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ABSTRACT
Evolutionary multi-objective optimization (EMO) algorithms are
predominantly used for solving multi- and many-objective opti-
mization problems to arrive at the respective Pareto front. From
a practical point of view, it is desirable for a decision-maker (DM)
to consider objective vectors that are less sensitive to the small
perturbation in design variables and problem parameters. Such in-
sensitive, yet closer to Pareto-optimal solutions, lie on the so-called
robust front. In real-world applications, such as engineering de-
sign and process optimization problems, perturbations in variables
come from manufacturing tolerances, uncertainties in material
properties, variations in operating conditions, etc. The existing
EMO literature on robustness studies emphasized on finding the
entire robust front, but hardly considered robustness in both op-
timization and decision-making tasks. In this paper, we propose
and evaluate different algorithmic implementations of three as-
pects – multi-objective optimization, robustness consideration, and
multi-criterion decision-making – together. Based on experimental
results on two to eight-objective problems, we discuss the outcomes
and advantages of different integration approaches of these three
aspects and present the most effective combined approach. The
results are interesting and should pave the way to develop more
efficient multi-objective robust optimization and decision-making
(MORODM) procedures for handling practical problems with un-
certainties.

CCS CONCEPTS
• Computing methodologies → Optimization algorithms; •
Theory of computation→ Stochastic control and optimiza-
tion.
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Evolutionary Algorithms, Pareto Front, Robust Front, Multi-criteria
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1 INTRODUCTION
Many real-world applications consist of multiple and generally
conflicting objectives. For solving such problems, evolutionary al-
gorithms (EAs) are being used, extensively. The outcome of an
evolutionary multi-objective algorithm (EMO) is a well-distributed
and diverse set of non-dominated solutions represented by a set
of Pareto-optimal (PO) solutions [12, 31] lying on a Pareto front
(PF). Multi-criteria decision-making (MCDM) techniques compute
preferred PO solution(s) following decision maker’s (DM’s) pref-
erences [4, 20]. The existing MCDM techniques are systematically
developed to perform the optimization and decision-making task
iteratively. Several MCDM techniques apply the concept of utility
functions or scalarization functions using the DM’s preference to re-
formulate the original multi-objective optimization (MOO) problem
into a single objective optimization problem and arrive at a sin-
gle solution favoring the DM’s criteria. Achievement scalarization
function (ASF) [26, 27] and its augmented version (AASF) [20] are
used to develop several MCDM techniques, such as the surrogate
worth trade-off (SWT) method [14], GUESS method [3], satisficing
trade-off method (STOM) [22], and Pareto Race [17, 18].

In addition, there exist population-based evolutionary MCDM
techniques that account for DM’s preference in EMO algorithms to
arrive at the multiple solutions favoring DM’s criteria. Evolutionary
MCDM techniques allow the DMs to supply preference information
in terms of objective weights, constraint bounds, reference points,
and reference directions. Reference point and reference direction-
based EMOs (R-EMO) such as R-NSGA-II [13], RD-NSGA-II [9],
R-NSGA-III [25], and light beam search [10, 16] are the evolutionary
MCDM techniques that have been extensively used in the literature.
Contrary to the utility function or scalarization function-based
MCDM methods in which only one solution is obtained at the end
of each iteration of the algorithm, evolutionary MCDM techniques
benefit by providing multiple preferred solutions at the end of each
iteration allowing the DM to compare these solutions and choose
the most preferred one. The capability of evolutionary MCDM
techniques in generating multiple preferred solutions, comparing
them, and choosing the preferred solution(s) in each iteration brings
flexibility to the decision-making tasks.

https://doi.org/10.1145/3583131.3590420
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In a decision-making task, it is desirable for a DM to arrive at
an objective vector or solution that has a small or insignificant
effect of perturbation in the corresponding decision variable vector.
Such solutions lie on the robust front (RF), instead of lying on the
PF, have the utmost importance in real-world scenarios including
but not limited to engineering design and optimization under un-
certainties. An earlier study [8] proposed multi-objective robust
optimization (MORO) algorithm using NSGA-II [12] that reformu-
lates the original multi-objective optimization problem (MOP) into
a robust MOP by including two robustness definitions to obtain
an RF. Later, other MORO techniques [32] were proposed for eval-
uating RF. The recent literature on MORO techniques for robust
optimization is discussed in [6, 15, 24, 30]. Along with problem-
specific objectives, the robustness index is used as an additional
objective in [6] to compute the RF. [24] transforms an uncertain
3-objective problem into a 5-objective deterministic problem to
arrive at the robust solution(s). Considering the fact that obtaining
RF is computationally expensive and generally, MCDM techniques
find one or more preferred robust solutions that satisfy DMs’ pref-
erences, the current study proposes four multi-objective robust
optimization and decision-making (MORODM) schemes for evalu-
ating preferred robust solutions and applies one of the robustness
definitions to a reference point-based EMO – R-NSGA-III – for
robust decision making tasks. The novelty of the current paper is to
incorporate uncertainty into practical MOO problems that involve
MCDM tasks to arrive at preferred solutions. For this purpose, four
different MORODM schemes are proposed and their computational
effectiveness is discussed.

The rest of the paper is organized as follows. Section 2 discusses
the concept of multi-objective robust optimization (MORO). A brief
discussion on multi-objective robust optimization and decision-
making (MORODM) using R-NSGA-III is presented in Section 3.
Next, the results of the proposed MORODM approach to three test
problems and two real-world engineering problems are discussed
in Section 4, followed by the conclusions drawn in Section 5.

Figure 1: A and B are two points in decision space. In objective
space, solution A is less sensitive as compared to solution B
for a small perturbation in design variable space.

2 MULTI-OBJECTIVE ROBUST SOLUTIONS
For the case of multi-objective optimization problems, the con-
cept of robust optimization was introduced and presented in [8].

Consider the following MOO problem:

Minimize
x

{51 (x)� 52 (x)� � � � � 5" (x)} �
subject to x ∈ S� (1)

where S is the feasible variable space. A robust solution x is defined
as the one for which the objective vector f (x) is insensitive up to a
certain level for a perturbation in the neighborhood of x.

Figure 1 illustrates two decision vectors A and B in decision space
and their respective response values in objective space. It can be
inferred from Figure 1 that a small perturbation in the neighborhood
of decision vector B is more sensitive in objective space as compared
to decision vector A. Hence, decision vector A is more robust than
decision vector B. Also, from a practical point of view, solution A
is more important than solution B.

2.1 Multi-objective Robust Optimization
(MORO) to Find Robust Front (RF)

The following two ideas used in the literature [2] for executing a ro-
bust single-objective optimization task, are extended for computing
RF in the case of MOO [8]:

(1) Robust Solution of Type I: Mean effective objective func-
tion is used for optimization instead of the original objective
function.

(2) Robust Solution of Type II: The normalized difference
between the perturbed objective function and the original
objective function is used as a constraint to have a better
control in defining a robust solution.

The definitions of the Robust Solution of Type I and Type II for
multi-objective optimization are presented in [8] as follows:

Definition 2.1 (Robust Solution of Type I). Defined in a X-
neighborhood

�
BX (x)

�
, a solution x∗ is called a multi-objective

robust solution of Type I, if it is a global feasible Pareto-optimal
solution to the following multi-objective minimization problem:

Minimize
x

{5 eff1 (x)� 5 eff2 (x)� � � � � 5 eff
"

(x)}�
subject to x ∈ S�

(2)

where 5 eff
9

is defined as follows:

5 eff9 =
1

BX (x)

„
y∈B𝛿 (x)

59 (y)3y� (3)

In practical applications, the mean effective function 5 eff
9

ex-
pressed in (3) is computed by generating � neighborhood points in
the BX (x) vicinity of a decision vector x and taking the mean of the
objective function 59 at those� neighborhood points. Instead of the
original objective functions 59 , the mean effective functions 5 eff

9
are

used for optimization. This formulation inherently accounts for the
sensitivity of the objective functions due to the small perturbation
in decision vector x.

Definition 2.2 (Robust Solution of Type II). A solution x∗ is
called a multi-objective robust solution of Type II, if it is a global
feasible Pareto-optimal solution to the following multi-objective
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minimization problem:

Minimize
x

f 51¹xº• 52¹xº• ” ” ” • 5" ¹xºg•

subject to
jjfe� ¹xº � f ¹xºj j2

j jf ¹xºj j2
� [•

x 2 S•

(4)

where[ is the maximum normalized di�erence between the original
and mean e�ective objective functions allowed to de�ne a robust
solution.

2.2 Robust Solution Identi�cation (RSI)
In this paper, for identifying robust solutions from a set of non-
dominated (ND) solutions, Type-II de�nition is applied to pick ND
solutions that satisfy the constraint in (4).

3 MULTI-OBJECTIVE ROBUST OPTIMIZATION
AND DECISION MAKING (MORODM) USING
TYPE-II ROBUSTNESS AND R-NSGA-III

Preferred solutions can be found by focusing an EMO algorithm on
a part of the PF. Here, we discuss and use the reference-point based
EMO (R-EMO) approach. Preferred solutions can also be picked
from a set of non-dominated solutions already found by an EMO.
We call this task reference-point based multi-objective selection
(R-MOS) task.

3.1 R-NSGA-III Procedure
In R-NSGA-III, DM provides reference point(s) in terms of an
objective vector that satis�es their aspiration level. After scaling
the reference point(s) according to the range of objective functions,
the normalized reference points�A¹: º (: = 1• ” ” ” •  ) are obtained
as depicted in Figure 2a. Then intercept of the unit hyper-plane in
criterion space and vector�A¹: º (obtained on joining the normalized
reference point(s) to the ideal point) is computed to arrive at points
¤A¹: º which lies at unit hyperplane. Next,A? =

�" ¸ ?� 1
?

�
Das-Dennis

points
�
� 9

�
are created on a unit hyper-plane, using a suitable gap

?, where" is the number of objective functions [7]. These points
are then shrunk using a factor̀ as follows:

�� 9 = `� 9• ` 2 ¹0•1º” (5)

In the next step, the shrunk Das-Dennis points are projected to the
unit hyper-plane along the direction of a vector joining the centroid
(6) of shrunk hyperplane and¤A¹: º , that lie on a unit simplex centered
around the projected point¤A¹: º . These projected points around
¤A¹: º are the reference points (A?) for NSGA-III. Upon repeating this
procedure for all supplied aspiration points one by one, � A?
reference points are obtained. Adding" extreme points to � A? ;
total ( � A? ¸ " ) reference points are supplied to the NSGA-III
algorithm. In each generation, the points closer to the reference
line obtained on joining the reference point with the ideal point
$ , are used for creating o�spring. At the end of the NSGA-III run,
only the single closest solution for each reference line/direction
generated by the original reference points is considered, except
the ones corresponding to the extreme reference directions. The
DM has to supply the population size per reference point (A?) and
shrinkage factor (̀) to compute the preferred solutions.

3.2 R-MOS Procedure
Given a set of non-dominated (ND) solutions, we can choose the
closestA? solutions to a reference point in the Euclidean sense on
the normalized objective space. For multiple, say reference points,
 � A? points are equally divided among them.

3.3 Four Integration Schemes
Next, we discuss four di�erent MORODM schemes for integrating
EMO, reference-point-based multi-objective selection (R-MOS), and
robust solution identi�cation (RSI) together for �nding respective
preferred robust solutions for multi-objective optimization in the
following sequences:

Scheme A: PF using EMO on original problem! MCDM using
R-MOS from PF! RSI on R-MOS solutions using
formulation (4).

Scheme B: PF using EMO on original problem! RSI from PF
using formulation (4)! MCDM using R-MOS from
RSI solutions.

Scheme C: RF by applying formulation (4) on the original problem
(Robust EMO)! MCDM using R-MOS from RF.

Scheme D: Robust MCDM solutions by applying formulation (4)
in R-EMO (all three concepts are combined together).

Scheme A computes the PF using an EMO algorithm, followed
by computing preferred solution(s) using the R-MOS procedure.
Finally, the preferred solutions that qualify the robustness de�nition
(4)are marked as the robust solution(s). Scheme B �rst computes
the PF using an EMO algorithm and then discards the solution those
do not satisfy the robustness constraint de�ned in formulation(4)
to arrive at an RF. Finally, the R-EMO-based MCDM procedure is
used to perform MCDM tasks on the RF. Both of these schemes can
only �nd preferred robust solutions if they lie on the original PF.

Scheme C performs MCDM on the RF, instead of PF, obtained
by solving constrained MOO(4)using an EMO algorithm. Then,
preferred solutions are picked from the RF using the MCDM ap-
proach. Scheme D handles DM's preference information as they
are treated in an R-EMO and also uses the robustness de�nition
simultaneously to �nd preferred robust solutions in a single run and
without computing the complete PF or complete RF. Hence, from a
computational point of view, Scheme D is expected to be the most ef-
�cient among the four schemes, due to the combined parallel e�orts
of all three concepts in a single algorithm. In the aforementioned
schemes, we use NSGA-III as an EMO algorithm and R-NSGA-III
as an R-EMO procedure for our proposed MORODM schemes.

4 RESULTS
This section presents the results of MORODM schemes discussed
in the previous section, applied on three test problems and two
real-world engineering examples.

4.1 A Bi-objective Test Problem
This test problem has two objectives and �ve design variables. The
details of test problem 1 are discussed in [8]. A well-distributed
PF using NSGA-III algorithm is computed and presented in Figure
2b. For this problem, 100 reference directions are created using
the Das-Dennis method [7]. Next, NSGA-III is executed for 200
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(a) Reference point based-NSGA-III procedure (b) MCDM on PF (c) MORODM using Scheme A

Figure 2: (a) A sketch of the R-NSGA-III's reference point computation procedure. �A¹1º and �A¹2º are reference points provided
by DM. %1 is the shrunk hyperplane depending on the parameter ` . %2 and %3 are reference planes on the unit hyperplane
corresponding to the DM preferences �A¹1º and �A¹2º . ¤A¹1º and ¤A¹2º are the intercept of unit hyperplane and normalized reference
point vectors �A¹1º and �A¹2º , (b) MCDM on the bi-objective test problem, (c) MORODM on the bi-objective test problem using
Scheme A. In the scatter plot, the black markers represent PF obtained using NSGA-III. ' 1 and ' 2 are reference points. The red
dots represent the MCDM solutions obtained using R-NSGA-III. $ is the ideal point.

generations with a tournament selection strategy inpymoo[1].
While implementing NSGA-III, other parameters used are binary
crossover ([ 2 = 30,?2 = 1.0), mutation (?< = 1•=, [ < = 20).

Consider two reference points' 1 = [0.8, 0.9] and' 2 = [0.4, 2.0]
as DM's criteria to evaluate the preferred solutions. We perform
MCDM using R-NSGA-III to compute the preferred solutions corre-
sponding to the reference points' 1 and' 2 presented in red color
markers in Figure 2b. With a shrinkage factor value of` = 0”05
and population size per reference pointA? = 20, R-NSGA-III algo-
rithm is executed for 500 generations. It is to be noted that these
preferred solutions are PO solutions that need to be checked for
Type-II robustness.

The four MORODM schemes discussed in Section 3 for per-
forming robust MCDM tasks are implemented for this problem.
In implementing these four MORODM schemes, the robustness
parameters, namely,X, � , and[ are kept constant. Given the design
variables (G8), the perturbations used areX8 = 2X(8= 2•3•4•5) and
X1 = X, whereX = 0”007. The number of neighboring points� is
set to 100 and the normalized di�erence in original and e�ective
function [ is set to 0.4. The strategy for generating the neighbor-
ing solutions in the vicinity of a decision variable point is being
adopted from [8], where Latin Hypercube Sampling (LHS) was per-
formed. In Scheme A, the MCDM solutions obtained on PF (red
markers in Figure 2b) are checked for their robustness using(4).
Figure 2c presents PF and reference points' 1 and' 2, along with
the preferred robust solutions in red color marker obtained by im-
plementing the MORODM Scheme A. It is to be noted from Figure
2c that, no robust MCDM solutions are obtained corresponding
to the reference point' 2. This is due to the fact that the MCDM
solutions corresponding to reference point' 2 obtained in Figure 2b
do not satisfy the Type-II robustness de�nition. However, MCDM

solutions corresponding to reference point' 1 qualify the robust-
ness de�nition (4) and constitute the only MORODM solutions
according to Scheme A.

Next, we implement Scheme B for performing the MORODM
task. Solutions with green dots are obtained from the PF (black dots)
using Type-II robustness de�nition(4). Next, the preferred solutions
from the set of green dots are chosen using the RSI approach used in
R-NSGA-II. The preferred robust solutions of Scheme B are marked
in red dots in Figure 3a. It can be inferred that no preferred robust
solution is found for reference point' 2 by Scheme B.

The two MORODM Schemes A and B implemented on bi-objective
test problems require the computation of PF followed by perform-
ing a robustness check and MCDM task in di�erent orders. Next,
we introduce the Scheme C that instead of �rst computing PF, com-
putes the RF �rst by solving the MOO de�ned in(4). Figure 3b
represents the RF (in green dots) obtained by solving the Type-II
MORO problem(4)using NSGA-III algorithm. Next, the MCDM task
is performed on the RF instead of PF. Given two reference points
' 1 and' 2, MCDM task is executed using R-NSGA-III procedure to
arrive at robust MCDM solutions highlighted in red dots. The GA
parameters used for NSGA-III and R-NSGA-III are kept the same as
in Scheme A except for the number of generations in R-NSGA-III
is set to 1,000. It is to be noted that some parts of the PF and RF are
identical. On smaller51 values, the PF solutions are sensitive and
hence are not robust. A new RF appears there. This shift now allows
the DM to evaluate and obtain the robust solutions corresponding
to reference point' 2 that was not available in the case of MORODM
Schemes A and B. However, it comes at the computation cost of
performing the MORO task.

Acknowledging the fact that upon performing the MCDM on the
RF in MORODM Scheme C, only a few preferred robust solutions are
saved and others are discarded, we introduce Scheme D that applies
the Type-II robustness de�nition and performs decision-making
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(a) MORODM using Scheme B (b) MORODM using Scheme C (c) MORODM using Scheme D

Figure 3: Bi-objective test problem: In the scatter plot, the black markers represent PF obtained using NSGA-III. The green dots
represent the RF. The red dots represent the preferred robust solutions.

(a) MCDM solutions on PF (b) Robust MCDM using MORODM Scheme A (c) Robust MCDM using MORODM Scheme B

Figure 4: 4-bar truss problem results are shown. Black dots represent PF obtained using NSGA-III. Green dots represent the
obtained RF. The red dots represent the preferred robust solutions.

simultaneously for MORODM task using R-NSGA-III procedure
and computes only preferred robust solution instead of evaluating
the complete PF or RF. Scheme D performs the MORODM task that
avoids evaluating the complete RF to save the computational cost of
MORO and MaORO algorithms. Figure 3c represents the evaluated
preferred robust solutions in red dots. Reference points' 1 and' 2,
shrinkage factor̀ = 0.05, and the population size per reference point
A? = 20 is supplied to R-NSGA-III algorithm to perform MORODM.
The GA parameters were kept the same except for the number
of generations was set to 2,000. The preferred robust solutions of
Scheme D are identical to that obtained in Scheme C. However, it
is to be noted that in Scheme D for MORODM neither PF nor RF is
computed; this reduces the computational cost of evaluating the PF
and RF.

4.2 4-Bar Truss Problem (Bi-objective)
The 4-bar truss design problem is an unconstrained bi-objective
problem that has four decision variables. The �rst objective is struc-
tural volume and the second objective is joint displacement. Further
details on this problem can be found in [5]. For variablesG8, the
perturbationX8 = 2X(8= 1•2•4) andX3 = Xis used.� = 50 solutions
are generated in the neighborhood of a design pointx by setting
the parameterXand[ to 0.25 and1”75� 10� 3, respectively, while

implementing Type-II robustness de�nition(4). The four MORODM
schemes are applied to the 4-bar truss problem for obtaining pre-
ferred robust solutions for three reference points:' 1 = [2500, 0.02],
' 2 = [2000, 0.035], and' 3 = [1500, 0.04].

Figure 5: Preferred robust solutions for the 4-bar truss prob-
lem using Scheme C.

In MORODM Scheme A, 200 reference points are chosen to
execute NSGA-III algorithm for 200 generations to arrive at PF
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shown in black dots in Figure 4a. Next, MCDM is performed on PF
by supplying the reference points' 1, ' 2, and' 3 to the R-NSGA-III
algorithm with population size per reference pointA? = 20 and
shrinkage factor̀ = 0.05. R-NSGA-III algorithm is then executed
for 200 generations for R-MOS by keeping other GA parameters
the same as in the previous example. Figure 4a represents three
di�erent sets of MCDM solutions corresponding to each reference
point, highlighted in red dots that lie on the PF. Next, these MCDM
solutions are checked for their robustness using the constraint in
de�nition (4). The solutions that satisfy the robustness de�nition
are the preferred robust solutions. These solutions obtained on
implementing MORODM Scheme A are highlighted in red dots in
Figure 4b. From the �gure, it can be concluded that the MCDM
solutions on PF corresponding to reference point' 3 are not Type-II
robust for the given robustness parameters. A few MCDM solutions
corresponding to' 2 are robust, whereas all the MCDM solutions
corresponding to' 1 are robust.

In MORODM Scheme B, the PF obtained are checked for their
robustness using the robustness de�nition(4). The Pareto-optimal
solutions that satisfy the Type-II robustness are highlighted in
green dots to represent the RF in Figure 4c revealing the fact that
only a part of PF is robust. Next, the MCDM task is performed at
reference points' 1, ' 2, and' 3 using R-NSGA-III on the RF. The
preferred robust solutions obtained are highlighted in red dots in
Figure 4c. Again, no robust solutions are found corresponding to the
reference point' 3 for the given Type-II robustness and R-NSGA-
III parameters. It is to be noted that MORODM Schemes A and

Figure 6: Preferred robust solutions for the 4-bar truss prob-
lem using Scheme D.

B provide the robust MCDM solutions that are present on the PF.
Now, we implement the MORODM Scheme C that evaluates the RF
and performs decision-making on the RF, instead of PF. Figure 5
represents the RF highlighted with green dots. Some parts of PF and
RF coincide, whereas a few points on RF are shifted towards the
dominated region of PF satisfying the Type-II robustness condition.
Next, the MCDM task is performed using the R-MOS process from
reference points' 1, ' 2, and' 3 to arrive at preferred robust solutions
highlighted in red dots in Figure 5. This scheme is able to �nd
preferred robust solutions corresponding to reference point' 3,
which were not possible to obtain by Schemes A and B. R-NSGA-III
algorithm is executed for 1,000 generations by keeping other GA

parameters the same as in the previous case. Note that this scheme
requires �nding the entire RF and then selecting the preferred
robust solutions from RF.

Next, we implement MORODM Scheme D that implements R-
NSGA-III algorithm to perform robust MCDM in a single step with-
out computing the PF or RF. R-NSGA-III algorithm is executed
for 1,000 generations by providing the reference points' 1, ' 2, ' 3,
shrinkage factor̀ = 0.05, and population size per reference point
A? = 20 as input information for computing the preferred robust
solutions. Solutions marked with red dots in Figure 6 are found. It
can be seen in Figure 6 that preferred robust solutions correspond-
ing to ' 1 and' 2 lie on the PF, whereas that of' 3 is shifted inside
the dominated region of PF. Interestingly, the entire RF was not
required to be found by Scheme D.

From the two examples i.e. bi-objective test problem and the
4-bar truss problem discussed, we can conclude that the preferred
robust solutions obtained by MOROMD Schemes A and B may not
be possible to discover if they did not lie on the original PF. Although
all preferred robust solutions may be possible to be obtained using
MORODM Schemes C and D, due to the computational e�ectiveness,
MORODM Scheme D is recommended and we demonstrate its
further use on more problems involving three and more objectives.

4.3 Test Problem (3-objective)
This unconstrained MOO problem has three objectives and �ve
design variables. Further details on this problem are presented in [8]
as the �rst 3-objective test problem. For this problem, four reference
points ' 1 = [0.25, 0.25, 8.0],' 2 = [0.25, 1.0, 6.0],' 3 =[1.0, 0.25, 6.0],
and' 4 = [1.0, 1.0, 1.5] are considered for the robust decision making
task. The robustness parameters used in MORO areX8 = X, for 8=
1,2; andX8 = 2Xfor 8¡ 2. For this problem, the value ofX, � , and[
is set to 0.01, 50, and 0.5, respectively.

Figure 7: 3-objective test problem results are shown. Green
dots represent the RF. The magenta dots represent the pre-
ferred solutions on PF, whereas the red dots represent the
preferred robust solutions obtained by Scheme D.
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