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Abstract. Multi-objective optimization problems give rise to a set of
Pareto-optimal (PO) solutions, each of which makes a certain trade-off
among objectives. When multiple PO solutions are to be considered for
different scenarios as platform-based solutions, a common structure in
them, if available, is highly desired for easier understanding, standardiza-
tion, and management purposes. In this paper, we propose a modified op-
timization methodology to avoid converging to theoretical PO solutions
having no common structure and converging to a set of near-Pareto solu-
tions having simplistic common principles with regularity where the com-
mon principles are extracted from the PO solutions in an automated fash-
ion. After proposing the methodology, we first demonstrate its working
principle on a number of constrained and unconstrained multi-objective
test problems. Thereafter, we demonstrate the practical significance of
the proposed approach to a number of popular engineering design prob-
lems. Searching for a set of solutions with regularity-based principles for
different platforms is a practically important task. This paper should
encourage more similar algorithmic developments in the near future.
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1 Introduction

The general structure of any optimization problem involves minimizing or max-
imizing single or multiple objective functions, representing the key performance
indicators (KPIs) of the problem, and satisfying a number of constraint func-
tions, imposing certain relationships among variables for solutions to be mean-
ingful. The first task is to mathematically formulate the resulting optimization
problem and then apply a suitable optimization algorithm to find the optimal
solution(s). Based on the number of objectives, the task can be categorized as a
single-objective [1-3], multi-objective (2-3 objectives) [4-7], or, many-objective
(>3 objectives) [8-10] optimization. In most real-world multi or many-objective
problems, it is not possible to find a single solution that is the best in terms
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of all specified objectives. So, typically multi- and many-objective optimization
algorithms attempt to find a set of Pareto-optimal (PO) solutions.

Classical point-based optimization algorithms use a generative solution method-
ology in which the multi- or many-objective problem is scalarized to a parametric
single-objective problem. PO solutions are then generated one by one using dif-
ferent parameter values. However, due to the basic operation with a population of
solutions and their implicit parallelism property, evolutionary algorithms are in-
creasingly being used to solve multi- and many-objective optimization problems.
It has been argued that since every PO solution must satisfy certain optimality
conditions [11,12], collectively they are expected to follow certain common prop-
erties involving decision variables, objectives, and constraint values [13], resulting
from the satisfaction of the equilibrium optimality condition. The common prin-
ciples extracted from a PO solution set can provide valuable information to the
user, as they exhibit explicit knowledge about the properties of optimal solutions.
A procedure of finding such common principles from Pareto-optimal solutions
is termed as a task of innovization — deciphering innovative solution principles
through optimization [13]. While “innovized” principles were observed to exist
in many practical problems, not every problem may exhibit such common prin-
ciples. Even if such principles exist, they can be quite complex for human users
to comprehend and make use of.

In this study, we argue that in practical problems, users would be willing
to sacrifice optimality in solutions with a certain type of regularity, particularly
if true PO solutions do not possess any simplistic pattern involving variables,
objective, and constraint values. In order not to deviate too much from the
true PO set for regularity, we propose a bi-objective optimization task that at-
tempts to find trade-off solutions that are not far from the true PO solutions
but possess regularity in terms of common patterns of features within certain
specified complexity. Besides providing an easier understanding of trade-off solu-
tions, regularity-based solutions would also facilitate an easier maintenance and
switching methodology from one trade-off solution to another in practice.

The rest of the paper is organized as follows: Section 2 provides the motiva-
tion behind the present study. A brief overview of the literature along a similar
direction is provided in Section 3. Section 4 describes the proposed methodology
in detail. The experimental outcome and corresponding discussion are presented
in Section 5. Finally, Section 6 concludes the paper and provides additional
direction for further research on this topic.

2 DMotivation for Proposed Study

The goal of a multi-objective optimization process is to find a set of trade-off
feasible PO solutions to achieve two main purposes. First, each PO solution is
a high-quality candidate solution that in principle can be adopted in practice,
and hence they, collectively, provide an idea of alternate solutions pertaining to
a problem. Second, the trade-off information of PO solutions can be integrated
with users’ decision-making priorities to choose a single preferred solution for
implementation. In certain scenarios, the knowledge of alternate PO solutions
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may be used to switch from one PO solution to another, if the circumstances
demand. In other scenarios, different PO solutions can be suitable for differ-
ent computing platforms or environments. Thus, if the final solution set from
a multi-objective optimization task possesses certain regularity principles (with
simplistic variable-objective-constraint relationships), switching or maintenance
of PO solutions under different computing platforms or other scenarios can be
easily achieved. Such a solution philosophy is akin to platform-based design
principles [14-16] which accelerated standardized design solutions to be adopted
during the late nineties due to easier maintenance and re-usability consider-
ations. -8pt Figure 1 illustrates the concept of a regular-front, in comparison
to a PO front, introduced in this study. PO solutions may not have any reg-
ularity or the desired regularity in them, because no regularity requirement is
usually enforced as an optimization goal. The figure illustrates that efficient
solutions can be widely different from each other and may not possess any easy-
to-comprehend common principles. Every PO solution can come from a unique
combination of variables without much common pattern from one solution to an-
other.

This may require every PO solution to be

]

interpreted differently with its own inven-
tory, maintenance, and operating conditions.
If such PO solutions are to be used in a
platform-based application scenario in which
a solution is needed for different platforms
(having different compute powers or differ-
ently scaled applications), it is desired that
solutions have certain common properties so
that an easier inventory, maintenance or sim-
ilar operating conditions can be adopted. The
figure shows that solutions lying on a regu-
lar front can have common properties (circu-
lar cross-section), but cause a small worsen-
ing of performance metrics compared to PO
solutions. We argue here that such regularity-
based solutions will be more desired in prac-
tice than PO solutions, for achieving a better
understanding and control of dealing with the
solutions. The implementations of the concept
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Fig.1: A regular front contains
solutions with common simplis-
tic features but may be domi-
nated by the PO front. It may
be worth sacrificing original effi-
cient solutions having no easily-
comprehensible features for so-
lutions with some regularity.

of regularity might be different in different problem scenarios, but the high-level
idea remains the same. For example, in numerical optimization problems, we
may like to have a constant value for certain variables to all regular solutions or
have a simplistic relationship, such as x1 2 among all regular solutions. In
the case of neural architecture search, we may want to have certain common re-
peating blocks of connections (known as micro-architecture [17]) in all trade-off
neural network architectures.
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3 Past Studies

The concept of regularity in multi-objective optimization is novel and there is not
much study yet in this direction. However, the concept is similar to the task of in-
novization, which was introduced by the second author in 2006 [13]. Innovization
deals with finding solution properties that are common to PO solutions. After
its introduction in [13], it has gained popularity over the years as a process
to get useful information about different design problems. Using innovization,
the authors were able to extract innovative design principles for three design
problems: multiple-disk clutch brake design, spring design, and welded beam
design problems. Since its inception, innovization has evolved and found inno-
vative applications. In [18], the authors have utilized innovization as a way of
improving the convergence speed through repair operations. The authors have
applied innovization during optimization to discover interesting design princi-
ples and used the information to guide the search in a better direction thereby
increasing the convergence speed. This idea of extracting the design principles
through innovization has been used by multiple researchers in the subsequent
years [19-22]. But there are fundamental distinctions between regularity-based
optimization introduced in this paper and innovization task. For example,

— In innovization, common properties of PO solutions are sought, so they can
provide vital knowledge about PO solutions to reach the original Pareto front
of the problem. In regularity-based optimization, the goal is to find a set of
trade-off solutions with certain simplistic properties of variables, objectives,
and constraints. The resulting solutions need not be PO solutions but are
expected to be close to the PO set in the objective space.

— Even though innovization attempts to extract important design information
from the intermediate/final PO solutions, all the PO solutions may or may
not follow the extracted information because it does not enforce all the solu-
tions to follow the pattern. But, in regularity-based optimization, the goal is
to find a set of regular solutions that exactly follow the obtained regularity
principles.

Platform-based design studies [14-16] are close to the concept of regularity-
based optimization, but the former do not usually use any optimization method
to arrive at common properties among the platform of solutions.

4 Regularity-based Optimization (RegEMO) Procedure

As discussed in Section 2, the goal of the proposed algorithm is to search for so-
lutions having two properties: (i) they possess some simple regularity principles,
and (ii) they are as close as possible to the PO solutions. The most intuitive
starting point of the approach is to look for some common principles that are
already existing in the majority of the PO solutions.

Let us illustrate the concept through a simple constrained two-variable, two-
objective test problem (BNH). The PO solutions obtained by NSGA-II [23] are
shown in Figure 2b in blue points. Figure 2a shows the complexity and Pareto
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deviation of different regularity principles considered by the RegEMO process.
The red stars in Figure 2b are the regular points corresponding to the preferred
regularity principle from Figure 2a. This process is described in more detail in
Section 5.1 By analyzing the solutions, we observe that for AB, z; = z5 2
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(a) Selection of the final regular front. (b) PO and regular efficient fronts.

Fig. 2: Proposed RegEMO procedure is illustrated on BNH problem.

[0,3] and for BC, x5 = 3 with 7 2 [3,5]. Such information on the properties
of PO solutions is useful to practitioners and the concept of discovering such
knowledge of PO solutions was termed the task of innovization [13]. If the above
information is comprehensible to the users so that they can be used for inventory,
management, or operation of the problem, there is no need for any further study
and we shall call these PO solutions as regular solutions.

However, if the division of properties is somehow complex to comprehend or
use, the user may be interested in finding a new set of solutions, not far from the
PO solutions, but possessing a more simplistic relationship, maybe within the
maximum desired complexity provided by the user. For example, our proposed
regularity-based EMO (RegEMO) has found a new set of trade-off solutions
(shown in red stars) that is close to the original PO set but has the following a
single simplistic linear property for the entire set:

r9 = 0.621 +0.49, 2,2 [0,4.18]. (1)
The above principle sacrifices the extreme parts of the PO front and makes a
slight deviation from the original PO front in the lower left part of the PO front,

but provides a simple linear relationship for users to have a better comprehension
and use of the knowledge.

4.1 Steps of Proposed RegEMO Procedure

The RegEMO procedure consists of six steps, as described below.
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Step 1: Discovery and clustering of the Pareto front: The first step of
the regularity search process is to find a set of PO solutions using an evolu-
tionary multi-objective optimization (EMO) or an evolutionary many-objective
optimization (EMaQ) procedure. Thereafter, a clustering operation is applied
to cluster the Pareto front based on the design space representations of the PO
solutions. In this study, we have pre-specified the number of clusters (n.) to be
found using the k-means [24] clustering approach, but later it can be replaced
by other clustering processes which do not require such pre-specification. If the
user is interested in finding a set of regularity principles common to the entire
PO set, n. =1 can be set.

Step 2: Identification of non-fixed variables: For each cluster of solutions
(say Cj), we try to identify variables that are not fixed to some specific values,
rather they vary across the PO solution subset. One simple idea would be to
measure the degree of variation of a variable (say i-th) in the subset (acgk), where
k 2 C;) and compare it with the original specified search space using variable’s

lower and upper bounds (¥ and z¥):

(k) : (k)
maxkec; T mingec; ¥; @)
v ay '
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By checking if A; is within a pre-specified threshold (¢), the variable can be
declared as a fixed variable. However, there is a problem with this approach. A
variable may converge to two or a few widely different values on the search space,
producing a large value of the numerator of the above equation. Although the
variable has settled to a few values, the above metric will not declare it as a fixed
variable. To alleviate this, we propose a binning procedure. We divide the range
(zY  zF) in a certain number of bins (npins). If a variable has representations in
equal or more than 50% bins, we declare it a non-fixed variable, else it becomes
a fixed variable.

Step 3: Regularity Search in fixed variables: The variables which are not
identified as non-fixed variables (x 2 F) are termed as fixed variables (x 2 F).
Next, we attempt to look for any regularity (piece-wise or complete) among the
fixed variables. The process starts by computing the average of fixed variable
values (2; avg) in the population and arranging them in a non-decreasing order:
[ ,S] = ascend_sort (z;avg). The set S contains the variable ID of the fixed
variables in ascending order of the average variable value. Thereafter, we fit a
regression function r(s) (polynomial of degree n) through the average variable
values as a function of sorted variable ID (s) representing the fixed variable
xg,. If the regression fit does not produce a small error, we divide the sorted
variables into smaller pieces and find a piece-wise regression fit within the desired
maximum error ().

Step 4: Regularity Search in non-fixed Variables: Non-fixed variables
do not have a convergence to any fixed value(s), hence finding regularity in
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non-fixed variables is more challenging. However, despite the variations in non-
fixed variables, they can be related to each other in a specific way and follow
certain simplistic relationships. Next, we attempt to decipher any such rela-
tionships among non-fixed variables. Several procedures are possible, but in our
current implementation, we divide the non-fixed variables into three categories:
(i) non-fixed dependent, (ii) non-fixed independent with which non-fixed depen-
dent variables have a relationship, and (iii) orphan non-fixed variables with no
apparent relationship with other non-fixed variables.

The following tasks are performed on non-fixed variables only. The first step
is to identify these three different categories of non-fixed variables. For the iden-
tification, we have used Pearson correlation coefficient (PCC). Each non-fixed
variable is assigned a correlation score obtained by summing up the PCC scores
of that variable with every other variable. The variables having higher correla-
tion scores are candidates for becoming non-fixed dependent variables as they
are more related to the rest of the variables. So, we select the top K non-fixed
variables having higher correlation scores to become non-fixed dependent vari-
ables. Each non-fixed dependent variable is then represented as a linear combi-
nation of the remaining non-fixed variables where the coefficients (multiples of
k) of the linear combination denote coefficients of linear regressor fitted for the
non-fixed dependent variables with respect to the other non-fixed variables. The
non-fixed variables having non-zero coeflicients are termed as non-fixed inde-
pendent variables and the ones having zero coefficients are termed as non-fixed
orphan variables. A relationship is validated with an MSE bound €.

Note that the besides classifying the variables into four categories (fixed and
non-fixed variables together), the above process also assigns values for the fixed
variables and relationships among certain non-fixed variables.

Step 5: New optimization problem formulation to find candidate reg-
ular solution set: The above regularity relationships, although obtained from
PO solutions, are on one hand simplistic (constant or linearly dependent on each
other), but appear in an approximate manner with tolerances specified above.
Since they capture a simple and approximate relationship (justifying regularity),
users may be interested in knowing what new trade-off solutions would be most
appropriate to satisfy the relationships so that they are not far from the actual
PO front.

For this purpose, we formulate a new optimization problem by enforcing
the obtained relationships. To determine the variables of the new optimization
problem, first, all fixed variables are set to their observed fixed values and are
not considered as variables for the new optimization problem. Second, non-fixed
dependent variables are set by the obtained relationships (as constraints) as func-
tions of non-fixed independent variables and are also not considered as variables
of the new optimization problem. The non-fixed independent variables and or-
phan variables are chosen as variables of the new optimization problem and their
variable bounds are adjusted to the lower and upper bounds of their variations
in the PO set.
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The objective function of the new optimization problem is identical to the
original problem. Constraints of the original problems are also included. We
employ an EMO/EMaO algorithm to again solve the new optimization problem.
It is expected that the obtained regular solution set will be inferior to the original
PO set, and therefore, their acceptability of them must be traded based on the
gain in simplicity in obtained regularity principles. We execute the following
final step for this purpose.

Step 6: Bi-objective parametric search and choice of the best regular
solution set: The above process of arriving at regularity principles involves a
number of parameters mentioned in Table 1. A change in any of these parameters

Table 1: RegEMO parameters and allowable values for the bi-objective search.

RegEMO Parameters Description Search Space

Fixed var. regression degree (1) Highest degree for polynomial fitting regressor 1,2,3

Non-fixed independent var. factor (k) Coefficients in multiples of 0.1, 0.3, 0.5

Non-fixed dependent equations (K) | Max. number of non-fixed dependent vars. allowed 1,2

Threshold for A; (¢) Threshold used for deciding if a variable is fixed 0.2, 0.5

Fixed var. MSE bound (ef) Upper bound on MSE for regularity requirement 0.1, 0.3, 0.5

Non-fixed var. MSE bound (e,y) Upper bound on MSE for regularity requirement 0.1, 0.3, 0.5
Number of clusters in the PO set (n.) Number of clusters for dividing the PO set 1,2, 3

(p-vector) will produce a different set of regularity principles (R(p)) having a
different complexity (C(p)) estimate and the new optimization will produce a
different regular solution set (Y (p)) with a different deviation (d(p)) estimate
from the original PO set. The first task will be to employ an unconstrained
bi-objective search in which parameters (p) are variables and two objectives (d
and C) are minimized. This will ensure that the final regular solution set Y™ is
minimally away from the original PO set under the added constraints and also
have a minimal complexity estimate.

We now define metrics for two objectives. The deviation from the PO set
is simply defined as the percentage difference in hypervolume (HV) metrics of
the original PO set and the obtained Y-set, from the original PO set hyper-
volume: d =1 HV(Y)/HV(PO). However, the complexity metric objective is
computed from the structure of fixed and non-fixed variable relationships. For
an n-variable vector having ny fixed, n,; non-fixed independent, n,q non-fixed
dependent variables, we assign the following complexity metric value for each
variable type: (i) fixed var.: ¢; = 0.5, (ii) non-fixed indep. var.: ¢ = 6n 11,
(iii) non-fixed dep. var.: ¢s = 3n,q4, and (iv) orphan var.: ¢y = ny(n 2) + 4.
The above assignments are chosen by comparing different pairwise scenarios of
relationships and enforcing an intuitive preference to the more desired choice for
each scenario. The complexity of the regular solution set is then computed as
follows:

C=cing+canpi+csnpg+ca(n ng  npi  Npg). (3)






