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Abstract—The primary task of evolutionary multi-objective
optimization (EMO) is to find the globally best Pareto-optimal
front. However, often decision makers (DMs) are not interested in
obtaining the global frontier. Instead, they prefer a set of solutions
for which there is no significant change in objective values within
a small neighborhood of each decision variable vector, resulting in
a set of robust solutions. The corresponding objective vectors are
said to lie on the robust front. In practical applications, such as
in engineering designs, designers are interested in robust designs
which are less sensitive to the perturbation in the design variables
and parameters, caused by the manufacturing process tolerances,
material non-uniformity, uncertainties in supply-chain process,
and by many other practical matters. An earlier robust EMO
study proposed two different robustness measures and used the
elitist non-dominated sorting genetic algorithms (NSGA-II) to
find respective robust fronts. However, the limitation of NSGA-II
in generating well-distributed and diverse set solutions for many-
objective optimization, the robust optimization concept must be
extended with evolutionary many-objective optimization (EMaO)
algorithms to investigate the efficacy in more than three-objective
problems. This study proposes an extension of test problems for
robust many-objective optimization tasks and demonstrates the
performance of updated NSGA-III procedure to two to eight-
objective test and real-world problems.

Index Terms—Robust design, Pareto-optimal front, Efficient
frontier, Multi-objective optimization, NSGA-III.

I. INTRODUCTION

EVOLUTIONARY multi-objective optimization (EMO) algo-
rithms have been primarily focused on obtaining a well-

distributed and diverse set of Pareto-optimal (PO) solutions
[1], [2]. Although, these non-dominated solutions are globally
the best solutions from a theoretical optimization point of
view, the solutions can be very sensitive to small perturbations
in the neighborhood of decision variable vectors for one or
more PO solutions. Practitioners usually do not like to adopt
sensitive solutions, despite them being optimal, due to the
uncertainties involved in implementing and deploying sensi-
tive solutions in their desired forms. If an intended solution
gets implemented slightly differently to a different solution,
the respective objective vector would be different from the
intended objective vector. In the context of multi- or many-

objective optimization, the perturbed solution can now become
dominated, infeasible, better or stay non-dominated. For these
reasons, usually, practitioners are interested in finding out a
set of robust solutions that are less sensitive to perturbations
in the neighborhood of solutions.

Robustness measure can be defined in many ways. In
the context of EMO algorithms, the concept of robustness
was introduced and discussed for single- and multi-objective
optimization problems. An earlier study [3] highlighted the
challenges of computing robust solutions in the EMO frame-
work and observed that it involves high computational com-
plexity in terms of more solution evaluations. A study [4]
proposed modification to the basic formulation to accommo-
date robustness in EMO and suggested that EA’s ability to
create robust solutions can be enhanced without significantly
increasing the computational complexity. Interpolation and
regression-based fitness estimation methods are proposed for
faster convergence of EAs [5]. Another study proposed two
robustness measures based on the function variance for the
single objective optimization problem in which the search
for robust optimal solutions is formulated as a bi-objective
optimization problem that minimized the fitness function and
the robustness measure [6]. Tsutsui and Ghosh [7] proposed
the concept of genetic algorithms with a robust solution-
searching scheme (GAs/RS) for evaluating the robust solutions
for single-objective problems.

The ranking process for probabilities of selection to com-
pute the robust solution(s) for both single and multi-objective
optimization (MOO) problems is re-formulated in [8]. Deb
and Gupta [9] presented two procedures for computing robust
front for four test problems using NSGA-II [10]. The first
procedure is based on minimizing the mean effective function,
instead of the original function and the second imposes a
robustness constraint for solving the reformulated MOO. They
also extended the procedure to handle constraints [11]. Zhou
et al [12] proposed a multi-objective robust optimization
(MORO) approach based on Gaussian process (GP) model to
reduce the computational burden under interval uncertainty.
The performance metrics of MORO algorithms are measured
in terms of the convergence, coverage, and success rate of
robust solutions obtained by robust multi-objective algorithms979-8-3503-1458-8/23/$31.00 ©2023 IEEE



[13]. Mirjalili [14], [15] studied the current challenges in test
problems and proposed a framework to generate robust multi-
objective test problems with different adjustable characteristics
and difficulty levels.

Despite a number of MORO studies in literature, robustness
studies in the context of many-objective optimization involving
four or more objectives are rare [16]–[18]. The novelty of
the current work is to enable uncertainty handling in many-
objective optimization specifically using NSGA-III. This will
enable dealing with uncertainty in parameters and variables in
solving practical many-objective optimization problems.

The rest of the paper is organized as follows. Section II
discusses the concept of multi-objective robust optimization
(MORO). A brief discussion on the results of NSGA-III for
robust many-objective optimization is presented in Section III.
Next, the simulation results of the proposed approach to
two test problems and two real-world engineering problems
are discussed in Section IV. Section V studies the effect of
robustness parameters (δ, H , and η) on hypervolume (HV)
metric followed by the conclusions in Section VI.

II. MULTI-OBJECTIVE ROBUST OPTIMIZATION (MORO)
Contrary to the single-objective optimization problems

where a single optimal solution is sought, EMO approaches
are used to find a set of Pareto-optimal solutions for multi-
objective optimization (MOO) problems [1]. These so-called
Pareto-optimal solutions are the best solutions globally, avail-
able in the feasible decision space. On a Pareto front, an
objective can only be improved by sacrificing at least one
other objective.

For the case of multi-objective optimization problems, the
concept of robust optimization was introduced and presented
in [9]. Consider the following multi-objective optimization
problem:

min
x

{f1(x), f2(x), . . . , fM (x)},

subject to x ∈ S,
(1)

where S is the feasible search space. A robust solution x
is defined as the one for which the objective vector f(x)
is insensitive up to a certain level for a perturbation in the
neighborhood of x.

Fig. 1 illustrates the sensitivity of the two decision vectors
A and B in the objective space. It can be observed that a
small perturbation in decision point B causes a large change in
objective values as compared to the decision point A. Hence,
solution A can be considered more robust than solution B. Un-
like the robustness in the case of single-objective optimization
problems, in MOO the robustness is defined for M objectives
and a set of non-dominated solutions.

Two ideas are widely used in the literature for executing a
robust single-objective optimization task [4]:

1) Robust Solution of Type I: Mean effective objective
function is used for optimization instead of the original
objective function.

2) Robust Solution of Type II: The normalized difference
between the perturbed objective function and the original

Fig. 1: A and B are two points in decision space. In objective
space, solution A is less sensitive as compared to solution B
for a small perturbation in the decision variable space. Hence,
A is more robust than B.

objective function is used as a constraint to have better
control in defining a robust solution.

The above two types of robustness ideas are extended for com-
puting a robust front in the case of multi-objective optimization
(MOO) [9]. The definition of the Robust Solution of Type I
and Type II for multi-objective optimization defined in [9] is
presented as follows:

Definition 1 (Robust Solution of Type I): Defined in a δ-
neighborhood

(
Bδ(x)

)
, a solution x∗ is called a multi-objective

robust solution of Type I, if it is a global feasible Pareto-
optimal solution to the following multi-objective minimization
problem:

min
x

{f eff
1 (x), f eff

2 (x), . . . , f eff
M (x)},

subject to x ∈ S,
(2)

where f eff
j is defined as follows:

f eff
j =

1

Bδ(x)

∫
y∈Bδ(x)

fj(y)dy. (3)

Definition 2 (Robust Solution of Type II): A solution x∗
is called a multi-objective robust solution of Type II, if it is a
global feasible Pareto-optimal solution to the following multi-
objective minimization problem:

min
x

{f1(x), f2(x), . . . , fM (x)},

subject to
||feff(x)− f(x)||2

||f(x)||2
≤ η,

x ∈ S.

(4)

In formulation (2), the effective objective function of x can
be computed as the mean of H original objective functions
evaluated from H solutions in the δ-neighborhood of x.
The formulation in (4) optimizes the original multi-objective
function in the feasible decision space S with an additional
constraint. The additional constraint only considers those solu-
tions feasible for which the normalized change in the objective
vector is less than a user-defined parameter η. Along with the
constraint handling strategy, alternate forms of the constraint



defined in (4) are presented and implemented in [11] using the
NSGA-II algorithm [10].

Though robust multi-objective optimization problems
(MOPs) are introduced and implemented using NSGA-II, such
formulations for many-objective problems (MaOPs) rarely
exist. We propose robustness for many-objective optimization
(MaOP) using NSGA-III here. The key features of NSGA-
III such as scalability, diversity preservation, and ability to
compute well-distributed and converged solutions [19] have
motivated us to extend it for computing robust front for MaOP.

III. ROBUSTNESS IN MULTI-OBJECTIVE OPTIMIZATION
(MOO) USING NSGA-III

Diversity preservation, well-distribution, and good conver-
gence are the desirable properties of non-dominated solutions
obtained upon solving MaOP using EMO algorithms. In high-
dimensional problems, maintaining diversity as well as ob-
taining a converged Pareto-optimal front is a challenging and
difficult task. Since NSGA-II [10] has limitations in addressing
the properties stated above in MaOPs, NSGA-III is used in this
study. Moreover, unlike in NSGA-II, the diversity preservation
among population members in NSGA-III is aided by supplying
and adaptively updating a number of well-spread reference
points on a (M -1)-dimensional unit hyper-plane, where M
is the number of objective function [19]. Given the divisions
or partitions (p) for an M -objective problem, the number of
reference points (Rp) is computed as follows:

Rp =

(
M + p− 1

p

)
. (5)

Fig.2a depicts the concept of reference point located on a
unit hyperplane. These well-distributed reference points pro-
duce reference lines or reference vectors. In each generation,
non-dominated solutions that are closer to these reference
vectors are used to create the offspring. This procedure allows
the solutions to be well-distributed and spread in objective
space. Also, NSGA-III was extended for constraint MaOPs
by incorporating a constraint-handling strategy [20].

Fig. 2b presents non-dominated front obtained upon solving
a five-objective MaOP known as the river pollution problem
using NSGA-II algorithm [10] and Fig. 2c presents non-
dominated front obtained using NSGA-III algorithm [20]. It
can be inferred that the non-dominated solutions obtained from
NSGA-III are better distributed and more diverse, as compared
to NSGA-II solutions. This can be attributed to the use of a
well-distributed set of reference points, presented in Fig. 2a,
used to guide the progress of the NSGA-III approach.

Convergence, coverage, and success rate of robust solutions
are the performance metrics of MORO/MaORO algorithms
[13]. A modified selection scheme, association operator, and
niche preserving operator in NSGA-III algorithm improve the
convergence and coverage of MaOPs and hence is suitable for
applying to MaORO problems. The mean effective function(
f eff

)
is computed using H neighboring solutions in the δ-

neighborhood of each reference point of NSGA-III. This mean
effective function (f eff) can be supplied to the robustness

definition of Type I and Type II defined in (2) and (4),
respectively.

In the next section, NSGA-III is implemented for solving
two test problems and two real-world MaORO engineering
problems. Also, the effect of robustness parameters (δ, H ,
η) on robust front is studied for MaORO problems. De-
tails on these parameters and generating H solutions in δ-
neighborhood are explained in [9].

IV. SIMULATION RESULTS

This section presents the results of NSGA-III in solving
MORO and MaORO problems.

A. 4-Bar Truss Problem with Two Objectives

The 4-bar truss design problem is an unconstrained bi-
objective problem that has four decision variables. The first
objective is structural volume and the second objective is joint
displacement. The details of the problem are discussed in [21].

Type I and Type II robust fronts are computed for different
parameters (δ, H , η) using the NSGA-III procedure. For this
problem, 201 reference directions are created using the Das-
Dennis method [22] and the NSGA-III is executed for 200
generations with a tournament selection strategy. Other GA
parameters used are binary crossover (ηc = 30, pc = 1.0),
mutation (pm = 1/n, ηm = 20). The simulation is performed
in pymoo [23].

1) Effect of δ on robust front: A simulation is performed
on 4-bar truss problem with different values of perturbation
extents (δ = [0.2, 0.3, 0.4]) in decision variables. For variables
xi, the perturbation δi = 2δ (i = 1, 2, 4) and δ3 = δ is used. H
= 50 solutions are generated in the neighborhood of a solution
to compute the mean effective objective function values. The
strategy for generating the neighboring solutions in the vicinity
of a decision variable point is being adopted from [9], where
Latin Hypercube Sampling (LHS) was performed.

Fig. 3a represents the original non-dominated front along
with the robust front (Type I) for different δ values while
keeping H constant. It can be inferred from Fig. 3a that as
the value of δ (domain of neighborhood) increases, the robust
front shifts away from the original non-dominated front and
moves inside the objective space. For 4-bar truss problem, a
part of the robust front coincides with the original Pareto front.
As the value of δ increases, the difference between the robust
front and the original Pareto front becomes significant.

It is to be noted that the robust front obtained upon solving
the 4-bar truss example using NSGA-III is well distributed.
Again, the non-dominated solutions obtained from the original
non-dominated front are pretty robust as it requires a large
perturbation in the neighborhood of a solution in design space
(δ = [0.2, 0.3, 0.4]) to obtain a robust front that is significantly
different from the original non-dominated front. However, here
we focused on demonstrating the working of NSGA-III as
MORO algorithm in generating a well-distributed and diverse
set of non-dominated solutions and the effect of robustness
parameter δ on the robust front.



(a) Reference point-based NSGA-III (b) Non-dominated front (NSGA-II) (c) Non-dominated front (NSGA-III)

Fig. 2: (a) Reference points are highlighted on the normalized hyper-plane for a 3-objective problem with 4 divisions/partitions
i.e. p = 4, (b) River Pollution Problem: non-dominated front obtained from NSGA-II, (c) River Pollution Problem: non-
dominated front obtained from NSGA-III. f1, f2, and f3 are represented on three axes, whereas the fourth objective (f4) is
represented by the marker size and the fifth objective (f5) is represented by marker color provided on a color scale.

(a) Type I: Effect of δ (H = 50) (b) Type I: Effect of H (δ = 0.4) (c) Type II: Effect of η (δ = 0.4, H = 500)

Fig. 3: Scatter plot for 4-bar truss problem: (a) Minimum-f2 solutions are naturally robust, whereas minimum-f1 solutions
are not. With increasing δ, the robust front shifts away from the original non-dominated front for minimum-f1 region, (b)
With increasing H , the robust front shifts away from the original non-dominated front as well, (c) With decreasing value of η
(constraint value for Type-II robustness), the robust front shifts away from the original non-dominated front more pronouncing
than previous two cases.

2) Effect of H on robust front: The number of neighboring
solutions H generated in the δ-neighbourhood of a solution (x)
is studied and analyzed in this section. For this, simulation is
performed for different values H in the fixed δ-neighborhood.
Fig. 3b presents the original non-dominated front along with
robust fronts (Type I) obtained for H = [5, 10, 50] values by
keeping δ (= 0.4) constant. It can be inferred that as the value
of H increases, the robust front shifts away from the original
non-dominated front and moves inside the objective space.

It can also be observed that there is less difference between
the robust front corresponding to H = 10 and H = 50 as
compared to H = 5 and H = 10. Hence, at higher values of
H , the robust front of Type I is converging to a specific non-
dominated front. One interesting observation is that for lower
values of H (5,10), the robust front is relatively not-so-well-
converged as compared to the non-dominated front at higher
values of H (50).

3) Effect of η on robust front: In this section, effect of
parameter η on the robust front (Type II robustness) is studied

by keeping other parameters δ and H constant. The simulation
is performed for η = [1.00 × 10−4, 1.25 × 10−4, 1.50 ×
10−4, 1.75× 10−4] with δ set at 0.4 and H at 500.

Fig. 3c presents the original non-dominated front along with
the robust front of Type II at different values of η. Here
the value η is a normalized change in the original objective
function and mean effective function and is introduced as a
constraint as per robustness definition II. It can be inferred
from Fig. 3c that as the value of η increases i.e. the constraint
is relaxed Type II robust solution obtained from NSGA-III
moves closer to the original non-dominated front. It can be
inferred from the plots in Fig. 3 that structural volume is more
sensitive than displacement in robust fronts.

Also, a part of Type II robust solution set coincides with the
original non-dominated set. As the value of η decreases, i.e.
constraint is tightened, the robust front shifts away from the
original non-dominated front and its coinciding part shortens.
It is to be noted that the original non-dominated front is robust,



as it requires small values of η to generate robust solutions,
which significantly differ from the original non-dominated
solutions. The HV calculation is performed for the original
and Type I and Type II robust fronts at different neighborhood
parameters (δ, H , and η) values and is presented in Table I.

B. Four-Objective Test Problem

This test problem is created by extending the first three-
objective test problem presented in [9] to have four objectives.
Five variables are used in this problem. A simulation was
performed to evaluate Type I and II robust fronts. Each
simulation is performed for 200 generations using NSGA-III.
The number of divisions to generate the reference points is
used as p = 10 and other GA parameters are kept the same
as in the previous example. Next, we discuss the effect of
neighborhood parameters (δ, and η) on the resulting robust
front. For this problem, we kept δi = δ for i = 1, 2, 3; and δi
= 2δ for i > 3. The value of parameters α and β used in the
objective function are kept the same as discussed in [9].

1) Effect of δ on the Robust Front: The effect of δ is studied
on the robust front by keeping H (= 50) constant. A set of
values of δ = [0.005, 0.01, 0.02] is used to compute the Type I
robust fronts. The left upper diagonal plots in Fig. 4 represents
the scatter plot of the objective functions of original as well
as robust fronts at different δ values. The marker color is used
to differentiate the original and robust front. The blue color
markers represent the original non-dominated front, orange
color markers represent the Type I robust front corresponding
to δ = 0.005. The green and the red color markers represent the
Type I robust fronts corresponding to δ = 0.01 and δ = 0.02,
respectively. It can be inferred from the f1 vs. f2 and f1 vs. f3
plots that as the value of δ increases the range and maximum
values of objective functions f1, f2, and f3 reduces in robust
front (orange, green, and red markers). On the other hand, the
plots f1-f3 vs. f4 reveal that as the value of δ increases the
objective f4 values in robust front also increase. Also, with an
increasing value of δ, the range as well as the maximum value
of f4 increases for the robust front. Hence, it can be concluded
that with increasing the values of δ, the robust front shrinks
in objective functions f1, f2, and f3 space, whereas it shifts
in the dominated region of the original non-dominated front
in objective function f4 space.

It is to be noted that increasing the δ values increases the
region or range of the neighborhood at a design point. The
mean effective objective function (feff) computed at design
point corresponding to higher values of δ becomes dominated
in some part of the design space. This leads to shrinking down
the robust front in f1, f2, and f3 objective space and shifting
it in f4 objective function space towards the dominated region
of the original non-dominated front. The left upper diagonal
scatter plot in Fig. 4 reveals the effectiveness of NSGA-III in
generating a well-distributed and diverse set of Type I robust
front for MaOPs.

2) Effect of η on the Robust Front: Type II robustness is
considered on the 4-objective test problem. A simulation is
performed at different η = [0.4, 0.6, 1.0] values by keeping

Fig. 4: Scatter plot for 4-objective test problem: (a) The left
upper diagonal scatter plot represents the effect of parameter δ
on robust front. With an increasing value of δ, the robust front
shrinks in f1, f2, and f3 objective space, whereas it shifts
inside the dominated region of the original non-dominated
front in f4 objective space, (b) The right lower diagonal scatter
plot represents the effect of parameter η on robust front. With
decreasing the value of η, the robust front shrinks in f1, f2, and
f3 objective space, whereas it shifts inside dominated region
of the original non-dominated front in f4 objective space.

other parameters δ = 0.02 and H = 100 fixed. The right
lower diagonal plots in Fig. 4 represents the scatter plot of
the original non-dominated front along with the robust fronts
obtained at a different set of η values. The marker colors in the
scatter plot are utilized to differentiate the original and robust
fronts. The blue color markers represent the original non-
dominated front, orange color markers represent the Type II
robust front corresponding to η = 0.4. The green and the red
color markers represent the Type II robust fronts corresponding
to η = 0.6 and η = 1.0, respectively.
f1 vs. f2 and f1 vs. f3 scatter plots presented in the

right lower diagonal plot of Fig. 4 reveal that as the value
of η decreases, the range and maximum values of objective
functions f1, f2, and f3 also decreases in Type II robust fronts
highlighted in orange, green, and red color markers. Again, the
scatter plots f1-f3 vs. f4 present that with decreasing values
of η, the objective function f4 shifts towards its higher values,
and the range of the objective function f4 also increases. This
signifies that as the value of the parameter η decreases, the
robust fronts shrink in f1, f2, and f3 space, whereas it shifts
in the dominated region of the original non-dominated front
in f4 objective function space.



TABLE I: Hyper Volume (HV) of robust fronts at the different values of neighboring parameters (δ, H , and η). It can be
inferred from the HV values of Type I and Type II robust front that as the parameter δ and H increases the HV decreases,
whereas on increasing the parameter η, HV of robust front increases.

4-bar truss Effect of δ values (H = 50) Effect of H values (δ = 0.40) Effect of η values (δ=0.40, H = 500) Original
problem δ = 0.2 δ = 0.3 δ = 0.4 H = 5 H = 10 H = 50 η = 1.00e-4 η = 1.25e-4 η = 1.50e-4 non-dom. front

HV 71.27 69.97 67.69 70.02 68.51 67.69 64.10 66.77 68.89 72.17
4-obj. Effect of δ values (H = 50) Effect of H values (δ = 0.020) Effect of η values (δ=0.020, H = 100) Original

test prob. δ = 0.005 δ = 0.010 δ = 0.020 H = 2 H = 10 H = 50 η = 0.4 η = 0.6 η = 1.0 non-dom. front
HV 14.60 13.41 9.36 14.91 13.54 13.43 14.43 14.87 15.03 15.17

River poll. Effect of δ values (H = 50) Effect of H values (δ = 0.035) Effect of η values (δ=0.025, H = 100) Original
problem δ = 0.010 δ = 0.025 δ = 0.035 H = 2 H = 5 H = 100 η = 0.005 η = 0.010 η = 0.025 non-dom. front

HV 320.25 303.32 292.66 323.13 305.63 292.34 285.03 301.23 316.33 331.06
8-obj. Effect of δ values (H = 100) Effect of H values (δ = 0.05) Effect of η values (δ=0.05, H = 100) Original

test prob. δ = 0.050 δ = 0.075 δ = 0.100 H = 5 H = 10 H = 100 η = 0.2 η = 0.3 η = 0.4 non-dom. front
HV 40.08 28.32 15.06 42.73 40.64 28.32 40.40 45.15 48.01 53.18

It is to be noted that the parameter η takes part as an
inequality constraint in Type II robustness definition (4). By
tightening the constraint, the robust front shrinks in f1, f2, and
f3 objective space, whereas it shifts in the dominated region of
the original non-dominated front in f4 space. The right lower
diagonal part of Fig. 4 highlights the usefulness of NSGA-
III in finding a well-distributed and diverse set of Type II
robust solutions for many-objective test problems. The HV of
the original and Type I and Type II robust fronts at different
combinations of δ, H , and η values are presented in Table I.

C. River Pollution Problem

The river pollution problem [24] is an unconstrained multi-
objective optimization problem containing 5 objectives and 2
design variables. Further details on this problem can be found
in [25]. Type I and Type II robustness formulation is solved
for the river pollution problem to evaluate robust solutions
using NSGA-III algorithm. The river pollution problem is
studied for various sets of parameter values (δ,H, η) and their
effect on robust fronts. For this problem, 20 divisions are
provided to compute the reference directions using the Das-
Dennis method [22] and the GA is executed for 50 generations
with a tournament selection strategy. Other GA parameters
used are binary crossover (ηc = 30, pc = 1.0) and mutation
(pm = 1/n, ηm = 20). From Fig. 2c, it can be inferred that
objectives f1 and f3, and objectives f2 and f4 (marker size)
are conflicting with each other. The objective f5 (marker color)
decreases slowly from the edges of non-dominated front and
decreases relatively faster to attain a minimum value at a point
that corresponds to relatively lower values of f3 and f4, and
higher values of f1 and f2.

1) Effect of δ on the Robust Front: Type I robustness is
solved for the river pollution problem with different δ values
and keeping H (= 50) constant. The robust fronts at δ = [0.010,
0.025, 0.035] are evaluated using the NSGA-III algorithm. The
left upper diagonal plots in Fig. 5 represent the scatter plot
of the original non-dominated front and Type I robust fronts
corresponding to δ = [0.010, 0.025, 0.035]. The marker colors
in the scatter plot differentiate the original and robust fronts.
The blue color markers in left upper diagonal plots in Fig. 5

represent the original non-dominated front, and orange color
markers represent the Type I robust front corresponding to
δ = 0.01. The green and the red color markers represent the
Type I robust fronts corresponding to δ = 0.025 and δ = 0.035,
respectively.

Fig. 5: Scatter plot for river pollution problem: (a) The left
upper diagonal scatter plot represents the effect of parameter
δ on robust front, (b) The right lower diagonal scatter plot
represents the effect of parameter η on robust front.

From the f1-f4 vs. f5 plot in the left upper diagonal part
of Fig. 5 reveals that by increasing the value of parameter δ,
the Type I robust front (orange, green, and red markers) shift
towards the dominated region of the original non-dominated
front (blue markers). Also, with increasing the value of δ,
the maximum value and the range of objectives f3 and f4
increases, whereas the range of objective f1 reduces.



Fig. 6: Parallel coordinate plot (PCP) of 8-Objective Problem: The eight objective functions (f1-f8) are represented on separate
parallel axis. An additional axis representing a set of δ values is used to differentiate the original and robust front. This plot
highlights the effect of δ on robust front(s). As the value of parameter δ increases, the maximum and minimum value f8 also
increase, however, the other function values span from 0 to 1.

2) Effect of η on the Robust Front: In this section, Type II
robustness definition (4) is applied to the river pollution prob-
lem to evaluate the robust fronts using NSGA-III algorithm.
Type II robustness definition considers an inequality constraint
of normalized difference of original solution to mean effective
solution by introducing a parameter η. A simulation is per-
formed with different sets of η values. Original non-dominated
front and robust front corresponding to η = 0.025, 0.010, and
0.005 are evaluated using NSGA-III algorithm and presented
in right lower diagonal scatter plots in Fig. 5. The blue color
markers in the right lower diagonal plots in Fig. 5 represent
the original non-dominated front, and orange color markers
represent the Type II robust front corresponding to η = 0.005.
The green and red color markers represent Type II robust fronts
corresponding to η = 0.01 and η = 0.025, respectively.

In this simulation, the neighborhood size parameter (δ =
0.025) and the number of the neighboring points to compute
the mean effective function (H = 100) are kept constant. It
can be inferred from the right lower diagonal part of Fig. 5
that as the value of parameter η decreases the robust fronts
highlighted in orange, green, and red color markers shrink and
shorten which is evident from f1 vs. f2 and f2 vs. f3 plot.
This effect of η on the robust front is justified, as decreasing η
means tightening the constraint that consecutively reduces the
feasible space. This forces some solutions that were optimal
before to become infeasible, thereby shrinking the original
non-dominated front to produce the robust front corresponding
to the respective η value.

For river pollution problem, Type I and Type II robust fronts
are evaluated using NSGA-III algorithm for different sets of
neighboring parameters δ, H , and η, and their HV is calculated
and compared with HV of original non-dominated front.

D. Eight-objective Test Problem

This test problem is obtained by scaling a 3-objective test
problem 2 discussed in [9]. It has 8 objectives and 10 design
variables. The number of partitions on the unit hyperplane is
taken as p = 6, and NSGA-III algorithm is implemented for
200 generations. Other GA parameters are kept the same as in
the previous examples. For performing the Type I and Type II
robustness, the neighborhood size at different design variables
are chosen as δi = δ, for i= 1,. . . ,7; and δi = 2δ for i > 7. A
simulation is performed at different sets of δ (= [0.05, 0.075,
0.1]), H = [5, 10, 100], and η (= [0.2, 0.3, 0.4]) values. The
HV calculation for original and robust front at different sets
of δ, H , and η values is performed and reported in Table I.

The robust front corresponding to different δ values along
with the actual non-dominated front is plotted in Fig. 6 using
parallel coordinate plots (PCP). In the PCP, 8 objectives (f1-
f8) are plotted at 8 parallel axes. An additional axis named
δ highlights and differentiates the original and robust fronts
according to their δ values. From Fig. 6, it can be observed
that the objective function f8 values vary at different ranges
for different δ = [0.05, 0.075, 0.1] values. As the value of
parameter δ increases, the maximum and minimum values of
f8 also increase. On the other hand, the other function (f1-f7)
values vary in the range from 0 to 1.

The effectiveness of NSGA-III implemented to 2-objective
to 8-objective problems for applying the Type I and Type II
robustness definition highlights the usefulness in generating
a well-distributed and diverse set of non-dominated solutions
and robust solutions for MaOPs.

V. EFFECT OF δ, H , AND η ON HYPER-VOLUME (HV)
This section studies the effect of robust fronts obtained at

different parameter values (δ, H , and η) on HV [26]. Table
I presents the HV values of original and robust fronts for
the test problems and real-world problems discussed in the



result section. The reference point used for computing HV is
computed as follows:

f ref
j = fmax

j + 0.1(fmax
j − fmin

j ); j = 1, . . . ,M,

where fmax
j and fmin

j are the maximum and minimum values of
jth objective functions among all the robust front and original
non-dominated front, respectively. From Table I, it can be
concluded that as the parameter δ and H increase the HV
decreases. On the contrary, on increasing the parameter η, HV
of the robust front increases. It is to be noted that for all four
examples, the trend of HV with neighborhood parameters (δ,
H , and η) is consistent. Increasing the parameter η brings the
Type II robust front closer to the original non-dominated front
that leads to a higher HV value as compared to HV value of
the robust fronts corresponding to the lower η values.

VI. CONCLUSIONS

This paper has extended the idea of finding robust multi-
objective Pareto-optimal solutions (termed here as ‘robust
solutions’) into the context of many-objective optimization.
Two types of robustness measures are used to modify the appli-
cation of a specific evolutionary many-objective optimization
(EMaO) algorithm – NSGA-III – to find the robust front for
MaOPs. Robust NSGA-III procedure has then been applied
to two benchmark and two real-world engineering problems.
The effect of robustness parameters (δ, H , η) on the resulting
robust front has been studied.

As the future extension of this work, the novel performance
metrics for robust multi-optimization algorithms proposed in
[13] can be computed for NSGA-III and can be compared
with existing algorithms such as MOEA/D to evaluate its
effectiveness for solving robust many-objective test problems.
Also, the challenging robust multi-objective test problems pro-
posed in [14] can be scaled to MaOPs and the effectiveness of
NSGA-III can be studied on these test problems. As generating
the robust front is computationally costly, it is desirable to
develop approaches such as one discussed in [4] and [12] that
have the ability to create robust solutions without significantly
increasing the computational complexity of the EAs.

An efficient visualization method to visualize the solutions
of EMaO-RO problems can be studied as future work [27].
Though the current work is implemented the Type I and II
robustness definition, NSGA-III is not limited to these two
types of definitions, and can be extended and applied to other
robustness definitions used in MORO and MaORO studies.
Moreover, Type I and Type II definitions of robustness can
be extended for scalarization functions or utility functions
that can further be extended to perform interactive and robust
multi-criteria decision-making (MCDM) tasks [28].
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