
Optimizing Keyboard Configuration Using Single and
Multi-Objective Evolutionary Algorithms

Ahmer Khan and Kalyanmoy Deb
Department of Computer Science and Engineering

Michigan State University
East Lansing, Michigan, USA
{khanahm2,kdeb}@msu.edu

COIN Report Number 2023003

ABSTRACT
An English language keyboard configuration involves 30 keys – 26
alphabets and four punctuation marks: comma, period, semi-colon,
and question mark. Based on the sequence of letters that frequently
appear in typing activities, one or more keyboard configurations
will be optimal for a specific performance metric. Here, we consider
the cumulative distance between two consecutive keystrokes to
type out a large piece of text as the optimization objective, as it
directly relates to the typing efficiency. The shorter the distance
the fingers needs to move between strokes, the faster is the typing
speed. When considering such a scenario, researchers often focus
on a specific single objective one at a time and come up with the
respective optimal keyboard configuration. The complete dissim-
ilarity of these optimal, yet esoteric, keyboards from the current
in-practice QWERTY configuration makes the new optimal key-
board configuration harder to learn and deploy on a larger scale.
Hence in this study, we look at a multi-objective version of such
a problem and consider two objectives – maximizing typing effi-
ciency and maximizing similarity to QWERTY configuration. We
make use of the NSGA-II algorithm and produce a Pareto set of
keyboard configurations ranging from the most efficient to the
most similar configurations. The range of solutions can potentially
provide a design innovation path for gradually moving from the
popular QWERTY configuration to more efficient configurations
as a series of improvements.

CCS CONCEPTS
• Theory of computation→ Genetic programming; Theory of
randomized search heuristics; • Hardware → Hardware description
languages and compilation.

KEYWORDS
Multi-objective optimization, Keyboard layout, combinatorial opti-
mization.

ACM Reference Format:
Ahmer Khan and KalyanmoyDeb. 2023. Optimizing Keyboard Configuration
Using Single and Multi-Objective Evolutionary Algorithms. In Genetic and

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0120-7/23/07.
https://doi.org/10.1145/3583133.3590580

Evolutionary Computation Conference Companion (GECCO ’23 Companion),
July 15–19, 2023, Lisbon, Portugal. ACM, New York, NY, USA, 5 pages. https:
//doi.org/10.1145/3583133.3590580

1 INTRODUCTION
The QWERTY keyboard layout is ubiquitously employed as the
standard English keyboard layout since the advent of computers.
Considering the long-standing presence of the QWERTY layout,
one may be inclined to believe that it presents, to some degree,
an optimized arrangement with respect to some evaluation metric.
However, there is no such indication that this is actually the case,
with unproven theories for key placement ranging from using an
arbitrary arrangement to using an arrangement that would prevent
mechanical clashing during typewriter operation. To that end, we
pose this problem as a combinatorial optimization problem for
maximizing the typing efficiency of a user, where we use a distance
metric to maximize typing efficiency since, the lesser distance the
fingers have to type, the faster the typing speed. Our search space
spans 30! = 2.65(1032) unique arrangements.

Though researchers have previously optimized keyboard lay-
outs using certain evaluation criteria, these studies were based on
single-objective optimization producing final solutions far from
the heavily used QWERTY configuration limiting their widespread
adoption [4, 11, 13–15]. Nivasch and Azaria [12] used a deep learn-
ing model with a genetic algorithm (GA) to optimize for the key-
board configuration. A text analyzer was used to generate 3,000
most frequent words and optimize the keyboard configuration based
on that [9]. They optimized the keyboard for 26 letters only. The
effect of keyboard layout and size is studied on smartphone typing
performance [16]. In this paper, we pose the overall problem as a
multi-objective optimization problem, where our goal is to maxi-
mize user efficiency but minimize dissimilarity from the QWERTY
configuration. For the initial phase (single-objective optimization)
of our problem, we employ a combinatorial Genetic Algorithm
(GA) using 30 keys representing the 26 English alphabet characters
A-Z as well as the comma, period, question mark, and semi-colon.
For the multi-objective version of the problem, we develop a com-
binatorial version of the NSGA-II algorithm [3] and generate a
Pareto-optimal (PO) set of solutions ranging from the most efficient
to the most similar configurations. The range of obtained solutions
can provide a path for gradually moving from the QWERTY config-
uration to more efficient configurations for specialized applications,
demonstrating another beneficial advantage of employing an EMO
algorithm to find a viable blueprint of solution steps.

https://doi.org/10.1145/3583133.3590580
https://doi.org/10.1145/3583133.3590580
https://doi.org/10.1145/3583133.3590580


GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal Ahmer Khan and Kalyanmoy Deb

In the remainder of this paper, we discuss single-objective and
multi-objective evolutionary algorithms (EAs) developed for solv-
ing the keyboard configuration problem in detail in Section 2. The
evaluation procedure is described in Section 3. Results of single-
objective GAs and multi-objective GAs are presented in Sections 4
and 5, respectively. Finally, conclusions are drawn in Section 6.

2 COMBINATORIAL EVOLUTIONARY
ALGORITHMS

We employ a combinatorial Genetic Algorithm (GA) [10] for the
single-objective phase of the optimization problem and use a combi-
natorial version of the NSGA-II procedure [3] for themulti-objective
version of the problem. For both versions, due to its availability,
the QWERTY configuration is included in the initial population
to jump start the evolutionary process. This highlights the use of
a known solution, if available, in the initial population of an EA
approach.

2.1 Single-objective Customized
Permutation-based GA

To represent a keyboard with 30 distinct keys in an optimization al-
gorithm, first, we need to decide on a representation scheme which
will act as a genome in a GA. An individual (chromosome) in our
population is represented as a string of 30 characters as a permu-
tation of 30 numbers. Letters A to Z are numbered serially from 1
to 26. Thereafter, comma, period, question mark, and semi-colon
are numbered 27 to 30, respectively. The index of each character
in the string is then mapped to a corresponding position on the
keyboard, thereby generating the keyboard configuration. This rep-
resentation allows a total of 30! = 2.62(1032) different keyboard
configurations. This introduces a large number of keyboards to be
evaluated exhaustively to find the best possible keyboard. The prob-
lem of keyboard configuration calls for a numerical optimization
procedure.

The goal in a keyboard configuration optimization is to have
the maximum possible typing efficiency of some sort. As a main
objective for keyboard configuration, we define a typing efficiency
objective. To maximize typing efficiency we make use of a distance
metric where the objective is to minimize the total typing distance
between two consecutive keystrokes to type out a string of text. To
do so, we first map the genomes representing keyboard configura-
tion to square coordinate positions that accurately represent the
modern keyboard shape. We then group keys by the fingers they
are typed by and then calculate the Euclidean distances between
all pairs within each group. From these calculations, we are able
to create a lookup table for distances between keys. This ensures
that distances are calculated only once at the initialization of the
optimization run and used when evaluating the total typing dis-
tance for any given layout. Additionally, we do take into account
the area of an individual key and the spaces between them in our
distance calculation. It is clear that this evaluation procedure for
typing efficiency depends on the text being used. We discuss more
about this in Section 3.

The crossover operator to recombine two parents needs to be
mindful of the validity of generated offsprings. Given its docu-
mented success with combinatorial problems, we choose to use the

PMX crossover [7] as the crossover operator applied to a pair of
parents with probability 𝑝𝑐 . For parent selection, we choose to use
𝑘-ary tournament selection with replacement.

Since the nature of the problem is combinatorial, we also need a
mutation operator that always produces a valid mutated offspring
permutation. Here, we use the swap mutation [5] as the mutation
operator. In such an operation an even-numbered set of charac-
ters is selected based on a mutation probability (𝑝𝑚) applied to
each position. If this results in an odd number of positions, the last
position is ignored. The pairs are formed randomly from the se-
lected positions. Each pair then swap positions to create a mutated
individual.

At the end of each generation, we implement an elitist survival
selection approach, in which both parent and offspring population
of the same size are combined and the top half of the combined
population (based on typing efficiency) is passed on to the next
generation. We use a maximum number of generations (𝑇max) to
terminate an optimization run.

2.2 Multi-objective Permutation-based NSGA-II
In addition to the typing efficiency objective, we introduce a com-
peting objective of dissimilarity with the QWERTY configuration
creating another minimization objective function and pose the prob-
lem as a multi-objective combinatorial optimization problem. The
dissimilarity with the QWERTY configuration is calculated as the
sum of binary differences in each position of the keyboard. if the
character in a position in the produced solution is different than
the character in the QWERTY configuration it amounts to a dissim-
ilarity metric value of 1. We then simply sum differences in each of
the 30 positions to compute the second objective in the range [0,30].
The motivation for introducing this objective is to find keyboards
that would have good typing efficiency but are not too dissimilar to
the QWERTY configuration. This is because humans have apathy
for change from status-quo, but may get convinced with a slight
change if that leads to a better typing efficiency.

We use the popular NSGA-II algorithm [3] for the multi-objective
version of the algorithm. We use the same crossover and mutation
operators as in the single-objective case, as the representation stays
the same. The termination condition is also set based on elapse of
𝑇max generations. We use the pymoo distribution [1], but update
the representation, crossover and mutation operators with those
discussed above.

3 EVALUATION PROCEDURE
To evaluate on a short text containing a few words would prove to
be insufficient as it would only train the model to optimize typing
that text and result in over-fitting. To that end, we initially consider
using a large English lexicon of the most frequently used words.
However, this also proved to be insufficient as using this for training
would not take into account several factors of the English language,
such as representing the frequency of which words appear, the
semantic use of words in relation to others, and the presence of
infrequently used words and the necessity to be able to efficiently
type those as well. To solve the problem of which text to use for
training, we selected a Kaggle dataset containing a corpus of ap-
proximately 1.7 million arXiv abstracts. From this dataset, we clean



Optimizing Keyboard Configuration Using Single and Multi-Objective Evolutionary Algorithms GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal

Figure 1: Progress of the proposed single-objective GA for
the first 500 generations.

the data of extraneous characters, such as mathematical symbols,
and read 600 abstracts for training and an additional 300 abstracts
for validation. The read-in texts then became usable arguments for
our objective evaluation function that computes the total distance
required to type out the text with a given configuration. There is
no simple way to know the minimum and maximum value possible
for this objective, as it totally depends on the nature of the text
being used.

For the multi-objective version, the second objective is a straight-
forward matching problem of counting the number of positions in
which a given keyboard is different from the QWERTY keyboard.
Note that the lower and upper bound of this second objective is
zero and 30, respectively. A value of zero means that the QWERTY
keyboard configuration is achieved.

4 SINGLE-OBJECTIVE GA RESULTS
For our experiments, we use a tournament of 𝑘 = 5 individuals, a
crossover probability of 𝑝𝑐 = 0.8, a mutation probability of 𝑝𝑚 = 0.2,
population size of 𝑁 = 100, and maximum number of generations
as 𝑇max = 1, 000. Figure 1 shows the performance of the single-
objective GA for the first 500 generations. We plot the total typing
distance (𝑓1) moved by fingers for the QWERTY configuration (sky
blue), the best (green) and worst configurations (red) found by our
proposed GA, and the average of the whole population in each gen-
eration. As can be seen from the graph, some randomly initialized
configurations are much better than QWERTY configurations with
respect to our evaluation procedure.

Figure 3a shows the layout of the QUERTY keyboard. Figure 2
shows the performance of the GA for the next 500 generations.
Here, we do not plot the performance of QWERTY as it is a fixed
configuration. We can observe a smooth linear decline in the dis-
tances of the worst solution and the average of the population
hinting at the convergence of the algorithm and by the 1,000-th
generation, it seems the GA has converged well by then. Figure 3b
shows the final optimized layout found by the proposed GA.

Figure 2: Progress of proposed ingle-objective GA for the
next 500 generations.

From our experiment, we found that even within the initial
population, the best solution outperforms the QWERTY layout. In
addition, it appears that the average of solutions surpasses QW-
ERTY in only a few generations. With these results, we can infer
that QWERTY is far from being an optimized solution and that it is
certainly possible to have a better keyboard configurations with an
objective like maximizing typing efficiency. It is not entirely clear
how the QWERTY configuration was designed originally. Since
humans take training to improve the typing efficiency and have no
other keyboard configuration to compare their learning efficiency
with, it stays as an open challenge and effort to re-design the key-
board configuration for a better workspace efficiency. This study
indicates and motivates such an effort in the near future.

(a) QWERTY keyboard configuration with fitness: 178779.

(b) GA-optimized keyboard configuration with fitness: 76933.

Figure 3: Comparison of GA-optimized keyboard with the
popularly used QUERTY keyboard. Two keyboards are quite
different from each other.



GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal Ahmer Khan and Kalyanmoy Deb

5 MULTI-OBJECTIVE NSGA-II RESULTS
We use the NSGA-II algorithmwith our above-mentioned EA hyper-
parameter values. We use a population size of 100 individuals and
run the algorithm for 200 generations. We customize our initial pop-
ulation with QWERTY configuration and some popularly-known
configurations throughout history, e.g. Dovark, Colemak [2, 8]. The
generated Pareto front can be seen in Figure 4, where 𝑓1 is the
typing efficiency objective, while 𝑓2 is the dissimilarity from the
QWERTY objective. If we look at the extreme point on the Pareto
front it would hint at the QWERTY configuration as it has zero
dissimilarity, but a high typing inefficiency. If we move to the left

Figure 4: Obtained Pareto front for the multi-objective ver-
sion of the keyboard optimization problem.

of the Pareto front, we see keyboard configurations get improved
in typing efficiency but become more dissimilar to the QWERTY
configuration, hence providing an innovation path to gradually
improve the QWERTY configuration to better and more efficient
Keyboard configurations.

5.1 Effect of Multiple Runs
Next, we evaluate the proposed algorithm’s behavior over multiple
runs. We execute five runs, each with a different random initial
population, and plot the attainment surface [6] of the five different
parent fronts generated. Figure 5 shows that the best (0%), median
(50%), and worst (100%) attainment curves are all almost identical,
implying the algorithm’s robust performance over multiple runs.
The results are not affected by the stochasticity in the algorithmic
procedure and converge to the final front (Figure 4) every time.

6 CONCLUSIONS
Our goal in this study has been to find the most typing-efficient
keyboard configuration for English language alphabets. We have
shown that our combinatorial genetic algorithm can produce an
optimized configuration that greatly outperform the ubiquitous
standard QWERTY layout. But keeping in mind the pragmatic
issues of deployment challenge due to the popular use of the QW-
ERTY keyboard, we have also proposed a multi-objective approach
to find 18 different trade-off keyboard configurations. The QW-
ERTY configuration stays at one extreme of the resulting Pareto

Figure 5: Attainment surface of the Pareto front over five runs
of the NSGA-II algorithm shows consistent performance.

front. We have argued that the Pareto set can be viewed as a series
of gradual updates, starting with the QWERTY configuration, to
gradually achieve a high typing-efficient keyboard configuration, if
desired. The concept needs further exploration for achieving design
innovations from the status quo in other problems. In addition to
the position of the keys, the layout of keyboard shape can also be
optimized for users to have a better typing efficiency. These ideas
can also be applied for keyboards in other languages.

REFERENCES
[1] J. Blank and K. Deb. 2020. pymoo: Multi-Objective Optimization in Python. IEEE

Access 8 (2020), 89497–89509.
[2] R. C. Cassingham. 1986. The Dvorak keyboard: The ergonomically designed type-

writer keyboard now an American standard. Freelance Communications.
[3] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. 2002. A fast and Elitist multi-

objective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Com-
putation 6, 2 (2002), 182–197.

[4] P. S Deshwal and K. Deb. 2006. Ergonomic design of an optimal Hindi key-
board for convenient use. In 2006 IEEE International Conference on Evolutionary
Computation. IEEE, 2187–2194.

[5] A. E Eiben and J. E Smith. 2015. Introduction to evolutionary computing. Springer.
[6] C. M. Fonseca, V. Grunert da Fonseca, and L. Paquete. 2005. Exploring the perfor-

mance of stochastic multiobjective optimisers with the second-order attainment
function. In Third International Conference on Evolutionary Multi-Criterion Opti-
mization, EMO-2005. Berlin: Springer, 250–264.

[7] D. E. Goldberg and R. Lingle. 2014. Alleles, loci, and the traveling salesman
problem. In Proceedings of the first international conference on genetic algorithms
and their applications. Psychology Press, 154–159.

[8] D. Gutiérrez, M.A. Ramírez-Moreno, and A. G. Lazcano-Herrera. 2015. Assessing
the acquisition of a new skill with electroencephalography. In 7th Int. IEEE/EMBS
Conf. on Neural Engineering (NER). IEEE, 727–730.

[9] O.A.H. Habibi and O. Korhan. 2020. Application of a genetic algorithm to the
keyboard layout problem. PloS one 15, 1 (2020), e0226611.

[10] J. H. Holland. 1975. Adaptation in Natural and Artificial Systems. MIT Press.
[11] M. Kafaee, E. Daviran, and M. Taqavi. 2022. The QWERTY keyboard from the

perspective of the Collingridge dilemma: lessons for co-construction of human-
technology. AI & SOCIETY (2022), 1–13.

[12] N. Keren and A. Azaria. 2021. A Deep Genetic Method for Keyboard Layout
Optimization. In 2021 IEEE 33rd International Conference on Tools with Artificial
Intelligence (ICTAI). IEEE, 435–441.

[13] E. Khorshid, A. Alfadli, and M. Majeed. 2010. A new optimal Arabic keyboard
layout using genetic algorithm. International Journal of Design Engineering 3, 1
(2010), 25–40.

[14] C. Liao and P. Choe. 2013. Chinese keyboard layout design based on poly-
phone disambiguation and a genetic algorithm. International Journal of Human-
Computer Interaction 29, 6 (2013), 391–403.



Optimizing Keyboard Configuration Using Single and Multi-Objective Evolutionary Algorithms GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal

[15] K. Robin. 1975. Typing speed, keying rates, and optimal keyboard layouts. In Pro-
ceedings of the Human Factors Society Annual Meeting, Vol. 19. SAGE Publications
Sage CA: Los Angeles, CA, 159–161.

[16] C. J. Turner, B. S. Chaparro, I. M. Sogaard, and J. He. 2020. The Effects of Keyboard
Layout and Size on Smartphone Typing Performance. In Proceedings of the Human
Factors and Ergonomics Society Annual Meeting, Vol. 64. SAGE Publications Sage
CA: Los Angeles, CA, 985–989.


	Abstract
	1 Introduction
	2 Combinatorial Evolutionary Algorithms
	2.1 Single-objective Customized Permutation-based GA
	2.2 Multi-objective Permutation-based NSGA-II

	3 Evaluation Procedure
	4 Single-objective GA Results
	5 Multi-objective NSGA-II Results
	5.1 Effect of Multiple Runs

	6 Conclusions
	References

