters on Responses 

The variation of MR and SF with respect to the input parameters is shown in Figures 2.6 and 2.7, 

as response surface plots. The variation is shown concerning two independent values, while the 

other two are kept as constant. Figure 2.6(a) shows that MR initially increases with increasing 

pressure (P) and finishing cycles (N). However, MR eventually decreases with further increases in 

P and N. The maximum MR is found to occur when P and N are approximately equal to 37.5 bar 

and 1000, respectively. The other two parameters, the magnet's rotational speed (S) in RPM and 

mesh size (M) are kept fixed. Figure 2.6(b) shows that MR increases with the increasing S up to 

200 RPM. After that, MR slightly decreases. N causes MR to increase exponentially at a fixed S 

(at 50 RPM). However, increasing S and N together causes MR to reduce further. Figure 2.6(c) 

shows that at a fixed M (around 100), the parameter S is found to be increasing the MR 

exponentially. 

 Similarly, at a fixed value to S (around 50 RPM), M is also found to be increasing the MR. 

However, the effect of S is found to be more compared to M. In the case of increasing both the 

parameters M and S, the MR is found to be decreased drastically; in fact, it reached a minimum. 



15 

 

Figure 2.6(d) shows that MR achieved an optimum value when P reached around 37.5 bar and M 

at around 160. 

 

Figure 2.6 Effects of variation of process parameters on material removal. 

Figure 2.6(e) shows a similar trend with respect to P. However, parameter S is found to be 

significantly helping in achieving the better MR with the higher value of S. Here, P is also found 

to assist in achieving the better MR at around 37.5 bar, and at this value of P, the parameter S 

further increases the MR with advancing its own value. Figure 2.6(f) shows a very similar trend 

with the parameters N and M, which was observed in Figure 2.6(e) with the parameters S and P, 

respectively. Here, the best value for M is found to be around 150, and N increases the MR by 

increasing its own value. 
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Figure 2.7 Effects of variation of process parameters on surface finish. 

Similarly, Figure 2.7 shows the response surface plot for Surface Finish (SF). Figure 2.7(a) shows 

that the parameters P and N positively affect achieving the better surface finish. Figure 2.7(b) 

shows that the parameter S initially helps to attain the better SF but reduces it drastically later. At 

around S equals 150 RPM, SF seems to improve with the increasing N. Figure 2.7(c) shows that 

the parameter. M initially improves the SF and then reduces it. However, the parameter S shows a 

similar trend as mentioned in Figure 2.7(b), like at around S = 150 RPM, it enhances the SF. Figure 

2.7(d) shows that when P is kept around 37.5 bar, the SF seems to improve with the increasing M, 
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provided that the rest of the parameters are kept fixed. Figure 2.7(e) shows that increasing S and 

P could help to obtain the better SF, while M and N are kept fixed. Figure 2.7(f) shows a similar 

trend with the parameters M and N. The results show that both MR and SF are complex functions 

of the input parameters.  

2.6.3 Single-objective Optimization 

The results of single-objective optimization using a real coded genetic algorithm [24] with a 

probability of crossover and mutation set to 0.9 and 0.3, respectively, are shown in Table 2.2. The 

population size and number of generations used are 200 and 500, respectively. Initially, SF is 

constrained to be at least 80%, while MR is maximized. The optimal values of the decision 

variables are found to be as follows: P = 39.14, N = 1175, S = 250, and M = 90. In the second 

attempt, SF is maximized while keeping MR as a constraint function. The constraint required a 

minimum material removal of 24 mg from the samples. The best combination of process 

parameters to achieve a 95.87% improvement in roughness is found to be as follows: P = 41.34, 

N = 1395, S = 182, and M = 137. This clearly demonstrates the trade-off between the two objective 

functions. 

Table 2.2 Single-objective optimization results using a GA 

Objective Functions 

(maximized) 

Optimal Design Variables Objective Functions 

𝑃 (𝑏𝑎𝑟) 𝑁 𝑆 (𝑅𝑃𝑀) 𝑀 𝑀𝑅 (𝑚𝑔) 𝑆𝐹 (%Δ𝑅𝑎) 

𝑀𝑅 (𝑚𝑔) 39.14 1175 250 90 39.81 80.00 

𝑆𝐹 (%Δ𝑅𝑎) 41.34 1395 182 137 24.00 95.87 

 

However, these two solution sets represent the only options for prioritizing one objective function 

by keeping the other as a constraint. To visualize the trade-off better, the NSGA-II algorithm is 

used to identify a set of Pareto-optimal solutions that simultaneously maximize both MR and SF. 

NSGA-II is a population-based algorithm that searches for Pareto-optimal solutions iteratively. 

2.6.4 Multi-objective Optimization 

In nano-finishing operations, the goal is to achieve high levels of both surface finish (SF) and 

material removal (MR). However, these objectives can often conflict with each other. Increasing 

MR may result in a decrease in SF and vice versa. As a result, it is not possible to maximize both 
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objectives simultaneously. To address this trade-off, the NSGA-II algorithm is used to 

simultaneously maximize both MR and SF. The NSGA-II algorithm is designed to minimize the 

objectives by default. Therefore, the duality principle is used to convert the problem into a 

minimization problem by taking the reciprocal of MR and SF. The objectives are expressed using 

a quadratic mathematical model with four decision variables as given in Eqns (1) and (2). The 

NSGA-II multi-objective problem is formulated as follows: 

1
                    Minimize  (refer to Eqn (1))

1
                    Minimize  (refer to Eqn (2))

with decision variables

                             , , ,  and 

subject to

                        

MR

SF

P N S M

   32.5 42.5 (bar),

                            600 1400,

                              50 250 (rpm),

                             90 210         

P

N

S

M

 

 

 

 

 

Out of the four decision variables, variation of pressure (P), is considered a real decision variable, 

while the rest are considered as integer decision variables. The multi-objective optimization 

problem described above is solved using NSGA-II with the following parameters:  

Population Size = 200,  

Number of Generations = 500,  

Probability of Crossover = 0.9,  

Probability of Mutation = 0.25,  

Distribution Index for Crossover = 10, and  

Distribution Index for Mutation = 20.  

The Pareto-optimal solutions generated by NSGA-II are presented in Figure 2.8, which can be 

used to select the optimal machining parameters based on the decision maker's requirements. The 

most efficient solutions are enclosed within a rectangular box in Figure 2.8, as beyond that region 

in either direction, there is a higher sacrifice of one objective to achieve a marginal improvement 

in the other.  
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Figure 2.8 NSGA-II Pareto optimal solution set in objective space 

 

Figure 2.9 Variation of pressure (P), finishing cycles (N), magnet's rotation speed (S), and mesh 

size (M) in decision space. 

 

The obtained Pareto-front, as shown in Figure 2.8, is found by the variation of decision parameters, 

which are shown in Figure 2.9. The graph's 𝑥, 𝑦, and 𝑧-axes represent the variation of parameters 

N, P, and S, respectively. The parameter M has been divided into four groups, namely 90-120, 
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121-150, 151-180, and 181-210. However, none of the solutions from the 181-210 group are 

identified, marked by an asterisk (*) in Figure 2.9.  

It is observed that increasing the mesh size has a negative impact on both MR and SF. The 

relationship between the non-dominated solutions obtained using different decision variables can 

be better understood by examining Figure 2.9. It is evident that only a specific range of values for 

the parameter P (between 37 and 42.5 bar) significantly impacts both the objectives, whereas the 

initial two levels of P are not effective for either objective. The last two levels of N and S 

parameters are highly effective in achieving good SF and MR. These effects are further studied in 

detail using Figure 2.10. 

 

Figure 2.10 Effect of  pressure (P), finishing cycles (N), magnet's rotation speed (S) and mesh size 

(M) on material removal (MR) and surface finish (SF). 
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Figure 2.10 displays the effects of P, N, S, and M parameters on MR and SF. Figure 2.10(a) reveals 

that when P is set to 37.5 bar, MR is maximized, but SF is poor. As P is increased, MR decreases, 

and SF improves. NSGA-II generates several solutions that can achieve good SF values close to 

93% and MR values close to 32.5 mg at around 40.5 bar. SF enhanced with an increase in P, as 

the higher axial force facilitated material removal in the form of microchips. MR is increased due 

to the deeper penetration of abrasive particles into the workpiece surface, as the radial force is 

increased at the higher P [8]. However, MR has reached a maximum at an optimum value of 38 

bar and then has decreased as the depth of penetration is reduced due to the shear-thinning nature 

of the MR Polishing Fluid. Figure 2.10(b) shows that the value of N that is good for both the 

objectives is approximately equal to 1300. Increasing N further reduces MR, but it improves SF. 

SF is enhanced with an increase in the parameter N due to a continuous enhancement in surface 

texture. However, the abrasive particles that initially cut the peaks of rough surfaces become worn 

out as N increases, and their effects on the polished surface are reduced due to increased hardness. 

Thus, it resulted in a poor amount of MR.  

Figure 2.10 (c) shows that when S is kept equal to 210 RPM, MR and SF are both found 

to be good. However, increasing or decreasing S adversely affects both the objective functions. SF 

attains its maximum value at around 180 RPM of the parameter S. Beyond this value, SF is 

decreased, while MR increases. This trend can be attributed to increased tangential cutting force, 

which enhances MR. However, the centrifugal force acting on the abrasive particles indents the 

workpiece surface, resulting in a poorer SF [8]. Lastly, in Figure 2.10 (d), several solutions can 

attain a good SF value as high as 87.5% and MR close to 35 mg, even at a mesh size of 90. As the 

mesh size increases, only fewer solutions are available, resulting in a better surface finish but a 

poorer MR. Both SF and MR have improved at lower M. The higher M leads to more abrasives in 

the polishing medium due to a fixed concentration, and the abrasive diameter decreases at the 

larger mesh sizes. Consequently, the indentation force acting on each abrasive particle diminishes 

with increased mesh size, reducing the MR. However, SF has reached its maximum value at 

approximately 170 RPM. 

2.7 Conclusion 

R-MRAFF continues to emerge as an enticing choice for achieving exceptional nano-level surface 

finishes, boasting a uniform, smooth mirror-like surface (SF) with remarkable precision at the 

nano-meter scale. Moreover, this process exhibits an impressive capacity for higher material 
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removal (MR), surpassing the capabilities of preceding methods. By harnessing the synergistic 

effects of rotational motion and magnetorheological abrasive particles, R-MRAFF grants superior 

command over the material removal rate and surface finish, setting it apart as an advanced solution 

in the realm of nano-finishing techniques. The significance of R-MRAFF extends beyond its 

exceptional performance, as it enables the selective finishing of both internal and external surfaces 

on intricately shaped workpieces. Furthermore, this technique proves invaluable in situations 

where conventional finishing methods struggle to access and address specific areas. Consequently, 

its potential spans a wide array of industries that demand meticulous surface finishes on cylindrical 

components. Notably, sectors such as aerospace, automotive, and medical industries get the 

benefits significantly from the transformative capabilities of R-MRAFF. 

In light of the comprehensive study conducted, the following conclusions have been drawn, 

shedding light on the optimal parameters and their corresponding outcomes: 

• The optimal combination of parameters P, N, S, and M is found to be 39.14 bar, 1175 cycles, 

250 rpm, and 90 mesh size, respectively, to achieve the highest MR of 39.81 mg, while SF is 

improved by around 80%. 

• The optimal combination of process parameters to achieve SF of 95.87% is found when the 

parameters P, N, S, and M are set to 41.34 bar, 1395 cycles, 182 rpm, and 137 mesh size, 

respectively. The value of MR at the same parameter setting is found to be 24 mg. 

• The higher levels of P, N, and S create a trade-off between improving the surface finish and 

obtaining a high MR. However, the lower levels of M are suitable for both responses. This can 

help the decision maker to select other combinations of process parameters for the desired 

result in SF and MR. 

• Only a few solutions are able to improve SF at the expense of lower MR, which suggests that 

enhancing the surface finish is much more difficult than increasing the material removal using 

different combinations of parameters. 

In summary, R-MRAFF emerges as an exceptionally promising approach for achieving superior 

nano-level surface finishes, surpassing previous processes in terms of uniformity, precision, and 

material removal efficiency. Its application potential spans diverse industries, including aerospace, 

automotive, and medical sectors, where high-quality surface finishes on cylindrical components 

are in high demand. Through the implementation of NSGA-II optimization, this study not only 

highlights the efficacy of R-MRAFF but also demonstrates the paramount importance of 
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optimizing process parameters to attain the desired surface finish and material removal outcomes. 

By combining the strengths of R-MRAFF and advanced optimization techniques, this research 

paves the way for advancements in surface finishing technology and opens new horizons for 

impeccable surface quality in various industrial applications. 
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