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ABSTRACT
Evolutionary multi-objective optimization (EMO) algorithms are
predominantly used for solving multi- and many-objective opti-
mization problems to arrive at the respective Pareto front. From
a practical point of view, it is desirable for a decision-maker (DM)
to consider objective vectors that are less sensitive to the small
perturbation in design variables and problem parameters. Such in-
sensitive, yet closer to Pareto-optimal solutions, lie on the so-called
robust front. In real-world applications, such as engineering de-
sign and process optimization problems, perturbations in variables
come from manufacturing tolerances, uncertainties in material
properties, variations in operating conditions, etc. The existing
EMO literature on robustness studies emphasized on finding the
entire robust front, but hardly considered robustness in both op-
timization and decision-making tasks. In this paper, we propose
and evaluate different algorithmic implementations of three as-
pects – multi-objective optimization, robustness consideration, and
multi-criterion decision-making – together. Based on experimental
results on two to eight-objective problems, we discuss the outcomes
and advantages of different integration approaches of these three
aspects and present the most effective combined approach. The
results are interesting and should pave the way to develop more
efficient multi-objective robust optimization and decision-making
(MORODM) procedures for handling practical problems with un-
certainties.

CCS CONCEPTS
• Computing methodologies → Optimization algorithms; •
Theory of computation→ Stochastic control and optimiza-
tion.
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Evolutionary Algorithms, Pareto Front, Robust Front, Multi-criteria
Decision-making, R-NSGA-III
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1 INTRODUCTION
Many real-world applications consist of multiple and generally
conflicting objectives. For solving such problems, evolutionary al-
gorithms (EAs) are being used, extensively. The outcome of an
evolutionary multi-objective algorithm (EMO) is a well-distributed
and diverse set of non-dominated solutions represented by a set
of Pareto-optimal (PO) solutions [12, 31] lying on a Pareto front
(PF). Multi-criteria decision-making (MCDM) techniques compute
preferred PO solution(s) following decision maker’s (DM’s) pref-
erences [4, 20]. The existing MCDM techniques are systematically
developed to perform the optimization and decision-making task
iteratively. Several MCDM techniques apply the concept of utility
functions or scalarization functions using the DM’s preference to re-
formulate the original multi-objective optimization (MOO) problem
into a single objective optimization problem and arrive at a sin-
gle solution favoring the DM’s criteria. Achievement scalarization
function (ASF) [26, 27] and its augmented version (AASF) [20] are
used to develop several MCDM techniques, such as the surrogate
worth trade-off (SWT) method [14], GUESS method [3], satisficing
trade-off method (STOM) [22], and Pareto Race [17, 18].

In addition, there exist population-based evolutionary MCDM
techniques that account for DM’s preference in EMO algorithms to
arrive at the multiple solutions favoring DM’s criteria. Evolutionary
MCDM techniques allow the DMs to supply preference information
in terms of objective weights, constraint bounds, reference points,
and reference directions. Reference point and reference direction-
based EMOs (R-EMO) such as R-NSGA-II [13], RD-NSGA-II [9],
R-NSGA-III [25], and light beam search [10, 16] are the evolutionary
MCDM techniques that have been extensively used in the literature.
Contrary to the utility function or scalarization function-based
MCDM methods in which only one solution is obtained at the end
of each iteration of the algorithm, evolutionary MCDM techniques
benefit by providing multiple preferred solutions at the end of each
iteration allowing the DM to compare these solutions and choose
the most preferred one. The capability of evolutionary MCDM
techniques in generating multiple preferred solutions, comparing
them, and choosing the preferred solution(s) in each iteration brings
flexibility to the decision-making tasks.

https://doi.org/10.1145/3583131.3590420
https://doi.org/10.1145/3583131.3590420
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In a decision-making task, it is desirable for a DM to arrive at
an objective vector or solution that has a small or insignificant
effect of perturbation in the corresponding decision variable vector.
Such solutions lie on the robust front (RF), instead of lying on the
PF, have the utmost importance in real-world scenarios including
but not limited to engineering design and optimization under un-
certainties. An earlier study [8] proposed multi-objective robust
optimization (MORO) algorithm using NSGA-II [12] that reformu-
lates the original multi-objective optimization problem (MOP) into
a robust MOP by including two robustness definitions to obtain
an RF. Later, other MORO techniques [32] were proposed for eval-
uating RF. The recent literature on MORO techniques for robust
optimization is discussed in [6, 15, 24, 30]. Along with problem-
specific objectives, the robustness index is used as an additional
objective in [6] to compute the RF. [24] transforms an uncertain
3-objective problem into a 5-objective deterministic problem to
arrive at the robust solution(s). Considering the fact that obtaining
RF is computationally expensive and generally, MCDM techniques
find one or more preferred robust solutions that satisfy DMs’ pref-
erences, the current study proposes four multi-objective robust
optimization and decision-making (MORODM) schemes for evalu-
ating preferred robust solutions and applies one of the robustness
definitions to a reference point-based EMO – R-NSGA-III – for
robust decision making tasks. The novelty of the current paper is to
incorporate uncertainty into practical MOO problems that involve
MCDM tasks to arrive at preferred solutions. For this purpose, four
different MORODM schemes are proposed and their computational
effectiveness is discussed.

The rest of the paper is organized as follows. Section 2 discusses
the concept of multi-objective robust optimization (MORO). A brief
discussion on multi-objective robust optimization and decision-
making (MORODM) using R-NSGA-III is presented in Section 3.
Next, the results of the proposed MORODM approach to three test
problems and two real-world engineering problems are discussed
in Section 4, followed by the conclusions drawn in Section 5.

Figure 1: A and B are two points in decision space. In objective
space, solution A is less sensitive as compared to solution B
for a small perturbation in design variable space.

2 MULTI-OBJECTIVE ROBUST SOLUTIONS
For the case of multi-objective optimization problems, the con-
cept of robust optimization was introduced and presented in [8].

Consider the following MOO problem:

Minimize
x

{𝑓1 (x), 𝑓2 (x), . . . , 𝑓𝑀 (x)} ,
subject to x ∈ S, (1)

where S is the feasible variable space. A robust solution x is defined
as the one for which the objective vector f (x) is insensitive up to a
certain level for a perturbation in the neighborhood of x.

Figure 1 illustrates two decision vectors A and B in decision space
and their respective response values in objective space. It can be
inferred from Figure 1 that a small perturbation in the neighborhood
of decision vector B is more sensitive in objective space as compared
to decision vector A. Hence, decision vector A is more robust than
decision vector B. Also, from a practical point of view, solution A
is more important than solution B.

2.1 Multi-objective Robust Optimization
(MORO) to Find Robust Front (RF)

The following two ideas used in the literature [2] for executing a ro-
bust single-objective optimization task, are extended for computing
RF in the case of MOO [8]:

(1) Robust Solution of Type I: Mean effective objective func-
tion is used for optimization instead of the original objective
function.

(2) Robust Solution of Type II: The normalized difference
between the perturbed objective function and the original
objective function is used as a constraint to have a better
control in defining a robust solution.

The definitions of the Robust Solution of Type I and Type II for
multi-objective optimization are presented in [8] as follows:

Definition 2.1 (Robust Solution of Type I). Defined in a 𝛿-
neighborhood

(
B𝛿 (x)

)
, a solution x∗ is called a multi-objective

robust solution of Type I, if it is a global feasible Pareto-optimal
solution to the following multi-objective minimization problem:

Minimize
x

{𝑓 eff1 (x), 𝑓 eff2 (x), . . . , 𝑓 eff
𝑀

(x)},
subject to x ∈ S,

(2)

where 𝑓 eff
𝑗

is defined as follows:

𝑓 eff𝑗 =
1

B𝛿 (x)

∫
y∈B𝛿 (x)

𝑓𝑗 (y)𝑑y. (3)

In practical applications, the mean effective function 𝑓 eff
𝑗

ex-
pressed in (3) is computed by generating 𝐻 neighborhood points in
the B𝛿 (x) vicinity of a decision vector x and taking the mean of the
objective function 𝑓𝑗 at those𝐻 neighborhood points. Instead of the
original objective functions 𝑓𝑗 , the mean effective functions 𝑓 eff

𝑗
are

used for optimization. This formulation inherently accounts for the
sensitivity of the objective functions due to the small perturbation
in decision vector x.

Definition 2.2 (Robust Solution of Type II). A solution x∗ is
called a multi-objective robust solution of Type II, if it is a global
feasible Pareto-optimal solution to the following multi-objective
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minimization problem:

Minimize
x

{𝑓1 (x), 𝑓2 (x), . . . , 𝑓𝑀 (x)},

subject to
| |feff (x) − f(x) | |2

| |f(x) | |2
≤ [,

x ∈ S,

(4)

where[ is the maximum normalized difference between the original
and mean effective objective functions allowed to define a robust
solution.

2.2 Robust Solution Identification (RSI)
In this paper, for identifying robust solutions from a set of non-
dominated (ND) solutions, Type-II definition is applied to pick ND
solutions that satisfy the constraint in (4).

3 MULTI-OBJECTIVE ROBUST OPTIMIZATION
AND DECISION MAKING (MORODM) USING
TYPE-II ROBUSTNESS AND R-NSGA-III

Preferred solutions can be found by focusing an EMO algorithm on
a part of the PF. Here, we discuss and use the reference-point based
EMO (R-EMO) approach. Preferred solutions can also be picked
from a set of non-dominated solutions already found by an EMO.
We call this task reference-point based multi-objective selection
(R-MOS) task.

3.1 R-NSGA-III Procedure
In R-NSGA-III, DM provides 𝐾 reference point(s) in terms of an
objective vector that satisfies their aspiration level. After scaling
the reference point(s) according to the range of objective functions,
the normalized reference points 𝑟 (𝑘 ) (𝑘 = 1, . . . , 𝐾) are obtained
as depicted in Figure 2a. Then intercept of the unit hyper-plane in
criterion space and vector 𝑟 (𝑘 ) (obtained on joining the normalized
reference point(s) to the ideal point) is computed to arrive at points
¤𝑟 (𝑘 ) which lies at unit hyperplane. Next, 𝑟𝑝 =

(𝑀+𝑝−1
𝑝

)
Das-Dennis

points
(
ℎ 𝑗

)
are created on a unit hyper-plane, using a suitable gap

𝑝 , where𝑀 is the number of objective functions [7]. These points
are then shrunk using a factor ` as follows:

ℎ̄ 𝑗 = `ℎ 𝑗 , ` ∈ (0, 1) . (5)

In the next step, the shrunk Das-Dennis points are projected to the
unit hyper-plane along the direction of a vector joining the centroid
(𝑔) of shrunk hyperplane and ¤𝑟 (𝑘 ) , that lie on a unit simplex centered
around the projected point ¤𝑟 (𝑘 ) . These projected points around
¤𝑟 (𝑘 ) are the reference points (𝑟𝑝 ) for NSGA-III. Upon repeating this
procedure for all 𝐾 supplied aspiration points one by one, 𝐾 × 𝑟𝑝
reference points are obtained. Adding𝑀 extreme points to 𝐾 × 𝑟𝑝 ;
total (𝐾 × 𝑟𝑝 + 𝑀) reference points are supplied to the NSGA-III
algorithm. In each generation, the points closer to the reference
line obtained on joining the reference point with the ideal point
𝑂 , are used for creating offspring. At the end of the NSGA-III run,
only the single closest solution for each reference line/direction
generated by the original reference points is considered, except
the ones corresponding to the extreme reference directions. The
DM has to supply the population size per reference point (𝑟𝑝 ) and
shrinkage factor (`) to compute the preferred solutions.

3.2 R-MOS Procedure
Given a set of non-dominated (ND) solutions, we can choose the
closest 𝑟𝑝 solutions to a reference point in the Euclidean sense on
the normalized objective space. For multiple, say𝐾 reference points,
𝐾 × 𝑟𝑝 points are equally divided among them.

3.3 Four Integration Schemes
Next, we discuss four different MORODM schemes for integrating
EMO, reference-point-based multi-objective selection (R-MOS), and
robust solution identification (RSI) together for finding respective
preferred robust solutions for multi-objective optimization in the
following sequences:

Scheme A: PF using EMO on original problem → MCDM using
R-MOS from PF → RSI on R-MOS solutions using
formulation (4).

Scheme B: PF using EMO on original problem → RSI from PF
using formulation (4) → MCDM using R-MOS from
RSI solutions.

Scheme C: RF by applying formulation (4) on the original problem
(Robust EMO)→MCDM using R-MOS from RF.

Scheme D: Robust MCDM solutions by applying formulation (4)
in R-EMO (all three concepts are combined together).

Scheme A computes the PF using an EMO algorithm, followed
by computing preferred solution(s) using the R-MOS procedure.
Finally, the preferred solutions that qualify the robustness definition
(4) are marked as the robust solution(s). Scheme B first computes
the PF using an EMO algorithm and then discards the solution those
do not satisfy the robustness constraint defined in formulation (4)
to arrive at an RF. Finally, the R-EMO-based MCDM procedure is
used to perform MCDM tasks on the RF. Both of these schemes can
only find preferred robust solutions if they lie on the original PF.

Scheme C performs MCDM on the RF, instead of PF, obtained
by solving constrained MOO (4) using an EMO algorithm. Then,
preferred solutions are picked from the RF using the MCDM ap-
proach. Scheme D handles DM’s preference information as they
are treated in an R-EMO and also uses the robustness definition
simultaneously to find preferred robust solutions in a single run and
without computing the complete PF or complete RF. Hence, from a
computational point of view, Scheme D is expected to be the most ef-
ficient among the four schemes, due to the combined parallel efforts
of all three concepts in a single algorithm. In the aforementioned
schemes, we use NSGA-III as an EMO algorithm and R-NSGA-III
as an R-EMO procedure for our proposed MORODM schemes.

4 RESULTS
This section presents the results of MORODM schemes discussed
in the previous section, applied on three test problems and two
real-world engineering examples.

4.1 A Bi-objective Test Problem
This test problem has two objectives and five design variables. The
details of test problem 1 are discussed in [8]. A well-distributed
PF using NSGA-III algorithm is computed and presented in Figure
2b. For this problem, 100 reference directions are created using
the Das-Dennis method [7]. Next, NSGA-III is executed for 200
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(a) Reference point based-NSGA-III procedure (b) MCDM on PF (c) MORODM using Scheme A

Figure 2: (a) A sketch of the R-NSGA-III’s reference point computation procedure. 𝑟 (1) and 𝑟 (2) are reference points provided
by DM. 𝑃1 is the shrunk hyperplane depending on the parameter `. 𝑃2 and 𝑃3 are reference planes on the unit hyperplane
corresponding to the DM preferences 𝑟 (1) and 𝑟 (2) . ¤𝑟 (1) and ¤𝑟 (2) are the intercept of unit hyperplane and normalized reference
point vectors 𝑟 (1) and 𝑟 (2) , (b) MCDM on the bi-objective test problem, (c) MORODM on the bi-objective test problem using
Scheme A. In the scatter plot, the black markers represent PF obtained using NSGA-III. 𝑅1 and 𝑅2 are reference points. The red
dots represent the MCDM solutions obtained using R-NSGA-III. 𝑂 is the ideal point.

generations with a tournament selection strategy in pymoo [1].
While implementing NSGA-III, other parameters used are binary
crossover ([𝑐 = 30, 𝑝𝑐 = 1.0), mutation (𝑝𝑚 = 1/𝑛, [𝑚 = 20).

Consider two reference points 𝑅1 = [0.8, 0.9] and 𝑅2 = [0.4, 2.0]
as DM’s criteria to evaluate the preferred solutions. We perform
MCDM using R-NSGA-III to compute the preferred solutions corre-
sponding to the reference points 𝑅1 and 𝑅2 presented in red color
markers in Figure 2b. With a shrinkage factor value of ` = 0.05
and population size per reference point 𝑟𝑝 = 20, R-NSGA-III algo-
rithm is executed for 500 generations. It is to be noted that these
preferred solutions are PO solutions that need to be checked for
Type-II robustness.

The four MORODM schemes discussed in Section 3 for per-
forming robust MCDM tasks are implemented for this problem.
In implementing these four MORODM schemes, the robustness
parameters, namely, 𝛿 ,𝐻 , and [ are kept constant. Given the design
variables (𝑥𝑖 ), the perturbations used are 𝛿𝑖 = 2𝛿 (𝑖 = 2, 3, 4, 5) and
𝛿1 = 𝛿 , where 𝛿 = 0.007. The number of neighboring points 𝐻 is
set to 100 and the normalized difference in original and effective
function [ is set to 0.4. The strategy for generating the neighbor-
ing solutions in the vicinity of a decision variable point is being
adopted from [8], where Latin Hypercube Sampling (LHS) was per-
formed. In Scheme A, the MCDM solutions obtained on PF (red
markers in Figure 2b) are checked for their robustness using (4).
Figure 2c presents PF and reference points 𝑅1 and 𝑅2, along with
the preferred robust solutions in red color marker obtained by im-
plementing the MORODM Scheme A. It is to be noted from Figure
2c that, no robust MCDM solutions are obtained corresponding
to the reference point 𝑅2. This is due to the fact that the MCDM
solutions corresponding to reference point 𝑅2 obtained in Figure 2b
do not satisfy the Type-II robustness definition. However, MCDM

solutions corresponding to reference point 𝑅1 qualify the robust-
ness definition (4) and constitute the only MORODM solutions
according to Scheme A.

Next, we implement Scheme B for performing the MORODM
task. Solutions with green dots are obtained from the PF (black dots)
using Type-II robustness definition (4). Next, the preferred solutions
from the set of green dots are chosen using the RSI approach used in
R-NSGA-II. The preferred robust solutions of Scheme B are marked
in red dots in Figure 3a. It can be inferred that no preferred robust
solution is found for reference point 𝑅2 by Scheme B.

The twoMORODMSchemesA and B implemented on bi-objective
test problems require the computation of PF followed by perform-
ing a robustness check and MCDM task in different orders. Next,
we introduce the Scheme C that instead of first computing PF, com-
putes the RF first by solving the MOO defined in (4). Figure 3b
represents the RF (in green dots) obtained by solving the Type-II
MORO problem (4) using NSGA-III algorithm. Next, theMCDM task
is performed on the RF instead of PF. Given two reference points
𝑅1 and 𝑅2, MCDM task is executed using R-NSGA-III procedure to
arrive at robust MCDM solutions highlighted in red dots. The GA
parameters used for NSGA-III and R-NSGA-III are kept the same as
in Scheme A except for the number of generations in R-NSGA-III
is set to 1,000. It is to be noted that some parts of the PF and RF are
identical. On smaller 𝑓1 values, the PF solutions are sensitive and
hence are not robust. A new RF appears there. This shift now allows
the DM to evaluate and obtain the robust solutions corresponding
to reference point 𝑅2 that was not available in the case of MORODM
Schemes A and B. However, it comes at the computation cost of
performing the MORO task.

Acknowledging the fact that upon performing the MCDM on the
RF inMORODMSchemeC, only a few preferred robust solutions are
saved and others are discarded, we introduce Scheme D that applies
the Type-II robustness definition and performs decision-making
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(a) MORODM using Scheme B (b) MORODM using Scheme C (c) MORODM using Scheme D

Figure 3: Bi-objective test problem: In the scatter plot, the black markers represent PF obtained using NSGA-III. The green dots
represent the RF. The red dots represent the preferred robust solutions.

(a) MCDM solutions on PF (b) Robust MCDM using MORODM Scheme A (c) Robust MCDM using MORODM Scheme B

Figure 4: 4-bar truss problem results are shown. Black dots represent PF obtained using NSGA-III. Green dots represent the
obtained RF. The red dots represent the preferred robust solutions.

simultaneously for MORODM task using R-NSGA-III procedure
and computes only preferred robust solution instead of evaluating
the complete PF or RF. Scheme D performs the MORODM task that
avoids evaluating the complete RF to save the computational cost of
MORO and MaORO algorithms. Figure 3c represents the evaluated
preferred robust solutions in red dots. Reference points 𝑅1 and 𝑅2,
shrinkage factor ` = 0.05, and the population size per reference point
𝑟𝑝 = 20 is supplied to R-NSGA-III algorithm to perform MORODM.
The GA parameters were kept the same except for the number
of generations was set to 2,000. The preferred robust solutions of
Scheme D are identical to that obtained in Scheme C. However, it
is to be noted that in Scheme D for MORODM neither PF nor RF is
computed; this reduces the computational cost of evaluating the PF
and RF.

4.2 4-Bar Truss Problem (Bi-objective)
The 4-bar truss design problem is an unconstrained bi-objective
problem that has four decision variables. The first objective is struc-
tural volume and the second objective is joint displacement. Further
details on this problem can be found in [5]. For variables 𝑥𝑖 , the
perturbation 𝛿𝑖 = 2𝛿 (𝑖 = 1, 2, 4) and 𝛿3 = 𝛿 is used.𝐻 = 50 solutions
are generated in the neighborhood of a design point x by setting
the parameter 𝛿 and [ to 0.25 and 1.75 × 10−3, respectively, while

implementing Type-II robustness definition (4). The four MORODM
schemes are applied to the 4-bar truss problem for obtaining pre-
ferred robust solutions for three reference points: 𝑅1 = [2500, 0.02],
𝑅2 = [2000, 0.035], and 𝑅3 = [1500, 0.04].

Figure 5: Preferred robust solutions for the 4-bar truss prob-
lem using Scheme C.

In MORODM Scheme A, 200 reference points are chosen to
execute NSGA-III algorithm for 200 generations to arrive at PF
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shown in black dots in Figure 4a. Next, MCDM is performed on PF
by supplying the reference points 𝑅1, 𝑅2, and 𝑅3 to the R-NSGA-III
algorithm with population size per reference point 𝑟𝑝 = 20 and
shrinkage factor ` = 0.05. R-NSGA-III algorithm is then executed
for 200 generations for R-MOS by keeping other GA parameters
the same as in the previous example. Figure 4a represents three
different sets of MCDM solutions corresponding to each reference
point, highlighted in red dots that lie on the PF. Next, these MCDM
solutions are checked for their robustness using the constraint in
definition (4). The solutions that satisfy the robustness definition
are the preferred robust solutions. These solutions obtained on
implementing MORODM Scheme A are highlighted in red dots in
Figure 4b. From the figure, it can be concluded that the MCDM
solutions on PF corresponding to reference point 𝑅3 are not Type-II
robust for the given robustness parameters. A few MCDM solutions
corresponding to 𝑅2 are robust, whereas all the MCDM solutions
corresponding to 𝑅1 are robust.

In MORODM Scheme B, the PF obtained are checked for their
robustness using the robustness definition (4). The Pareto-optimal
solutions that satisfy the Type-II robustness are highlighted in
green dots to represent the RF in Figure 4c revealing the fact that
only a part of PF is robust. Next, the MCDM task is performed at
reference points 𝑅1, 𝑅2, and 𝑅3 using R-NSGA-III on the RF. The
preferred robust solutions obtained are highlighted in red dots in
Figure 4c. Again, no robust solutions are found corresponding to the
reference point 𝑅3 for the given Type-II robustness and R-NSGA-
III parameters. It is to be noted that MORODM Schemes A and

Figure 6: Preferred robust solutions for the 4-bar truss prob-
lem using Scheme D.

B provide the robust MCDM solutions that are present on the PF.
Now, we implement the MORODM Scheme C that evaluates the RF
and performs decision-making on the RF, instead of PF. Figure 5
represents the RF highlighted with green dots. Some parts of PF and
RF coincide, whereas a few points on RF are shifted towards the
dominated region of PF satisfying the Type-II robustness condition.
Next, the MCDM task is performed using the R-MOS process from
reference points𝑅1,𝑅2, and𝑅3 to arrive at preferred robust solutions
highlighted in red dots in Figure 5. This scheme is able to find
preferred robust solutions corresponding to reference point 𝑅3,
which were not possible to obtain by Schemes A and B. R-NSGA-III
algorithm is executed for 1,000 generations by keeping other GA

parameters the same as in the previous case. Note that this scheme
requires finding the entire RF and then selecting the preferred
robust solutions from RF.

Next, we implement MORODM Scheme D that implements R-
NSGA-III algorithm to perform robust MCDM in a single step with-
out computing the PF or RF. R-NSGA-III algorithm is executed
for 1,000 generations by providing the reference points 𝑅1, 𝑅2, 𝑅3,
shrinkage factor ` = 0.05, and population size per reference point
𝑟𝑝 = 20 as input information for computing the preferred robust
solutions. Solutions marked with red dots in Figure 6 are found. It
can be seen in Figure 6 that preferred robust solutions correspond-
ing to 𝑅1 and 𝑅2 lie on the PF, whereas that of 𝑅3 is shifted inside
the dominated region of PF. Interestingly, the entire RF was not
required to be found by Scheme D.

From the two examples i.e. bi-objective test problem and the
4-bar truss problem discussed, we can conclude that the preferred
robust solutions obtained by MOROMD Schemes A and B may not
be possible to discover if they did not lie on the original PF. Although
all preferred robust solutions may be possible to be obtained using
MORODMSchemes C andD, due to the computational effectiveness,
MORODM Scheme D is recommended and we demonstrate its
further use on more problems involving three and more objectives.

4.3 Test Problem (3-objective)
This unconstrained MOO problem has three objectives and five
design variables. Further details on this problem are presented in [8]
as the first 3-objective test problem. For this problem, four reference
points 𝑅1 = [0.25, 0.25, 8.0], 𝑅2 = [0.25, 1.0, 6.0], 𝑅3 =[1.0, 0.25, 6.0],
and 𝑅4 = [1.0, 1.0, 1.5] are considered for the robust decision making
task. The robustness parameters used in MORO are 𝛿𝑖 = 𝛿 , for 𝑖 =
1,2; and 𝛿𝑖 = 2𝛿 for 𝑖 >2. For this problem, the value of 𝛿 , 𝐻 , and [
is set to 0.01, 50, and 0.5, respectively.

Figure 7: 3-objective test problem results are shown. Green
dots represent the RF. The magenta dots represent the pre-
ferred solutions on PF, whereas the red dots represent the
preferred robust solutions obtained by Scheme D.
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Figure 7 represents the scatter plot of PF shown in black dots. The
scatter plot of RF is highlighted in green dots. It can be seen that the
points on RF are dominated by points on PF, confirming the fact that
PO solutions are sensitive to variable uncertainties. RF solutions
are dominated by PF solutions with respect to three objectives but
are robust with respect to variable uncertainties. For the reference
points 𝑅1, 𝑅2, 𝑅3, and 𝑅4, preferred PF solutions obtained using
R-NSGA-III, executed with identical GA and robustness parameter
values and run for 2,500 generations, are marked in magenta dots
(lying on the PF). Note that these preferred solutions are not checked
for robustness, but it is clear that these preferred PF (magenta)
solutions do not lie on the RF.

Next, we implement Scheme D to perform the MORODM task
for given reference points to find preferred robust solutions. The
problem is solved for Type-II robustness and decision-making simul-
taneously using R-NSGA-III algorithm. The robust MCDM solutions
obtained are highlighted in red dots, as shown in Figure 7. It is to
be noted that these robust MCDM solutions (red dots) lie on the
RF concluding that the MCDM solutions present on PF (in ma-
genta color) are not Type-II robust with parameters values 𝛿 = 0.01,
𝐻 = 50, and [ = 0.5.

MORODM Scheme D implemented on the three-objective test
problem reveals the effectiveness of R-NSGA-III algorithm for per-
forming robust decision-making. Since the MORODM solutions
obtained here lie on the RF, it is clear that MORODM Schemes
A and B will not provide any preferred robust solution for this
problem. Again, Scheme C requires the computation of RF which is
computationally expensive, hence, MORODM Scheme D is found
to be the most effective among the other three MORODM Schemes
for this problem.

4.4 River Pollution Problem (5-objective)
The river pollution problem is an unconstrained MaOP with five
objectives and two design variables. Further details on this problem
are discussed in [23]. A reference point𝑅 = [−6.0,−3.4, 0.0, 10, 0.25]
is used for the MORODM task. Robustness parameters 𝛿 = 0.02,
𝐻 = 100, and [ = 0.01 are used for the Type-II robustness definition
(4). The shrinkage factor ` and the population size per reference
point (𝑟𝑝 ) are set at 0.05 and 50, respectively, in R-NSGA-III.

A representative PF is computed using NSGA-III by using 𝑝 = 20
to compute the reference directions using the Das-Dennis method
[7] and the algorithm is executed for 50 generations with a tourna-
ment selection strategy. Other algorithmic parameters are kept the
same as in the previous examples. Figure 8 shows the scatter plot
of the PF and RF highlighted in orange and green dots, respectively.
The RF is computed using the robustness definition of Type-II in
NSGA-III. It is clear that RF front is a part of the original PF and
comes from smaller values of 𝑓3 and 𝑓4 and larger values of 𝑓2, but
spread on 𝑓1 stays more or less identical to that in the original PF.
It is important to note that the computation of PF and RF is not
needed for Scheme D, but we plot and show them here for the
convenience of understanding and visualization of preferred robust
solutions obtained using Scheme D, discussed below.

MORODM Scheme D is implemented on the river pollution prob-
lem. R-NSGA-III is executed for 100 generations by supplying the
robustness parameters and R-NSGA-III parameters along with the

Figure 8: Scatter plots for the river pollution problem are
shown. Orange and blue dots represent PF and preferred so-
lutions on PF, respectively. Black dots represent reference
points. Green dots represent the RF, whereas the red dots rep-
resent the preferred robust solutions obtained by Scheme D.

reference point as input information. The robust MCDM solutions
obtained upon implementing MORODM Scheme D are highlighted
in red dots in Figure 8. It can be seen from the figure that the MO-
RODM solutions belong to the RF. However, a few of the MCDM
solutions represented in blue markers are outside the RF reveal-
ing the need for robust MCDM. This example clearly shows how
Scheme D can be applied to find a few preferred as well as robust
solutions in a many-objective optimization problem.

4.5 Test Problem (8-objective)
The second three-objective test problem presented in [8] is extended
to create an 8-objective test problem that has 10 design variables.
A reference point 𝑅 = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 40.0] is used to
perform MORODM Scheme D using R-NSGA-III. For performing
the Type II robustness, the perturbation at different design variables
are chosen as 𝛿𝑖 = 𝛿 , for 𝑖= 1,. . . ,7; and 𝛿𝑖 = 2𝛿 for 𝑖 > 7. The value
𝛿 = 0.075, 𝐻 = 50, and [ = 1.5 is chosen for MaORO. The value of
the shrinkage factor ` is set to 0.05 and the population size per
reference point is set to 120.

MORODM Scheme D is implemented by executing R-NSGA-
III algorithm for 2,000 generations and by keeping the other GA
parameters the same as in the previous examples. Figure 9 rep-
resents the parallel coordinate plot (PCP) of the PF, RF, MCDM
solutions, and MORODM solutions. The gray color lines represent
the PF obtained using NSGA-III, the magenta color lines represent
the MCDM solutions at PF, the green color lines represent Type-II
RF obtained using NSGA-III, and the red color lines represent the
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Figure 9: Parallel coordinate plot (PCP) for the 8-objective problem is shown. Gray lines represent PF obtained using NSGA-III.
Magenta lines represent the preferred (non-robust) solutions on PF. Green color lines represent the RF, whereas red color lines
represent the preferred robust solutions obtained by Scheme D.

robust MCDM solutions obtained using R-NSGA-III algorithm im-
plemented in MORODM Scheme D. It is to be noted that MORODM
Scheme D does not require PF or RF computation, here we plot it
for the reference of highlighting the robust MCDM solutions.

From PCP in Figure 9, it can be inferred that the range of RF
has shrunk in 𝑓1-𝑓7 objectives. However, the objective 𝑓8 is shifted
towards relatively higher values as compared to 𝑓8 objective values
in the original PF. The preferred robust solutions obtained by im-
plementing MORODM Scheme D highlighted in red lines belong
to the RF. MORODM performed on the 8-objective test problem
highlights the usefulness of R-NSGA-III in efficiently computing the
preferred robust solution and performing a robust decision-making
task.

From the test problems and real-world engineering problems dis-
cussed in this section, it can be concluded that MORODM Scheme D
using R-NSGA-III algorithm is a computationally efficient proce-
dure to perform the MORODM task to arrive at preferred robust
solutions. The ability of R-NSGA-III to accommodate the Type-II
robustness definition and perform decision-making tasks simul-
taneously without evaluating PF or RF independently makes it
computationally efficient as compared to other MORODM schemes
proposed here.

5 CONCLUSIONS
This paper has emphasized the concept of multi-objective robust
optimization with decision-making (MORODM). Four different MO-
RODM schemes have been proposed and implemented on three
benchmark problems and two real-world engineering problems to
find the preferred solution(s) on the robust front (RF), instead of
the Pareto front (PF). Schemes A and B have evaluated PF followed
by the robustness computation and decision-making preferences
in a different order. The robust MCDM solutions obtained using
these two schemes are robust solutions lying on the original PF.
In some occasions, both schemes have resulted in generating no
robust solution for certain reference points, indicating that this

can be a possibility for certain MORODM approaches. Scheme C
has addressed this limitation by first performing MORO to arrive
at RF directly, instead of finding a PF and then choosing robust
solutions from it, and then performing an MCDM task of choosing
the preferred robust solution(s). However, Scheme C has a relatively
higher computational cost due to the robustness definition check
needed for every solution on the RF. Scheme D has addressed this
limitation by including the robustness definition in the reference
point-based MCDM procedure known as R-NSGA-III, so that the
robustness definition has been applied to find preferred robust solu-
tions. The results on problems have revealed that Scheme D makes
an efficient MORODM task by performing robustness-check and
decision-making simultaneously to save computational efforts for
generating the preferred robust solutions.

In the future, other existing R-EMO algorithms such as R-NSGA-
II [13], RD-NSGA-II [9], and MOEA/D [19, 31] among others can
be used in the MORODM procedure and their computational ef-
fectiveness in performing robust MCDM can be evaluated. Also,
the effect of robustness parameters 𝛿 , 𝐻 , [ and R-NSGA-III parame-
ters `, 𝑟𝑝 on MORODM schemes can be studied further. Shrinkage
factor (`) and population size per reference point (𝑟𝑝 ) in NSGA-III
are user-defined values that can be selected according to the maxi-
mum function evaluations calculated in terms of population size
and the number of generations in GA, and convergence criteria.
The robustness parameters are also user-defined values that can
be appropriately selected according to the computational budget
and permissible uncertainty level of the problem. Moreover, the
effectiveness of R-NSGA-III algorithm for performing MORODM
tasks can be tested on more challenging test problems proposed
in [21]. The strategies such as the ones proposed in [2] and [32]
can be implemented to improve the computational complexity of
the EAs for performing the MORODM tasks to arrive at preferred
robust solutions.
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MORODM can also be applied to scalarization function-based
MCDM techniques, such as NIMBUS and Pareto Race, for interac-
tive and informed MORODM tasks using an effective visualization
method [28, 29]. Also, the procedure for MORODM can be ex-
tended to handle constrained MOO and MaOP with uncertainty by
introducing and quantifying the reliability parameter to arrive at
robust and reliable preferred solutions [11]. Though this extension
can be developed to perform multi-objective robust and reliable
optimization and decision-making tasks, it should be noted that
incorporating reliability as an additional constraint along with the
robustness constraint can make the optimization task harder with
increased computational complexity.
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