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Abstract—In recent years, research interests have been paid
in solving real-world optimization problems with variable-length
representation. For population-based optimization algorithms,
the challenge lies in maintaining diversity in sizes of solutions and
in designing a suitable recombination operator for achieving an
adequate diversity. In dealing with multiple conflicting objectives
associated with a variable-length problem, the resulting multiple
trade-off Pareto-optimal solutions may inherently have different
variable sizes. In such a scenario, the fixed recombination and
mutation operators may not be able to maintain large-sized
solutions, thereby not finding the entire Pareto-optimal set. In
this paper, we first construct multiobjective test problems with
variable-length structures, and then analyze the difficulties of
the constructed test problems by comparing the performance
of three state-of-the-art multiobjective evolutionary algorithms.
Our preliminary experimental results show that MOEA/D-M2M
shows good potential in solving the multiobjective test problems
with variable-length structures due to its diversity strategy
along different search directions. Our correlation analysis on
the Pareto-optimal solutions with variable sizes in the Pareto-
optimal front indicates that mating restriction may be necessary
in solving variable-length problem.

I. INTRODUCTION

Over the past two decades, multiobjective evolutionary
algorithms (MOEAs) have attracted a great research interest
in the area of evolutionary computation and its application
to industrial problems [1]. Compared with classical multiob-
jective methods, MOEAs have advantages to approximate the
Pareto front by finding a set of representative solutions. For
a multiobjective optimization problem, its objective space is
often partially ordered. In the fitness assignment of MOEAs,
a full order must be defined to rank different individuals
in the evolving population. According to the schemes for
fitness assignment, MOEAs can be categorized into three
frameworks, i.e., Pareto-based MOEAs (e.g., NSGA-II [2] and
SPEA2 [3]), decomposition-based MOEAs (e.g., MOGLS [4]
and MOEA/D [5]), and indicator-based MOEAs (e.g., IBEA
[6]). Apart from fitness assignment, the other important issue,
i.e, diversity maintenance, has also been highly addressed in
MOEAs.

Like many evolutionary algorithms for single objective
optimization, the performances of MOEAs are also affected
by the appropriate use of reproduction operators for generating
new solutions. So far, many popular reproduction operators
used in single objective EAs have also been extended to
sample offspring solutions in MOEAs. For continuous MOPs,
the most commonly-used reproduction operators are simulated
binary crossover (SBX) and polynomial mutation [2]. The
basic idea in these operators is to produce offspring solutions
close to mating parents with higher probabilities. Over the past
ten years, some recombination methods based on directional
information, such as differential evolution (DE) [7] and parti-
cle swarm optimization (PSO) [8], have also been studied for
solution generation in MOEAs. Moreover, probability methods
based on Gaussian distributions, such as covariance matrix
adaptation evolution strategy (CMAES) [9], were integrated
into MOEAs [10], [11].

So far, a large number of MOEAs with different frameworks
or reproduction operators have been proposed. According to
no-free-lunch theory, there isn’t a single MOEA that can have
good performance on all MOPs with different difficulties.
Therefore, the selection of frameworks and recombination
operators must take problem difficulties into account. The
typical difficulties in multiobjective optimization contain ge-
ometrical shape of Pareto front - PF (e.g., convexity and
disconnection), geometrical shapes of Pareto set - PS (e.g,
linearity and non-linearity), many local PFs, biased PFs, and so
on. To study these difficulties, many benchmark multiobjective
test problems have been constructed. The representative test
problem sets are ZDT [12], DTLZ [13], LZ [7], UF [14], WFG
[15], CPFT [16] and so on.

As reported in the literature [7], [13], NSGA-II has good
performance in convergence on ZDT and DTLZ test problems
with 2 or 3 objectives while MOEA/D is more effective on
LZ and UF test problems with complicated PS. In NSGA-
II, mating parents are selected from the current population
based on the rank values and the crowding distance values.
Any two nondominated solutions in different parts of PF have
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chance to recombine. In MOEA/D, only neighboring solutions
are allowed to mate. Compared with NSGA-II, MOEA/D paid
more attention on mating restriction. In fact, whether mating
restriction is necessary in MOEAs is problem-dependent.
When all solutions in the PS have very similar structures in
the decision space (e.g., the PS of ZDT test problems), mating
restriction is not very useful. When all solutions in the PS
have different but highly correlated structures (e.g., the PS of
LZ test problems), selecting similar mating parents should be
encouraged in recombination.

Recently, some research interests have been paid on the op-
timization problems with variable-length representation [17],
of which the number of decision variables is not fixed. To
solve these problems, the major challenges for EAs lie in
the design of their recombination operators. Since two mating
parents may have different number of decision variables, the
recombination between them can not be done as usual. In
[17], some recombination operators for variable-length repre-
sentation, such as spatial recombination, synapsing variable-
length crossover, similar meta-variable recombination, and
meta-variable insertion mutation, have been studied. However,
it is not easy to extend these operators to solve different
optimization problems with variable-length structure. In fact,
the variable-length structure also exist in multiobjective op-
timization problems. Another study [18] has identified that
NSGA-II is unable to find the entire Pareto-optimal set in
a variable-length problem. In this paper, we study how to
construct multiobjective test problems with variable-length
structure. Some issues in MOEAs related to variable-length
problems, such as diversity strategies and mating restriction,
are also investigated.

The rest of this paper is organized as follows. In Section II,
the background on the recombination strategies in two MOEAs
will be reviewed. Then, the construction of the multiobjective
test problems with variable-length structure will be presented
in Section III. In the following section, some experimental
results on the performance of MOEAs on five multiobjective
test problems with variable-length structure are reported and
discussed. Section V analyzes the landscape of the MOP with
variable-length PF structure. The final section concludes the
paper.

II. MULTIOBJECTIVE OPTIMIZATION AND METHODS

In this section, we first introduce the Pareto-optimality in
multiobjective optimization and two classical multiobjective
methods. Then, two commonly-used MOEAs, i.e., NSGA-II
and MOEA/D, are reviewed.

A. Pareto-Optimality

In the case of m objectives, a continuous multiobjective
optimization problem can be formulated as:

minimizex∈ΩF (x) = (f1(x), . . . , fm(x)) (1)

where x = (x1, . . . , xn) is a decision vector in the feasible
region Ω ⊂ Rn. F is a vector of m objective functions.

A solution y ∈ Ω is said to dominate z ∈ Ω if F (y) < F (z)
and F (y) ̸= F (z). A solution x∗ ∈ Ω is said to be Pareto-
optimal if F (x∗) is not dominated by the objective vector of
any other solutions in Ω. In the decision space, the set of all
Pareto-optimal solutions is called Pareto set. The set of the
objective vectors of all solutions in the Pareto set is called
Pareto front.

B. Classical Multiobjective Methods

The basic idea in classical multiobjective methods is to
convert a MOP into a single objective optimization problem.
The most well-known classical methods are the weighted
sum method and the weighted Tchebycheff method. The
formulations of these two methods can be written as follows:

• the weighted sum method: All objective functions are
linearly aggregated into a scalar function

min gws(x|λ) =
m∑
i=1

λifi(x)

with λi ≥ 0, i = 1, . . . ,m and
∑m

i=1 λi = 1.
• the weighted Tchebycheff method: A max-min rule is

used to convert a MOP into a single objective optimiza-
tion problem in a nonlinear way:

min gtch(x|λ) = max
i∈{1,...,m}

λi|fi(x)− zi|

where (z1, . . . , zm) is a reference point. (λ1, . . . , λm) is
the same as in the weighted sum method.

Note that the weighted sum method is not suitable to find the
nonconvex parts of PF. In contrast, the weighted Tchebycheff
method can deal with both the convex PF and the nonconvex
PF.

C. Multiobjective Evolutionary Algorithms

Over the past twenty years, evolutionary algorithms have
became the dominant methods for multiobjective optimization.
Among all multiobjective evolutionary algorithms, NSGA-II
and MOEA/D have attracted much attention in recent a few
years.

• NSGA-II [2]:
NSGA-II is the extensive version of NSGA . It uses
Pareto dominance to classify the population into a number
of nondominated fronts. Within each front, none of the
solutions is dominated by the others. In NSGA-II, mating
parents are selected via tournament selection with two
kinds of preference.

– The solutions in the front closer to the PF are always
preferred in selection.

– When two solutions belong to the same front, one
of them in the sparse area along the front is more
likely to become mating parents.

To estimate the density value of solutions in the front
nearest to the PF, the crowding distance method is used
in NSGA-II. Moreover, any two solutions with good
quality in the population may have chance to recombine.



This strategy is good for the exploration of search space.
However, no mating restriction is considered in NSGA-II.
Therefore, its ability on the exploitation of search space
is weak in some senses.

• MOEA/D [5]:
Similar to the classical multiobjective methods, MOEA/D
needs to optimize some single objective scalar subprob-
lems. The performance of MOEA/D depends on a number
of issues, such as problem decomposition, mating selec-
tion, population replacement, archiving assistance, local
search, recombination operator, and so on. In the first ver-
sion of MOEA/D, the mating solutions are only selected
from local neighborhood. Therefore, mating restriction
is emphasized during the whole search procedure. This
strategy is good for the exploitation of search space. To
increase the ability of MOEA/D for the exploration of
search space, selecting dissimilar mating parents should
be encouraged.

III. MULTIOBJECTIVE OPTIMIZATION WITH
VARIABLE-LENGTH STRUCTURES

In this section, we first introduce the background on the
variable-length problems. Then, the details on constructing
multiobjective test problems with variable-length structure
along PF are given.

A. Background

In traditional optimality theory, the length of the deci-
sion vector is always assumed to be fixed. However, the
length of decision vector is not necessarily fixed in many
real optimization problems, such as sensor coverage problem
[19], wind farm layout [20], and composite laminate stacking
problem [21]. In these problems, the optimal number of
components in the decision vector is unknown. When the
number of decision variables is large, the classical fixed-
length EAs are not efficient for solving the variable-length
optimization problems. The main difficulty in EAs is the
lack of efficient recombination operators for variable-length
representation. Over the past few years, some efforts have
been made to overcome this difficulty. In [17], a class of
EAs for variable-length optimization, called metameric genetic
algorithms (MGAs), were studied. Compared with the con-
ventional EAs, the major changes in MGAs lie in the design
of reproduction operators for variable-length structure, such
as spatial recombination, synapsing variable-length crossover,
similar metavariable recombination, as well as metavariable
insertion mutation.

B. Problem Construction

The majority of problem difficulties in single optimization
can be extended to multiobjective optimization. So far, no
efforts have been devoted to variable-length structures in
multiobjective optimization. In this work, we focus on the
variable-length structure in the PF, where the Pareto solutions
at different parts of PF may have different sizes. In the

following, we give a general formulation on the multiobjective
optimization problems with variable-length structure.

min
x,y1:L(x)

fi(x, y) = αi(x) + gi(x, y, L(x)), i = 1, . . . ,m (2)

• The decision vector is x̄ = (x, y) ∈ [0, 1]m−1+L(x) with
(m− 1) fixed-length position variables

x = (x1, . . . , xm−1) ∈ [0, 1]m−1

and L(x) variable-length distance variables

y = (y1, . . . , yL(x)) ∈ [0, 1]L(x).

Note that the variable length L(x) is not greater than N
- the maximal number of components in y.

• The PF of (2) consists of the nondominated members in
the following set:{

α(x)|x ∈ [0, 1]m−1
}
.

Here, α(x) = (α1(x), . . . , αm(x)) is a vector of m shape
functions.

• The PS of (2) is of the form:

{(x, y)|α(x) ∈ PF and gi(x, y, L(x)) = 0, i = 1, . . . ,m}

where the distance function gi(x, y, L(x)) is a mapping
from Rm−1+L(x) to {0} ∪R+.

In this work, we mainly focus on the construction of
multiobjective test problems with variable-length PF in the
case of 2-3 objectives. Note that the difficulties of Problem
(2) mainly depend on the definitions of the variable length
L(x) and the distance function gi.

1) Bi-objective Test Problems (m = 2): To produce very
simple PF shape, we use the following shape functions in this
work. [

α1(x)
α2(x)

]
=

[
x

1− x

]
(3)

In this case, the PF of (2) is a line segment between (0, 1)
and (1, 0).

The distance functions gi, i = 1, . . . ,m are defined as
follows:

gi(x, y, L(x)) =

L(x)∑
j=1

(
yj − sin

(
L(x)

2N
× π

))2

(4)

where
L(x) = 1 +H(x).

Note that H(x) ∈ {0, . . . , N − 1}.
To construct a test problem with the variable length (m−1+

L(x)), we define H(x) in the following geometrical manner:

H(x) =

⌊
θ(x)

θmax
× (N − 1)

⌋
(5)

where two angles θ(x) and θmax are needed. The PF parts with
small values of θ are easier in convergence than those with
large values of θ. In the following, we give three examples on
the formulations of θ(x).



• Example 2-1:
Let α(x) = (α1(x), α2(x)), v = (0, 1), and θmax = π

2 ,
then

θ(x) = arccos

(
< α(x), v >

∥α(x)∥ · ∥v∥

)
= arccos

(
1√

α1(x)2 + α2(x)2

)
(6)

The geometrical illustration of θ(x) can be found in Fig.1.

Fig. 1: The variable-length PF with the easy part near the
direction (0, 1) and the hard part near the direction (1, 0).

• Example 2-2:

Fig. 2: The variable-length PF with one easy part near the
direction (1, 1), and two hard parts near the directions -
(1, 0), (0, 1).

Let α(x) = (α1(x), α2(x)), v = (1, 1), and θmax = π
4 ,

then

θ(x) = arccos

(
< α(x), v >

∥α(x)∥ · ∥v∥

)
(7)

= arccos

(
1√

α1(x)2 + α2(x)2
√
2

)
(8)

The geometrical illustration of θ(x) can be found in Fig.2.
• Example 2-3:

Fig. 3: The variable-length PF with two easy parts near two
directions (v1 and v2) as well as three hard parts near three
directions - (0, 1), (1, 1), (1, 0).

Let α(x) = (α1(x), α2(x)), θmax = π
8 , and

v1 = (

√
2−

√
2

4 ,

√
2+

√
2

4 )

v2 = (

√
2+

√
2

4 ,

√
2−

√
2

4 )

then

θ(x) = min{θ1(x), θ2(x)} (9)

with

θi(x) = arccos

(
< α(x), vi >

∥α(x)∥ · ∥vi∥

)
, i = 1, 2

The geometrical illustration of θ1(x) and θ2(x) can be found
in Fig.3.

2) Three-objective Test Problems (m = 3): In this work,
we use the following shape functions for constructing three-
objective test problems: α1(x)

α2(x)
α3(x)

 =

 x1(1− x2)
x1x2

1− x1

 (10)

The PF determined by the above shape functions is a unit
simplex in [0, 1]3. The distance functions are the same as in
the equation (4) for constructing two-objective test problems.
In the following, we discuss two examples on the formulations
of L(x) = 1+H(x) using the similar method based on angles,
where H(x) is the same as in equation (5).

• Example 3-1:
Let α(x) = (α1(x), α2(x), α3(x)), θmax = arcsin

√
3
3 ,

and then compute three angles shown in Fig.4 as follows:

θ1(x) = arcsin( α1(x)√
α2

1+α2
2+α2

3

)

θ2(x) = arcsin( α2(x)√
α2

1+α2
2+α2

3

)

θ3(x) = arcsin( α3(x)√
α2

1+α2
2+α2

3

)

Then, the minimal angle from α(x) to three coordinate
planes (i.e., f2 − f3, f1 − f3, and f1 − f2) is given by:

θ(x) = min {θ1(x), θ2(x), θ3(x)} (11)



Fig. 4: The angles computed in Example 3-1.

It is easy to prove that H(x) has the minimal value zero
when θ(x) reaches its minimal value zero. In this case,
α(x) is on the boundary of the simplex PF. On the other
hand, when θ(x) reaches its maximal value θmax, H(x)
has the maximal value N − 1. That is, α(x) is located at
the center of the simplex PF. Therefore, the test problem
in this example has hard part in the center of the simplex
PF and easy parts on the boundary of PF.

• Example 3-2

Fig. 5: The angles computed in Example 3-2.

Let v1 = ( 23 ,
1
6 ,

1
6 ), v2 = ( 16 ,

2
3 ,

1
6 ), v3 = ( 16 ,

1
6 ,

2
3 ),

θmax =
√
6
3

and

θ1 = arccos
(

<α,v1>
∥α∥∥v1∥

)
θ2 = arccos

(
<α,v2>
∥α∥∥v2∥

)
θ3 = arccos

(
<α,v3>
∥α∥∥v3∥

)
Again, θ(x) is defined as the minimum of the above three
angles. That is,

θ(x) = min{θ1(x), θ2(x), θ3(x)} (12)

The geometrical illustration of (θ1(x), θ2(x), θ3(x)) can
be found in Fig.5.

Based on five examples described above, we can construct
three bi-objective test problems and two three-objective test
problems with variable-length PF structures named MOVL1-
MOVL5 in order.

IV. COMPUTATIONAL EXPERIMENTS

In this section, we mainly discuss the performance of three
well-known MOEAs on five multiobjective test problems with
variable-length PF structures.

A. Experimental Settings

The maximal number of variables is set to 30 for three
bi-objective test problems MOVL1-MOVL3 (i.e., N = 29)
and 15 for two three-objective test problems MOVL4-MOVL5
(i.e., N = 14). To verify the difficulty of these test problems,
we used three well-known MOEAs, i.e., NSGA-II, MOEA/D-
DE, and MOEA/D-M2M [22], to approximate the variable-
length PFs in our experiments. In all three algorithms, the
population size is set to 100 for two objectives and 300 for
three objectives. The total number of function evaluations is set
to 100,000 for two objectives and 200,000 for three objectives.
The neighborhood size in MOEA/D-DE is one tenth of the
population size.

Note that different solutions may have different sizes in
representation due to the variety of L(x). To produce offspring
solutions in the same was as in many existing MOEAs, we
store all solutions in a set of fixed-length vectors. The length of
these vectors equals to the maximal length - (m−1+N). In all
three algorithms, DE and polynomial mutation are applied to
produce offspring solutions component by component as done
in [7]. Note that the recombination between two solutions with
different sizes might not be helpful since some components in
the ’shorter’ solution don’t have any values.

B. Experimental Results

Fig.7 shows the distributions of the final populations found
in one run of MOEA/D-DE, MOEA/D-M2M, and NSGA-II on
MOVL1. From this figure, we can see that all three algorithms
have difficulties to approximate the PF part near (1, 0). The
main reason is that the Pareto optimal solutions near (1, 0)
have large values of L(x). Therefore, the distance function gi
in MOVL1 involves more terms in these solutions. In contrast,
the Pareto optimal solutions near (0, 1) can be easily found due
to the small values of L(x) in these solutions. Fig.8 plots the
final populations found in one run of all three algorithms on
MOVL2. This result shows that the populations of MOEA/D-
DE and NSGA-II only approximate a small part of PF in the
middle of PF while MOEA/D-M2M is well-converged toward
the whole PF. The good performance of MOEA/D-M2M might
be due to its diversity strategy on angle-based update. Fig.9
depicts the final populations found in one run of MOEA/D-
DE, MOEA/D-M2M, and NSGA-II on MOVL3. This result
indicates that all three algorithms have very poor convergence



toward the whole PF and only approximate two small parts of
PF, which have small values of L(x).

Fig.6 shows the performance of NSGA-II on MOVL4 with
easy-to-find region in the middle of the three-dimensional
efficient front. The boundary region involves solutions having
a large number of variables, hence is difficult to find and
maintain by a standard EMO algorithm, such as NSGA-II.
This phenomenon was also reported in another study [18], in
which shorter genetic programs represented the middle of the
efficient front and larger GPs represented the boundary region.
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Fig. 6: The final population found by NSGA-II on a
variant of MOVL4 with N = 28 and H(x) =⌊(

1− θ(x)
θmax

)
× (N − 1))

⌋
.

Fig.10 plots the final populations found in one run of
MOEA/D-DE, MOEA/D-M2M, and NSGA-II on MOVL4. It
is easy to observe from this figure that (i) the final populations
found by both MOEA/D-DE and NSGA-II have an empty hole
in the center; and (2) MOEA/D-M2M is the only algorithm
that has the ability to approximate the whole PF. In Fig.11,
the final populations found in one run of three algorithms on
MOVL5 are shown. Among three algorithms, MOEA/D-DE
is the only one that performs poorly in diversity.

Overall, the performance of MOEA/D-DE is worse than
the other two algorithms on all five test problems. Among
three algorithms, MOEA/D-M2M perform better than the other
two algorithms. These results indicate that maintaining the
population diversity along different search directions is helpful
in searching hard PF parts.

V. CORRELATION ANALYSIS ON VARIABLE-LENGTH
ALONG PF

In this section, we analyze the correlation between different
solutions in the PF with variable-length structure according
to their difference in objective space and the change on the
distance function. In this work, we only discuss the landscape
of MOVL1. In our analysis, a naive recombination between
any two solutions (x1, y1) and (x2, y2) in the PF of MOVL1 is
considered. The change on the distance function gi is evaluated
when replacing the components in the shorter solution by the
corresponding components in the longer solution. We denote
L1 and L2 as the length values of y1 and y2, respectively.

In Fig.12, the correlation between ∆L = |L1−L2| and ∆gi
from 500 pairs of (x1, y1) and (x2, y2) are plotted. From this
result, we can observe that modifying the short-length solution
by copying the components from the long-length solution will
not change too much regarding the distance function gi if two
solutions have close values of L(x). However, when ∆L is
large, the deterioration of gi in offspring solutions is very ob-
vious. From our analysis, it is reasonable to believe that mating
restriction should be highly addressed in recombination.

VI. CONCLUSIONS

In this paper, we have studied the construction of evo-
lutionary multiobjective optimization (EMO) problems with
variable-length structures along the Pareto-optimal front. To
bring out the challenges faced by an EMO algorithm, we have
constructed five test problems for which the Pareto-optimal
solutions are constituted with different variable sizes. Our
experimental results have shown that the variable-length struc-
tures in multiobjective optimization mainly cause difficulties
in maintaining diversity of unequal sized solutions in the usual
EMO populations.

In this paper, we have not suggested any procedure to reme-
dy the above difficulties associated with variable length multi-
objective optimization problems. We are currently pursuing
methods for this purpose. The key difficulties for dealing with
the variable-length structure in the PF still lies in the design
of the recombination operator. Our landscape analysis on the
PF with variable-length structure shows that mating similar
solutions will not greatly deteriorate the solution quality. In
our future work, we will consider mating restriction in the
design of recombination operators in solving the second type
of variable-length problems. Also, keeping different operator
probabilities for different sized individuals can also make
differential treatment to solutions, thereby hopefully leading
to better performance.

This paper has raised an important issue in EMO research
and application. In most EMO applications, the entire Pareto-
optimal set consists of solutions having an identical number of
variables. However, in dealing with variable-length problems,
Pareto-optimal solutions may consist of differing variable
sizes. To find and maintain large-sized Pareto-optimal struc-
tures with small-sized Pareto-optimal structures in the same
population generation after generation, more careful EMO
operators (such as, special size-based niching methods and
parent-specific recombination and mutation operators) must
be used. In this paper, we have demonstrated this aspect by
designing five test problems, which have provided difficulties
to standard EMO algorithms. Further studies are now needed
to fully understand the challenges and remedies for handling
challenges inherent to variable-length problems.
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Fig. 7: The final populations found by MOEA/D-DE, MOEA/D-M2M, and NSGA-II on MOVL1.
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Fig. 9: The final populations found by MOEA/D-DE, MOEA/D-M2M, and NSGA-II on MOVL3.
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Fig. 10: The final populations found by MOEA/D-DE, MOEA/D-M2M, and NSGA-II on MOVL4.
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Fig. 11: The final populations found by MOEA/D-DE, MOEA/D-M2M, and NSGA-II on MOVL5.
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