
1

Utilizing Innovization to Solve Large-scale
Multi-objective Chesapeake Bay Watershed Problem

COIN Report Number 2023001

Gregorio Toscano∗, Hoda Razavi†, A. Pouyan Nejadhashemi†, Kalyanmoy Deb∗, and Lewis Linker‡

∗Electrical and Computer Eng. † Biosystems and Agricultural Eng. ‡ Chesapeake Bay Program Office
Michigan State University Michigan State University Environmental Protection Agency

East Lansing, U.S.A. East Lansing, U.S.A. Annapolis, U.S.A.
toscano5@msu.edu, kdeb@egr.msu.edu {razavi,pouyan}@msu.edu Linker.Lewis@epa.gov
Abstract—Innovization is a task for analyzing multiple Pareto-

optimal solutions obtained by an evolutionary multi-objective
optimization (EMO) algorithm to extract common features in the
decision variables, leading to design rules or solution principles.
The principles derived from innovized principles can provide
valuable insights to the users about “how to create an opti-
mal solution?”. Manual or automated machine learning-based
innovization methods were proposed in the literature to extract
innovized principles in a problem. Although different problems
may demand different structures of the rules, the innovized rules
can also be utilized to improve the performance of the subsequent
iterations of the optimization algorithm or help in executing an
efficient re-optimization of the same problem. In this paper, we
consider a large-scale and multi-objective complex optimization
task of minimizing cost and nitrogen loading in certain counties
within the Chesapeake Bay Watershed (CBW) and find multiple
trade-off solutions using the NSGA-III approach applied to
the CBW’s real evaluator tool (The Chesapeake Assessment
Scenario Tool–CAST). 205 Best Management Practices (BMPs)
are considered to be implemented at each land-river segment
within a county, leading to as many as 65,260 variables for the
resulting multi-objective optimization procedure. First, hundreds
of trade-off solutions found by the CAST-NSGA-III procedure
are analyzed manually to find the top-most BMPs used in them.
After that, a re-optimization of CAST-NSGA-III is run with a
few critical BMPs (resulting in a decrease of the variable to
a range between 3% and 33%) found to commonly appear in
the trade-off solution set of the previous runs. Interestingly, the
resulting trade-off front with reduced BMPs is similar to the
original run achieved with tens of thousands of variables. The
findings are intriguing and demonstrate the efficacy of innovation
in addressing intricate, real-world issues at a significant scale.

Index Terms—Innovization, Watershed Management, Large-
scale Optimization, Multi-objective Optimization

I. INTRODUCTION

Most practical search and optimization problems involve
more than one conflicting objective. By definition, these
problems have not one but multiple trade-off Pareto-optimal
solutions. While conventional methods scalarize multiple ob-
jectives into a single criterion [1], these methods suffer from
several shortcomings. First, the scalarization method requires
additional preference information of objectives over the entire
search space, which is challenging to provide before even
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a single optimal solution is found. Second, to arrive at a
representative set of Pareto-optimal solutions, the scalarized
problem must be solved multiple times independently, each
with a different parameter setting without any gain in compu-
tational effort from multiple runs.

Recent population-based optimization methods, such as
evolutionary multi-objective optimization (EMO) algorithms,
have been shown to find and store multiple Pareto-optimal
solutions in a single application [2], [3]. This is one sole
reason why these methods have become increasingly popular.
A by-product of finding multiple Pareto-optimal solutions
is that, being optimal, these solutions are likely to possess
certain common properties among their variables, objective,
and constraint values. Finding Pareto-optimal solutions and
analyzing them to reveal common properties was termed as the
task of innovization [4]. The name is so given due to the fact
that the common properties often lead to new and innovative
properties involving problem parameters [5]–[7]. When the
Pareto-optimal solutions are analyzed to unveil such common
hidden properties (or rules), the rules are helpful as knowledge,
which can then be used to enhance future optimizations of
similar problems.

The Chesapeake Bay is the largest estuary in the United
States and the third-largest in the world. As a result, the
Bay has enormous historical, social, economic, and ecological
importance, with natural benefits estimated at more than $100
billion per year [8]. With a drainage area of about 166,000
km2, the Chesapeake Bay Watershed (CBW) includes parts of
six states in the Mid-Atlantic region and is home to more than
18 million people. Since the middle of the twentieth century,
human activities such as livestock and crop production, urban
development, and stream alteration have resulted in nutrients
and sediment excess in waterbodies throughout the watershed,
causing water quality impairment, freshwater ecosystems’
degradation, and loss of recreational values. To address these
issues, the Chesapeake Bay Program (CBP) partnership has
coordinated restoration efforts since 1984 [9]. During the last
decade, these efforts have been guided by the Chesapeake
Bay Total Maximum Daily Load (TMDL), which established
limits to nutrients and sediment loadings. The TMDL has been
used to formulate comprehensive restoration plans known as
Watershed Implementation Plans (WIPs) and outline major
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goals, timelines, and expected outcomes as established in the
CBW Agreement in 2014 [9].

Due to the complexity of evaluating restoration plans’
effectiveness, watershed management in the CBW has been
extensively supported by modeling tools.The Chesapeake As-
sessment Scenario Tool (CAST) is the core modeling tool
that reports management scenarios’ impacts on reducing pol-
lution loads. Those management scenarios (i.e., portfolios
of Best Management Practices, BMPs) have been primarily
defined based on expert elicitation. Recently, single-objective,
gradient-based optimization has been used to identify cost-
effective BMPs portfolios to improve water quality in the
CBW [10], [11]. Since deciding on the implementation of
these portfolios involves many stakeholders (e.g., government
agencies, commercial entities, nonprofit organizations, aca-
demic institutions) at multiple spatial scales (e.g., county,
state), a multi-objective optimization approach exploring trade-
offs among conflicting objectives was followed in an earlier
study [12].

This study links a specific evolutionary many-objective
(EMaO) algorithm – NSGA-III1 [13] – with the CAST eval-
uation software directly using RESTful APIs developed here.
RESTful APIs allow an easy update and use of instruction
codes from different programming languages. In a major
application area involving thousands of users, it becomes
essential to have coding flexibility and the generality of such
linking APIs. Since the CAST evaluation system is managed
by different individuals and hosted in a secured location
different from the developers and the location of the NSGA-
III code, developing the CAST-NSGA-III framework became
challenging. In addition, the highlight of this paper is the data
analysis study to extract practical innovized rules from the
CAST-NSGA-III solutions applied to a few counties in West
Virginia, USA. After the rules are extracted, they help reduce
the original problem’s search space size. A re-optimization
based on the learned rules has produced similar results as the
original study. The reduced search space and computational
time promise to extend the study to the watershed level.

In the remainder of this paper, we briefly describe the CBW
optimization problem formulation in Section II. Then, the link-
ing of an EMO algorithm (NSGA-III) with the CAST evalua-
tion tool through API development is discussed in Section III.
Next, the innovization procedure and related existing studies
are presented in Section IV. Results of CAST-NSGA-III on
the CBW optimization problem are discussed in Section V, by
discussing the manual innovization procedure adopted for this
study and demonstrating that the extracted innovized principles
help solve the same CBW problem quickly and accurately.
Finally, conclusions are drawn in Section VI.

II. CHESAPEAKE BAY WATERSHED OPTIMIZATION
PROBLEM FOR MULTIPLE OBJECTIVES

The CBW spans parts of six states in the northeastern
United States. This large drainage area encompasses more
than 100,000 tributaries. These tributaries bring a large amount

1While this study uses two objectives, the CBW problem requires future
handling of three and more objectives, thereby motivating us to use NSGA-III.

of nitrogen, phosphorus, and sediment to the Bay each year.
As a result, the water quality conditions of the Bay have
been deteriorating to the point where a large area of the
Bay is uninhabitable for the aquatic ecosystem’s life and
endanger human health. To address these issues, it is essential
to implement BMPs throughout the watershed to enhance
the water quality while minimizing costs. However, due to
the size of the watershed and the socioeconomic complexity
throughout the region, the optimization problem is difficult
to solve as it consists of several objectives (e.g., nitrogen
and phosphorus load reductions), different scales (e.g., county,
state), and have many constraints (e.g., BMP implementation
area, restoration monetary resources).

Regarding the search space, each county involves an average
of 10 land-river segments in which 2,000 BMPs can be
implemented within a single land-river segment. In addition,
each BMP is expected to have a maximum of 50 land use
options. Therefore, when considering a single county, the
variables can easily reach 20,000, resulting in a huge search
space of 5020,000 different management options. Therefore,
a multi-objective optimization method that is efficient and
reliable is crucial to address the challenges mentioned above.
Furthermore, the results can further narrow the search space
and produce knowledge (i.e., innovization) to help with the
future BMP implementation plan.

We provide a general formulation of the optimization prob-
lem. The number of variables and constraints depends on the
CBW’s area of interest (e.g., county, state, watershed) [12]:
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xs,h,u,b ≥ 0, ∀s ∈ S, h ∈ Hs, u ∈ Us, b ∈ Bu.
(1)

The variable xs,h,u,b indicates the acres used for implement-
ing a BMP b to reduce a load-source (LS) u on an agency
h and land-river segment (LRS) s. We describe more about
variables in the next paragraph. Objective f1(x) defines the
total cost of implementing BMPs, while objective f2(x) esti-
mates the nitrogen loading released to the environment. The
parameter τb indicates the cost per unit acre of implementing
BMP b. ηNs,h,b refers to the efficiency of BMP b in removing
nitrogen when applying on agency h and LRS s. α refers to
the available acres, and the group of BMPs Gs,h,u contains
all BMPs from G that can be applied on a given (s, h, u). All
fixed parameter values, such as unit cost, available acreage,
etc., are chosen from CBW’s documentation. For efficient
management of CBW, our optimization goal is to develop
BMP allocations that minimize the implementation cost and
the nitrogen loading at a pre-specified area of interest (counties
or a cluster of counties).

For every LRS-Agency-LS (s,h,u) combination (known as a
parcel), multiple BMPs are chosen from a group of allowable
non-overlapping BMP groups Gs,h,u. The variable xs,h,u,b

indicates the acres of the BMP b appearing in one of the
BMP groups (Gs,h,u) allocated to the specific LRS-Agency-
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LS (s, h, u) combination. All BMPs chosen from the all BMP
groups associated with (s, h, u) must add up to the parcel’s
total acres αs,h,u. To provide an example, let us consider the
Berkeley county in West Virginia. This county contains 248
parcels, each with an average of 56.81 independent BMPs
(organized into groups). Each BMP group, in turn, comprises
an average of 7.89 BMPs. Thus, for the Berkeley county,
there are roughly 248 × 56.81 (exactly 14,090) real-valued
variables. A nonlinear optimization problem with so many
variables arising from one county makes the CBW manage-
ment problem challenging to any optimization algorithm. This
detailed representation allows us to systematically explore and
optimize the implementation of BMPs in a single or in cluster
of counties.

III. LINKING EMO ALGORITHMS WITH CAST
EVALUATOR: CAST-NSGA-III

Here, we present the fourth phase of optimization algo-
rithm development for CBW (Figure 1). Phase I encompasses

Fig. 1: Overview of the proposed modeling, optimization, and
innovization tasks as a solution methodology for the CBW
management problem. The final phase is the main crux of this
study.

understanding CAST, modeling an accurate surrogate model,
and developing single objective optimization methods, which
can be solved using two multi-objective optimization methods
– the ϵ-constraint approach and the customized version of
the NSGA-III approach. Phase II proposes the development
of an optimization interface that can interact with CAST. In
Phase II, we developed the core of the optimization framework
by hybridizing the ϵ-constraint and the NSGA-III approaches
together. The resulting approach in which the hybrid method
uses the CAST evaluation tool is called CAST-NSGA-III.
Finally, phase III is devoted to creating Application Program-
ming Interfaces (APIs) to build a bridge with CAST and an
external API to enable developers and practitioners to use our
optimization framework.

In addition to the CAST model, we employ a surrogate
model to perform the search procedure [10]. The adopted

surrogate model captures CAST interactions (with a low
accuracy error) and preserves the Pareto-dominance relation
between pairs of solutions. However, we also use high-fidelity
evaluations on CAST to correct any bias from the surrogate
model. Our ϵ-constraint component uses an interior-point-
based approach that is highly effective in finding solutions
in promissory zones.

Figure 1 shows the modeling, optimization, and innovization
framework workflow. Our framework implements an API to
deploy our optimization approach. APIs can help the develop-
ment of new algorithms by providing a platform for developers
to access data and resources for development. Additionally,
APIs provide other researchers and practitioners to test, de-
bug, and validate new algorithms. Our API is developed on
two levels. The first one grant access to CAST, so we can
send BMP implementation scenarios to evaluate and retrieve
executions. The API isolates all problem communications and
error transmissions within a single input. This API, which is
meant for internal use, is implemented in C++20.

Our second API level is to expose our optimization ap-
proaches to users and decision-makers. Due to this reason, we
adopt a RESTful approach using Django 4.1.1 [14].

The CAST-NSGA-III procedure starts with n solutions
found by the ϵ-constraint approach applied to the surrogate
model of the CAST system. Then, the solutions are injected
into the initial population of the NSGA-III procedure. Next,
the NSGA-III uses the surrogate model to evaluate solutions
until we reach a predefined number of generations. After that,
the approach uses the expensive CAST evaluation tool for
better accuracy and confidence in the final solutions. Finally,
CAST-NSGA-III stores the final results used for a post-optimal
analysis, which is discussed next.

IV. INNOVIZATION TASK TO FIND INNOVIZED RULES

A multi-objective optimization problem gives rise to a
number of Pareto-optimal solutions, each of which is an
optimal solution corresponding to a specific trade-off among
the objectives. Since they are optimal solutions, they may
possess certain common features (involving problem variables
and objectives/constraints) exhibiting the optimality principles.
Such common features are not expected to be present in non-
optimal and arbitrary solutions from the search space, as they
would not meet the optimality conditions.

Finding common features in Pareto-optimal solutions in-
volves (i) multi-objective optimization, followed by (ii) a
feature extraction task. In many practical problems, this dual
task has resulted in new and innovative solution principles
that were not known before. Hence, the dual task was called
innovization [4]. It started with manual innovization tasks, in
which pairwise plots of variables from the Pareto solution set
are created to find if specific pairs of variables possess an
interesting pattern of variation across the Pareto set. For ex-
ample, if a plot of variable pair (xi-xj) shows a monotonically
increasing or decreasing pattern, a polynomial regression fit
will reveal a mathematical rule. If the quadratic fit works well,
the rule structure xj = c1 + c2xi + c3x

2
i (with coefficients

(ci) obtained from the regression process) will become an
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extracted rule. Such a rule indicates that optimal solutions
follow the above relationship between xi and xj . Later, a
machine learning-based procedure was developed to extract
such rules in the form of rules (power laws [5] or decision
trees [15], [16]) from an EMO-obtained solution set. However,
the type of rules that can exist in a problem depends mainly
on the nature of the problem.

If a Pareto-set contains innovized rules, they are essential
for the user to gain additional knowledge about ‘what makes
a solution optimal?’. If the innovized rules are simple and
easily comprehensible, they can act as “thumb-rules” for future
applications. On the other hand, if the innovized rules are long
and involved, they can be used as a ‘procedure’ for use in the
future.

Follow-up innovization studies [6], [17] have unveiled the
innovized rules from non-dominated sets during a multi-
objective optimization run and used the learned rules back
into the optimization process for subsequent iterations as
additional constraints. The rules are then used softly to modify
the new solutions created by the optimization process. This
rule-based update procedure, termed online innovization, has
enhanced the convergence to Pareto-optimality compared to
their original versions.

By manually analyzing the final non-dominated solutions
obtained from CAST-NSGA-III runs. We learn new rules using
the innovization procedure to re-optimize the problem to make
the complex watershed management problem attainable and
scalable.

A. Innovization for the CBW Problem

For the CBW problem, applying the CAST-NSGA-III pro-
cedure creates several optimized solutions with specific BMP
allocations to every LRS. There are 205 BMPs allowed in the
optimization process, but the final optimized solutions may
not use them equally. Depending on the nature of the LRS,
some BMPs may have been used more than others to make the
solutions optimal. In this subsection, we describe the manual
innovization procedure applied to the CAST-NSGA-III solu-
tions to retrieve the frequency of BMP usage to gather helpful
information (knowledge) about optimal solutions (Phase III).

The goal of the innovization task is to learn common or
frequently occurring properties from the optimization results
so that our optimization approaches can perform a more
efficient search. In our context, this process helps us narrow
down a set of BMPs that can be further used to accelerate the
optimization process by reducing the overall search complex-
ity. To generalize the innovization results, the optimization
procedure is performed in four counties within the state
of West Virginia. We select two urban-dominated counties,
named Berkeley and Mineral, and two agricultural-dominated
counties, named Hardy and Jefferson, to examine the results
of innovization.

As the evaluation in CAST is computationally expensive, all
our runs set the population size to 20, and the ϵ-constraint ap-
proach provides five solutions to start the NSGA-III procedure.
Finally, we use standard values for the remaining parameters
of the NSGA-III [12]. We execute 11 times our proposed

approach for each of the previously mentioned configurations
to keep a low number of evaluations on CAST. We use
three ranking strategies to analyze the optimized solutions to
identify the top-ranking BMPs. The first strategy identifies the
list of BMPs based on the total implementation acreage. The
second strategy ranks the BMPs based on the ratio of the
BMP implementation area to the maximum available area.
Finally, the third strategy ranks the top BMPs based on
cost-effectiveness in pollution reduction. After averaging the
individual ranking from the three strategies, the top-ranked
BMPs are identified for combined urban and agricultural
lands and used to improve our understanding of the BMP
implementation strategy based on the innovization technique.

B. Extracted Innovized Principles

The innovization study is performed for agriculture and
urban areas separately. Out of over 205 BMPs initially con-
sidered for developing the BMP implementation plan, the top
seven BMPs are identified and presented in Figure 2. Accord-
ing to the BMP ranking, the ‘Nutrient Management Plan High-
Risk Lawn’ is the top-ranked BMP in the three ranking strate-
gies. This BMP has been used in the largest implementation
area compared to other BMPs, as it is less costly and can also
cause a large load reduction. After that, ‘Off Stream Watering
without Fencing’, ‘Nutrient Management N Timing’, ‘Nutrient
Management N Rate’, ‘Cover Crop Traditional Rye Early
Drilled’, ‘Nutrient Management N Placement’, and ‘Barnyard
Runoff Control’ are found to be the next ranked BMPs. Among
these BMPs, ‘Nutrient Management N Timing’, ‘Nutrient
Management N Rate’, ‘Cover Crop Traditional Rye Early
Drilled’, and ‘Nutrient Management N Placement’ are entirely
implemented in agricultural lands, while ‘Off Stream Watering
without Fencing’ and ‘Barnyard Runoff Control’ are usually
used to control pollution generated from animal production.

The ranking score in Figure 2 is calculated based on the
overall position of BMPs in urban- and agricultural-dominated
counties.

Fig. 2: The overall ranking score versus BMP type and dom-
inated land use classification obtained from the innovization
study.
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V. RE-OPTIMIZATION USING INNOVIZED PRINCIPLES

The optimization algorithm is then modified to incorporate
the knowledge from the manual innovization task (Phase III)
mentioned above. We develop three different re-optimization
strategies:

• Control strategy: The control strategy runs the optimiza-
tion approach using all variables, utilizing no information
from the innovization study.

• Static strategy: Section IV identifies a set of only seven
BMPs that provide the best benefit according to the
innovization analysis. The Static strategy uses these seven
chosen BMPs in the re-optimization, thereby reducing
205 options to only 7 for each parcel.

• Dynamic strategy: Besides seven BMPs, the innoviza-
tion study produces a priority list (a ranked list) of all 205
BMPs. For the Dynamic strategy, we select all necessary
BMPs from the priority list until an accumulative percent-
age of 99.9% of the total implementation area is covered.
Due to this large coverage, the number of options for each
parcel can be larger than that in the Static case. Table I
present the number and reduction in variables.

• Preferred strategy: In this strategy, more BMP options
than in Static and Dynamic strategies are chosen, aiming
to perform a better re-optimization. For every parcel, if
any of the seven innovized BMPs (used in the Static
strategy) exist in the group of allowable BMPs, then all
BMPs other than the innovized BMPs are eliminated as
variables in the optimization. Thus, this strategy reduces
BMP options only to those parcels where one of the
innovized BMPs is used. As can be seen from the table,
the number of variables is much larger than the first two
strategies but are still about one-third of that in the control
problem.

Fig. 3: Groups of BMPs can be applied to load sources with
an overlay. Selected BMPs from the innovization process are
preferred in their group in the Preferred strategy.

The strategies to incorporate the innovization knowledge into
the algorithm eliminate the use of a large number of BMPs;
thus, they reduce the search space size. Table I shows the
number of variables used in each strategy. It can be seen
that the Static and Dynamic strategies use less than 10% of
the variables used by the Control strategy, and the Preferred
strategy uses only about one-third of the total variables. Using
innovization principles substantially reduces the number of
variables in the optimization process.

We incorporate these three strategies into the CAST-NSGA-
III and execute them 11 times each in the four selected
counties. To measure the performance of each strategy, we

TABLE I: Total variables involved by (i) Control: executions
considering all variables (no innovization incorporation), (ii)
Static: Use the BMPs proposed by the innovization study
(seven BMPs, exclusively), (iii) Dynamic: Dynamic selection
of BMPs following an accumulative approach until reaching
99.9% of coverage, and (iv) Preferred: Selection of the BMP
from the innovization study exclusively in their groups of
BMPs. In brackets, we present the percentage of reduced
number of variables compared to the original number of
variables used in the Control strategy.

Control Static Dynamic Preferred
Berkeley 14,090 510 (3%) 1,023 (7%) 4,823 (34%)
Hardy 18,607 725 (3%) 751 (4%) 5,307 (28%)
Jefferson 12,303 456 (3%) 456 (3%) 4,079 (33%)
Mineral 20,260 765 (3%) 1,650 (8%) 6,415 (31%)

calculate the hypervolume metric. In this practical problem,
the exact location of the nadir point is not known a priori.
Moreover, they vary from one county to another. To present
results from various counties in the same plot, we use the
Hypervolume Ratio (HVR), calculated as follows. First, all
non-dominated objective vectors from 11 runs are collected
together for all four strategies. Second, dominated solutions
are removed, and the ideal and nadir points of the combined
set are calculated. Third, each run’s objective vectors are
normalized using the combined set’s maximum and minimum
objective values. Fourth, the nadir point (1.1, 1.1) is set to
compute HVR of each run. Thus, the maximum HVR for any
run is expected to be at most one.

Figure 4 shows the variability of HVRs for different in-
novization approaches. From the plot, it is clear that the Con-
trol strategy, which consists of the CAST-NSGA-III executed
with all variables, achieves competitive results. However, in
all cases, its performance is overshadowed by the Preferred
strategy, which except in the Mineral county, performs the best
across the remaining counties. On the other hand, the Static
strategy produces the worst results across all the counties,
probably due to using a fixed set of seven BMPs. Finally,
it is worth noting that the Dynamic strategy also provides
competitive results, despite a large reduction in variables.

Although these results show the Preferred strategy as the
clear winner, we apply Friedman’s χ2 test to compare our
results statistically. The test is based on the rank of the
observed values within each group and indicates whether there
are significant differences between the results. Furthermore,
as the application of Friedman’s χ2 indicates that results
differ statistically, we compute pairwise comparisons using the
Nemenyi post hoc test [18] to identify which strategy performs
statistically differently.

Figure 5 shows the results of applying the Nemenyi post hoc
test to the data. The figure gathers the pairwise comparison
among all the strategies and counties. The rows indicate the
strategy employed. Columns refer to compared configurations.
The main diagonal of each county is empty. We include the
p-value on each square and colored p-values less than 0.05.
To compare a strategy a to any other strategy, such as b, we
select the row of strategy a and the column of strategy b. The
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intersection presents the p-value of the compared strategies.
For example, if the intersection square is red-colored, there
is a statistical difference between these two strategies. In that
case, we use a central tendency statistic to show which strategy
performs the best.

Following the previous instructions to read the comparison
maps, we see that the Preferred strategy outperforms the Static
strategy in all cases and the Dynamic strategy in two cases.
However, no statistical difference exists regarding the Control
strategy and our Preferred strategy. Nonetheless, the median
value of the Preferred strategy is better than the other strategies
(including the Control strategy) in all counties.

These results show that the innovization study can capture
a few critical BMPs (out of 205 BMPs) that help reduce
pollutants in the CBW and cause the minimal cost of imple-
mentation. However, when we check the performance of the
Static strategy (with the top seven BMPs), we see that it is
the worst-performing strategy. It is worth noting that the Static
strategy requires only 3% of the total variables, indicating
that too much reduction of variables to achieve a faster re-
optimization may produce valuable solutions. The Dynamic
strategy, which chose BMPs based on a good coverage of
land, thereby using a slight increase in the number of BMPs,
produced almost equivalent trade-off front as that obtained by
the Control strategy. Furthermore, the number of variables
is not more than 8% of the total variables. These results
support the importance and benefits of our innovization study.
Figure 6(a) and (b) show the accumulated non-dominated
solutions obtained by the four compared methods in Berkeley
and Mineral counties, respectively. These plots show that our
Dynamic and Preferred strategies are competitive with the con-
trol execution, with the Dynamic strategy having a substantial
reduction in computational effort. The Static approach shows
similar results for Berkeley County, but stays behind the other
approaches for Mineral County.

Berkeley Mineral Hardy Jefferson
County

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

HV
R

Configuration
Original
Static
Dynamic
Preferred

Fig. 4: Boxplot showing the results by the ratio of the
hypervolume for four different strategies.

A. Transfer Learning to Other Counties

As a final step of this study, we employ the Preferred
strategy to new counties as a transfer learning task in which

the innovized BMPs were obtained from different counties.
For this purpose, we choose Grant, Morgan, Pendleton, and
Preston counties, as new counties and previously considered
counties (Berkeley, Hardy, Jefferson, and Mineral) to develop
the innovized BMPs. All these counties are in West Virginia
and are part of the CBW. Table II shows each strategy’s
total variables. The Preferred strategy uses around 33% of the
original variables.

Like the previous experiment, we performed 11 executions
with our Control strategy (CAST-NSGA-III-All with all vari-
ables) and the Preferred strategy (CAST-NSGA-III-Pref). The
results are presented in Figure 7. At first glance, innovization
seems to help CAST-NSGA-III-Pref outperform the CAST-
NSGA-III-All in Morgan and Preston counties. The Nemenyi
post hoc test shows a p-value of 0.025 for Morgan and Pre-
ston, corroborating our observation in Figure 7. However, for
Pendleton, CAST-NSGA-III-Pref performs similarly to CAST-
NSGA-III-All, but with a minor standard deviation among the
runs. For Grant, the median of CAST-NSGA-III-All is slightly
better than the Preferred strategy.

TABLE II: Total variables involved by Control and Preferred
strategies are presented. The percentage of reduced number of
variables to that in the Control strategy is shown in brackets.

Control Preferred (% reduced to)
Grant 25,228 8,036 (31%)
Morgan 11,880 3,947 (33%)
Pendleton 33,083 10,483 (31%)
Preston 1,470 447 (30%)

B. Comparative Study
CBW management problem has not been optimized before.

In this pilot study, we discuss the challenges of solving the
problem, mainly due to a large number of variables, nonlinear
objective and constraint functions, and the time-consuming
evaluation of solutions using a black-box and EPA-proprietary
CAST evaluation tool. However, we also find in this study
that using a smaller set of innovized BMPs and re-optimizing
the problem with a much-reduced set of variables achieves
a similar performing trade-off front and can be extended
to address new counties with results from existing studies
in a transfer learning mode. Thus, a comparison study to
our proposed approach must be another newly developed
optimization methodology that has the ability to handle a large
number of variables and other complexities mentioned above.

To show that our proposed methodology is efficient and
the results of it cannot be produced easily, we compare our
results with the Static strategy but using seven randomly-
chosen BMPs (without any innovization study). We select
a multi-county scenario with four counties simultaneously:
Berkeley, Hardy, Jefferson, and Mineral. The Control strategy
involves 65,260 variables, while the Preferred strategy reduces
the variables to 2,456 (reducing to around 3.7% of the original
variables).

The results in Figure 8 show that CAST-NSGA-III-Static
has a competitive performance with CAST-NSGA-III-All;
however, as expected, the randomly selected BMPs do not
perform well at all.
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Fig. 5: Pairwise Nemenyi post-hoc test among the different configurations for Berkeley, Hardy, Jefferson, and Mineral counties
for the re-optimization study.

(a) Berkeley County

(b) Mineral County

Fig. 6: Comparison of the accumulated Pareto fronts
of CAST-NSGA-III-All (Control), CAST-NSGA-III-Static
(Static), CAST-NSGA-III-Dynamic (Dynamic), and CAST-
NSGA-III-Pref (Preferred).

In addition to examining the quality of the solutions, we now
compare the computational time required for each strategy for
a similar number of evaluations. NSGA-III is executed on an
AMD Ryzen 9 5950X 16-core, 32-Thread, and 128 GB of
RAM. CAST is evaluated on the cloud using AWS and five
concurrent processors. Each processor executes an instance
of the problem in parallel (the times of this experiment can
increase if we reduce the number of concurrent processors, and
vice versa). Figure 9 shows that utilizing a subset of BMPs led
to improvements in computational time, as the execution of our
framework with all BMPs demanded more time. The strategy

Grant Morgan Pendleton Preston
County
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Preferred

Fig. 7: Boxplot showing the results by the ratio of the
hypervolume for the transfer learning cases.

with randomly chosen BMPs is similar to the innovization-
based Static approach.

Berkeley-Hardy-Jefferson-Mineral
County
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HV
R
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Fig. 8: Boxplot showing the results by the ratio of the
hypervolume for the transfer learning case over a multi-
county scenario: Berkley, Mineral Hardy, and Jefferson coun-
ties involving 65,260 variables (Control). CAST-NSGA-III-
Static (Static) uses only 2,456 variables but achieves similar
performance. On the other hand, using the random selection of
BMPs contained a similar search space to our CAST-NSGA-
III-Static strategy, but it could not reach the Pareto front.

VI. CONCLUSIONS

This paper has considered a challenging practical optimiza-
tion problem involving tens of thousands of variables required
to be optimized for multiple objectives and involving a com-
putationally expensive evaluation tool. We have proposed a
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Fig. 9: Computational time needed by CAST-NSGA-III-All
(Control), CAST-NSGA-III-Static (Static), CAST-NSGA-III-
Pref (Preferred), and the random selection of BMPs (Random).
On average, the Static strategy required 20% less time, the
Preferred strategy required 14% less time, and the Random
strategy required 22% less time than the time needed by the
Control strategy.

hybrid multi-objective optimization algorithm that embeds the
initial population with optimal solutions found using a point-
based scalarization method worked on a mathematical model
(surrogate model) of the expensive evaluation tool. To facilitate
the use by practitioners, we have used RESTful APIs to link an
evolutionary multi-objective optimization procedure (NSGA-
III) with the evaluator tool called CAST. The resulting CAST-
NSGA-III has been applied to four counties of West Virginia
to find the optimal allocation of 200+ land use management,
known BMPs .

Although the above refers to a significant study yielding
a number of trade-off solutions among the cost of land
use implementation and reduction in nitrogen loading to the
environment, this paper has brought out another significant
finding that can be generically applicable to other practical
problems. The multi-objective solutions have been analyzed
to find common BMP allocation principles stored in them.
In this context, we have identified the most frequent BMPs
among optimized non-dominated solutions and used them
as a significantly reduced set of variables (to the tune of
3 to 33% of the original variable set) using three differ-
ent innovization strategies. Remarkably, the re-optimization
results with reduced variables are equivalent to (and better
on some occasions than) the original application having tens
of thousands of variables. Also, innovized strategies have
produced better-performing re-optimization results compared
to randomly chosen BMPs. The power of a post-optimal
innovization task in making a large-scale societal problem
solvable stays as the hallmark feature of this study.

Moreover, it has also been shown that the critical BMPs
collected from optimization studies on certain counties can
solve other new counties or multi-counties in a transfer learn-
ing mode. The trade-off solution set is similar to or better

than the original BMP optimization of these counties. Inherent
problem similarity in problems from different counties enables
such transfer learning possible.

The study can be extended to find reduced number of
solution evaluations needed by the innovization-based re-
optimization strategies to achieve a similar hypervolume to
the Control strategy. Its scalability to more counties and to
the watershed would also be interesting. Nevertheless, this
study has considered 1,470 to 65,260 real-parameter linked
variables, making it one of the largest practical problems
solved using any evolutionary algorithm. Furthermore, the
obtained results showed that incorporating the post-optimal
innovization principle to extract critical knowledge can speed
up the search process and allow for solving similar problems
without performing any new optimization.
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