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Abstract—Incomplete or sparse non-dominated fronts are un-
avoidable in multi-objective optimization due to complexity of
problems, morphology of Pareto optimal fronts, and stochasticity
involved in evolutionary optimization algorithms. It is pragmatic
to develop methods that can alleviate some of these issues
after the optimization run is complete, without the need for
re-optimization or additional solution evaluations. Previously
developed methods clearly demonstrated that it is possible to
predict Pareto-optimal solutions from pseudo-weight vectors using
Gaussian Process Regression (GPR) models. We extend the GPR-
based method to predict new Pareto-optimal solutions using
reference vectors as unique identifiers and demonstrate that like
the pseudo-weight vectors, reference points can also used instead
in learning the association between identifiers and corresponding
variable vectors. Results on many test problems indicate that
the choice of a suitable identifier makes a large impact on the
decision-making process, particularly for visualizing the newly
created non-dominated (ND) solutions. In this study, we discuss
the advantages and disadvantages of using pseudo-weights and
reference vectors as unique identifiers for ND solutions, paving
the way to devise further identifiers for predicting new Pareto-
optimal solutions.

Index Terms—machine-learning, multi-objective optimization,
optimization, evolutionary algorithm

I. INTRODUCTION

The desired outcome of any multi- or many-objective opti-
mization (M(a)OO) run is a uniformly distributed set of non-
dominated (ND) solutions that approximate the Pareto-optimal
(PO) front. Though decades of research have led to several
robust and reliable algorithms [1]–[6], an incomplete or sparse
non-dominated (ND) front is unavoidable in practice during
M(a)OO. This could be due to several reasons, such as the
inherent stochasticity of evolutionary algorithms, complexity
of problems, morphology of PO front, noise in objective
evaluation, local attractors, dimensionality of variable space
etc. Another common reason is the finite number of solution
evaluations allowed during the optimization run. The No-Free-
Lunch (NFL) theorem dictates that no single algorithm will
be able to solve all these issues even with continual research
efforts to address them. The impact of these issues can be
felt during decision-making (DM) step as the decision maker
might desire solutions in the gaps or sparse regions. In order
to choose a reasonable solution, the decision maker needs
to know if the gaps and sparsity are due to the nature of

the problem or a failure of the M(a)OO method used. This
issue is typically dealt with re-optimization using reference-
direction based methods [7], [8] or running the M(a)OO
method multiple times and aggregating the results. Some gap-
finding algorithms have also been proposed in literature [9].
These approaches are usually tedious and require several more
solution evaluations that might not be allowed. Since decision-
making is usually not a single-step process, it is pragmatic to
have methods that can generate PO solutions, as desired by
the DM, without re-optimization or new solution evaluations.

Previous works [10] have shown that it is possible to
predict PO solutions from pseudo-weight vectors (Equation 1).
A pseudo-weight vector w ∈ RM (of dimension to the
number of objectives (M ) and

∑M
i=1 wi = 1) is a unique

identifier to a single Pareto-optimal solution vector xw ∈ ⋉
of size n. For example, in a two-objective case, the pseudo-
weight vector (0, 1) identifies the extreme Pareto-optimal (PO)
solution having the best f2 value and the worst f1 value.
The pseudo-weight vector (0.5, 0.5) represents the unique
intermediate Pareto-optimal solution lying in the mid-way
in the range between ideal and nadir objective values. In a
previous study [10], machine learning (ML) methods were
employed to learn the mapping between pseudo-weight vectors
(w-vectors) and respective decision variables (x-vectors) of
PO solutions. Although the process is somewhat apparently
similar to the inverse mapping studies in predicting x from
f , the study indicated a number of advantages of the pseudo-
weight based approach. Previous results indicate that given a
new pseudo-weight vector that is not in the training set of
the development of the ML model, the trained ML model
can predict the decision variables of the corresponding PO
solution with reasonable accuracy. Hence, such a trained ML
model developed from evolutionary multi-objective optimiza-
tion (EMO) algorithms can be used to (i) fill apparent gaps
or less dense areas in the obtained non-dominated (ND) front
found by an EMO algorithm, (ii) test the extreme PO points,
and (iii) provide reasons for gaps/sparse areas of the PO front.
The most attractive aspect of the proposed ML-based approach
is that it avoids without performing another optimization
process, such as a reference-point based EMO method (such
as R-NSGA-II [7] or R-NSGA-III [8]) involving further post-
optimal solution evaluations.



However, pseudo-weight vectors may not the only way to
uniquely identify each solution in the PO front. Reference
vectors (RV) r, lying on the M -dimensional unit simplex
(
∑M

i=1 ri = 1), have been extensively used in MOO literature
[2], [11] to characterize solutions during EMO runs. Gi-
agkiozis and Fleming [12] used Radial Basis Neural Networks
(RBNN) [13] to learn the mapping between reference vectors
and decision variables. Similarly, Takagi et al. [14], [15]
used Kriging [16] and RBNNs to map reference vectors to
decision variables and objective functions. These reference
vectors represent the geometric location of the PO solution
on the unit simplex. In this study, we extend the rigorous
analysis done in [10] to predict PO solutions from reference
vectors and study the prediction capabilities and compare with
the pseudo-weights approach. We experimentally demonstrate
that the ML based learning of the mapping process is agnostic
to the choice of unique identifiers or placeholders for PO
solutions and discuss the implications of the choice of these
identifier vectors.

Though both pseudo-weights and reference vectors facili-
tate the learning between PO solution identifier vectors and
respective decision variables, the information they convey is
very different. Pseudo-weights convey priorities and might be
of relevance if the DM does not know the exact region in
the PO front to sample new solutions from. On the other
hand, pseudo-weights are not intuitive from the perspective of
understanding the geometry of the PO front. Reference vectors
keep the geometric structure of the PO front more closely than
the pseudo-weights. If the DM knows the exact regions where
they desire new solutions, the RV-based approach may be more
relevant. In this study, we attempt to explain the advantages
and disadvantages of the choice of these identifier vectors
clearly by applying them on well-known multi-objective test
problems [17], [18], as examples.

The remainder of the paper is arranged as follows. In
Section II, we describe the different choices we have for
uniquely identifying ND solutions and the implications of the
choice of these identifiers for learning ML mapping from the
perspective of decision-making. In Section III, we demonstrate
that this ML-based mapping is agnostic to the choice of
identifier and that reference vectors can be equally effective
placeholders as pseudo-weights. Finally, in Section IV, we
summarize our findings and present several future directions
for this work.

II. IDENTIFIERS FOR ND SOLUTIONS

Given a set of ND solutions, a convenient method to
characterize each solution on the approximated PO front is
to use pseudo-weights [19] with

∑M
i=1 w

(k)
i = 1 for k-th PO

solution:

w
(k)
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(k)
i
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) . (1)

These vectors describe each solution’s normalized distance to
the worst solution with respect to each objective. Each pseudo-

weight vector is unique to a particular solution and can act as a
unique identifier for each region on the PO front. As mentioned
before, these components of a vector sum to one and represent
priorities (not to be confused with weighted-sum approach) for
optimization. This can be convenient for DMs as they might
not know the exact objective values they want but might be
able to describe their desired solutions in the form of desired
priorities of objectives and hence find the corresponding PO
solution. This property has been exploited in our previous
work [10] to train ML models to predict x-vectors based on
their pseudo-weights. It has been clearly demonstrated that
this mapping between pseudo-weights and decision variables is
learnable and can be an effective tool during decision-making
process. These trained models can be used to fill gaps or sparse
regions in PO fronts, explore extremes of PO front, identify
reasons (dominance or infeasibility) for pseudo-weight to not
associate a PO solution, or simply create more new PO
solutions for the sake of visualization or other purposes. All
these are achieved without any additional solution evaluations.

Though every PO solution can be assigned a pseudo-weight
vector based on their f -values, there is no guarantee that every
pseudo-weight vector has a PO solution. During DM, common
solutions to this issue are to either choose a solution from
available pseudo-weight vectors or take the closest available
solution if the pseudo-weight does not exactly correspond to
a PO solution. This process becomes tricky and less intuitive
at more than two objectives as certain desired priorities might
not exist in the PO front and the meaning of closest available
pseudo-weight is not readily understandable. Though these
vectors sum to one they do not always span the whole unit
simplex and can conceal critical information regarding the
geometry of the PO front. The range of available pseudo-
weight values is dependent on the range of objective values of
the PO front and hence cannot be known prior to optimization.

Fig. 1: ML-assisted method to predict ND solutions from
reference vectors.

An alternative indicator for each PO solution can be their
respective reference vectors or the reference points on the unit
simplex. These vectors capture the geometry of the location
of a solution on the PO front and have been regularly used in
MOO algorithms [2], [3], [5] with
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Unlike pseudo-weights, a solution corresponding to r = (1, 0)
would represent the worst PO solution for f1 and the best



PO solution for f2. Conveniently, the intuition behind this
relationship also holds at higher dimensions. Despite their
inverse characteristics, the mathematical relationship among
w

(k)
i and r

(k)
i is not independent of objective values, making

it less intuitive to relate one to the other exactly:
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where f̃
(k)
i is the normalized value of f

(k)
i . We explain

the difference between pseudo-weights and RVs using four
cases by plotting 600 solutions on both the identifier and the
objective space.

• In Figure 2a, the orange points represent the reference
vectors corresponding to PO front of 3-objective DTLZ2
problem. As expected, the RVs cover the whole of the unit
simplex as DTLZ2 has a continuous PO front. These RVs
not only clearly demonstrate the availability of solutions
at different regions of the objective space, but also
provide a geometrically intuitive platform for navigating
the PO front. On the other hand, the pseudo-weight
vectors, represented by the blue points, are aggregated
in the center as a smoothed inverted triangle. According
to the pseudo-weights computed, there exists no PO
solution outside the blue points even though the PO front
(Figure 2d covers the whole first quadrant. This might be
a cause of confusion from the perspective of a decision
maker as regions desired by the DM might not exist in
the pseudo-weight space.

• Figure 2b shows the RVs and pseudo-weight vectors of
the PO front of 3-objective DTLZ7. As expected, similar
to the actual PO front (Figure 2e), RVs and pseudo-
weights are also in the form of four islands. However,
the islands formed by the pseudo-weights (blue points) in
Figure 2b are of different sizes, unlike the corresponding
RVs. This can be a cause of confusion for the DMs as
the pseudo-weights misrepresents the geometry of the
PO front. On the other hand, the RVs described by the
orange points capture the geometry information. From
the perspective of priorities, the difference in the size
of the islands indicates the sensitivity of navigating the
PO front. While this does not correlate with the size of
islands in the objective space, this sensitivity information
can be vital during decision making.

• Figure 2c shows RVs and pseudo-weights of PO front
of 3-objective car-side impact problem. This PO front
is continuous, as shown in Figure 2f and this fact is
reflected in both RVs and pseudo-weights. An interesting
observation in Figure 2f is the fact that the points are
dense close to minimum of f2 and f3. However, this leads
to uniformly distributed RVs that clearly misrepresents
the availability of solutions on the PO front, unlike
pseudo-weights where the solutions are denser on one
side. This shows that in some cases, pseudo-weights
might be better indicators for PO solutions.

• Figure 3b shows PO front of 3-objective C2DTLZ2, a
constrained problem where the PO front is disconnected
by infeasible regions. Similar to DTLZ2 case, corre-
sponding RVs span the entire unit simplex while pseudo-
weights form a cluster in the middle of the simplex
as shown in Figure 3a. The confusion caused by this
disparity is further exacerbated by the infeasible regions
(or gaps) in pseudo-weight space that are present on the
opposite side compared to the PO solutions or RVs. For
a problem like C2DTLZ2, clearly, RVs can be better
indicators.

To demonstrate the mirroring aspect of pseudo-weights and
RVs, a random solution is highlighted with a star-outline
(with blue and orange shading) in Figure 2 and Figure 3. We
can observe that the corresponding pseudo-weight is on the
opposite side compared to RV and f -vector.

Clearly, reference vectors provide some advantages com-
pared to pseudo-weights with respect to the interpretation
of the geometry of the PO front. In this study, we show
that pseudo-weights can be replaced by reference vectors
for learning the mapping between indicators and decision
variables. While curating the dataset for ML training, we
compute corresponding reference vectors by normalizing the
objective values and then dividing each objective vector by
their sum, as shown in Equation 2. These points represent the
intersection of the line joining normalized f -vector and origin,
and the unit simplex hyperplane.

III. PARETO ESTIMATION

Here, we emulate a DM setting at the end of optimization,
as shown in Figure 1, by using PO solutions as training set for
the ML method and removing specific points and using them
as test set in order to understand the prediction capabilities of
the method. We consider three such scenarios:

• random gap where the test set is uniformly distributed
on the PO front, as if the DM desires a new solution
from anywhere on the PO front. Here, we assume the
existing solutions are well spread out and the DM desires
a solution at a point where there is no existing solution.

• continuous gap where the test set contains a continuous
set of points from the middle of the PO front. This
simulates a scenario where the PO front contains a gap
and the DM desires solutions in the gap region.

• edge case where the continuous test set is sampled from
one of the edges of PO front. This solves the task
of extending the PO front on any side of the existing
solutions based on curiosity from the DM.

For all problems, the Gaussian Process Regression (GPR)
based modeling is used with 110M points used for training
and 10M points used as test set, where M is the number
of objectives in the problem. For the modeling purpose, a
grid search of mean and regression functions are evaluated
and the best model is chosen. We present results from multi-
(ZDT [20], crashworthiness [21]) and many-objective (DTLZ
[17]) problems as well as constrained (BNH, OSY, C2DTLZ2,
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