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Abstract—The interest in multi-modal optimization methods is

increasing in the recent years since many of real-world optimiza-
tion problems have multiple/many optima and decision makers
prefer to find all of them. Multiple global/local peaks create
difficulties for optimization algorithms. In this context, niching
is well-known and widely used technique for finding multiple
solutions in multi-modal optimization. One commonly used nich-
ing technique in evolutionary algorithms is the Clearing method.
However, canonical clearing scheme reduces the exploration
capacity of the evolutionary algorithms. In this paper, Delaunay
Triangulation based Clearing (DT-Clearing) procedure is pro-
posed to handle multi-modal optimizations more efficiently while
preserving simplicity of canonical clearing approach. In DT-
Clearing, cleared individuals are reallocated in the biggest empty
spaces formed within the search space which are determined
through Delaunay Triangulation. The reallocation of cleared
individuals discourages wasting of the resources and allows better
exploration of the landscape. The algorithm also uses an external
memory, an archive of the explored niches, thus preventing
the redundant visiting of the individuals, henceforth finding
more solutions in lesser number of generations. The method
is tested using multi-modal benchmark problems proposed for
the IEEE CEC 2013, Special Session on Niching Methods for
Multimodal Optimization. Our method obtains promising results
in comparison with the canonical clearing and demonstrates to
be a competitive niching algorithm.

I. INTRODUCTION

Evolutionary Algorithms (EAs) are typically devised for
converging to a single solution because of the globally em-
ployed selection scheme. However, most of the real-world
problems exhibit the property of having more than one
satisfactory solution. Process that involves finding multiple
viable solutions for a given optimization problem is called
multi-modal optimization. In particular, such problems are of
great abundance in science and engineering viz. aerodynamic
design, construction, scheduling, time/cost/resource schedul-
ing. Multiple solutions for a given optimization problems are
conceptualized as peaks (or troughs if minimization problem
is assumed) and are often referred to as niches.

It is usually desirable to find multiple feasible solutions
as it enables decision makers or experts to select the most
appropriate solution depending of the domain and constraints
of the problem. Inspired by the ecosystems in nature, niching
methods are commonly employed for tasks dealing with multi-
modal optimization. Niching is a generic term referred to as
technique of locating and preserving the stable peaks/niches, or
any potential candidates for optimum during the EA process.

All ecosystems have many different physical spaces (niches)
with a finite amount of resources, which are apt for different
inter-competing species. For example, on Earth, organisms liv-
ing on land have different characteristics than organisms living
in water bodies, allowing each of these groups of organisms to
evolve independently within their respective niches. Thus, the
ecosystem encourages the diversity and allows the preservation
of various dissimilar species within their respective niches.

In context of optimization algorithms, niching methods are
also inspired by nature, enabling to split the population into
distinct sub-populations (niches) searching certain areas of the
search space [1]. A niching method can be embedded into a
standard EA to promote and maintain formation of multiple
stable sub-populations within a single population, with the
goal of finding multiple globally optimal or sub-optimal solu-
tions. In a scenario of EA, the fitness symbolizes the resources
of the niches and species are individuals grouped according
to certain criteria (vicinity, fitness value and etc.), while niche
corresponds to an optimum of the fitness landscape.

Evolutionary algorithms are well-established as strong can-
didates for tackling uni-modal optimization problems. How-
ever in multi-modal domain, many challenges exist; for in-
stance, most niching techniques are not efficient in solving
a multi-modal problem of a relatively large scale or with
large number of optima, or detection of niches with variable
radius or peak values. In addition, drastic limitations on their
computation complexity still persist. Therefore, this field is
an active area of research concerning development of niching
strategies for EA as to benefit from their synergy for efficiently
handling multi-modality.
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Several niching methods have been developed previously,
such as, stretching and deflation [2], crowding [3], fitness
sharing [4], deterministic crowding [5], restricted tournament
selection [6], clearing [7] etc. The comparisons have shown
that clearing methods are efficient in reducing the genetic
drift and maintaining multiple stable solutions [8]. However
in the canonical clearing approach, cleared individuals have
no chance to participate in the mutation and crossover, which
limits the exploration capabilities of evolutionary process.

In multi-modal optimization domain, two criteria are gen-
erally used to measure the success of the search algorithms.
First, whether an optimization algorithm can find all desired
global/local optima within reasonable amount of time, and the
second, if is capable of stably maintaining multiple candidate
solutions. Clearing method for niching is successful in achiev-
ing the latter, however it falls short in former criterion. We are
interested not only in stably identifying one or more global
optima but we are interested to locate set of all acceptable
solutions in timely manner.

In this paper, we present a novel multi-modal optimization
algorithm based on an enhanced clearing procedure, we call
it Delaunay Triangulation Based Clearing (DT-Clearing). In
this algorithm, cleared individuals are reallocated in the center
of the large empty hyper-spheres formed within the search
space. The proposed algorithm uses Delaunay Triangulation
technique to find the large empty hyper-sphere. The pro-
posed approach allows the non-elitist search by reallocation
of cleared individuals, it is able to form stable niches across
different local neighborhoods and eventually locates multiple
global/local optima in lesser number of generations when
compared with canonical clearing method.

The remainder of this paper is organized as follows. Sec-
tion II provides brief problem statement for multi-modal op-
timization. Section III presents background and related work.
Detailed explanation of algorithm is presented in Section IV
and Section V covers results of our algorithm against bench-
mark test suite proposed for the IEEE CEC 2013, Special
Session on Niching Methods for Multimodal Optimization
and comparison with canonical clearing method and modified
clearing approach. The conclusion remarks are presented in
Section VI.

II. PROBLEM STATEMENT

The general aim of multi-modal optimization is similar to
that of the standard optimization task, that is, in a given search
domain X , we seek to maximize/minimize

f(x), x ∈ X (1)

For this paper, X is subjected to box-constraint, ie. any given
x ∈ X follows

xl ≤ x ≤ xu (2)

Where xl and xu are lower and upper bounds of x.
In the case of multi-modal optimization, we seek to find

multiple x∗ ∈ X that satisfies the constraint in Eq 2 and
attains the maximum possible value of f(x∗) in vicinity of x∗

(local maxima). Therefore a given multi-modal optimization
algorithms must successfully identify and maintain all the x∗.

III. NICHING METHODS: A BRIEF REVIEW

Simple Genetic Algorithm (SGA) is designed to converge
at single solution; therefore in their classical form they are
not useful in context of solving multi-modal problems. This
limitation of SGA can be overcome by a mechanism of niching
which allows GA process to identify multiple solutions. The
single convergence characteristic of GA occurs because of
the Genetic Drift which is an artifact of stochastic selection
process used in GA with finite chromosome in the population.
A naive niching method would be running SGA several times
on the same problem and due to the stochastic nature of GA,
one could attain multiple different solutions. However, most
niching methods involve modifying the GA operators to allow
formation and identification of multiple niches/solutions. One
of the earliest niching method is Cavicchio’s Pre-selection Op-
erator [9] which was generalized to Crowding by De Jong [10]
whereby the individuals produced by crossover and mutation
of parents, replaces the most similar parent if it has a better
fitness. Mengshoel in [5] made modifications to Crowding to
reduce replacement errors, restore selection pressure, and re-
move the parameter called crowding factor (CF), thus resulting
in the Probabilistic Crowding.

Another popular niching method is Fitness Sharing [4];
whereby fitness of an individual is lowered if there are
many other similar individuals similar to it thus forcing GA
to maintain diversity within the population. Fitness sharing
technique has several drawbacks, e.g. it depends on the values
of two parameters (the niche radius and the scaling factor),
which cannot be easily determined. As a consequence, more
advanced fitness sharing methods have been created such as
implicit fitness sharing and co-evolution, where the fitness
value of each agent depends on the fitness values of the
remaining individuals in the population [11], as well as the
Dynamic Niche Sharing (DNS) and the Dynamic Fitness
Sharing (DFS) [12], both aiming at the self identification of
the niches in the population. In [13], authors have used fuzzy
logic to determine the niche radius to achieve the Dynamic
Niche Sharing (DNS).

In the last couple of decades, many niching methods have
been proposed, popular ones are – Fitness Sharing [4], De-
terministic Crowding [14], Probabilistic Crowding [5], Clus-
tering [15], Restricted Tournament Selection [6] and Clear-
ing [7]. Most niching algorithms perform defectively when
the dimensionality of the problem or the number of optima
increases, and some schemes cannot successfully preserve
the previously found solutions. The problem of retention of
found optima points can be solved by archiving procedure.
Archiving in multi-modal optimization, allows preserving all
the potential optima candidates in efficient data structure for
fast retrieval, search and insertion. In [16], Epitropakis et
al. have used dynamic archiving algorithm which adapts its
archive radius dynamically. In [17], authors Ellaban et al. have



implemented efficient archiving to keep it free of duplicates
and fast retrieval.

A comparison of these multi-modal optimization methods
in [8] has shown that clearing is simple yet efficient method
for forming stable multiple niches in GA and are generally
more efficient for exploration of the problem search space.
Clearing method for niching was introduced by Petrowski
in [7] and showed that clearing method can effectively succeed
in reducing the effect of genetic drift. In Clearing sub-
populations/niches are identified based on certain similarity
measures, such as Euclidean distance. Eventually, only most
fit individual is kept in each sub-population by setting fitness
of all other individuals to zero. Throughout this paper, we refer
to this original clearing as canonical clearing method. Unlike
other niching methods where resources are shared among sim-
ilar individuals, clearing methods prefer to distribute resources
only among elitists. However, clearing is very simple and
intuitive niching technique but there are few major drawbacks:
1) cleared or individuals with low fitness values take very high
penalty and do not participate in GA while taking population
slots, 2) cleared individuals limit the exploration capabilities of
search space, 3) parameter such as niching radius is usually
dependent on problem landscape and hard to predetermine.
Over past years, various modification has been proposed to
canonical clearing method to enhance its capabilities further.
In [18], Imrani et. al combines sharing and a fuzzy clustering
technique to improve the performance of genetic algorithms in
solving multi-modal problems. Singh and Deb in [8] proposed
a modified clearing approach, where cleared individuals are re-
allocated outside of their basin of attractions or sub-population
in search of finding unknown optima instead of wasting the
population slots. In their modified clearing approach, cleared
individuals are relocated within 1.5 × σclear – 3.0 × σclear
from their basin of attractions; where σclear is niching radius.

In [17], Ellaban and Ong have introduced Valley-Adaptive
Clearing schema which consists of three core phases: 1)
valley identification: which assigns group of individuals to a
particular valley and dominant individual of each valley is
archived, which eventually becomes solution points, 2) valley
clearing phase: weak individual belong to particular valley is
reallocated away from all other valleys randomly based on
niche radius for that particular valley, 3) Valley replacement
phase: individuals of populations belonging to previous en-
countered valleys are replaced with individuals in new basin of
attractions in order to promote the search of more unexplored
regions in the landscape. In [19], Magda et al. proposed
another Clearing scheme called Context Based Clear (CBC)
which uses homogeneity of sub-population to decide whether
all or only nearest neighbors should be cleared, henceforth it
regulates the radius size of the area cleared around the pivot
of sub-populations. CBC approach is shown to converge to
solutions faster than canonical clearing method [19]. In [20],
authors use idea of clearing in the local sharing for efficient
multi-modal optimization.

IV. DELAUNAY TRIANGULATION BASED CLEARING

Delaunay Triangulation based Clearing (DT-Clearing) is
clearing procedure that makes use of the knowledge about
big empty spaces within the population and subsequently
reallocate the cleared individuals to these locations for a better
exploration of landscape and faster convergence. The proposed
approach comprise of the following two main component: 1)
canonical clearing, and 2) Delaunay Triangulation for finding
empty spaces.

A. Canonical Clearing Niching Technique

Clearing is a niching procedure suggested by Petrowski,
which is inspired by the principle of sharing of limited re-
sources within sub-populations/niches of individuals grouped
based on certain factors [7].

Every niche has a dominant (master) individual, i.e. the one
with the best fitness within that niche. An individual fall in to
the same niche if its Euclidean distance to the master is less
than a given threshold known as the clearing radius (σ). The
method shares the resources of a niche among a fixed number
of winners (κ) (individuals with top fitness values within a
given niche), while individuals with lower fitness value within
same niche are set to zero-fitness value (minimum fitness).
The clearing procedure is applied after evaluating the fitness
of individuals and before applying the selection operator. The
population is sorted from best to worst according to the fitness
values. Thereafter, all candidate solutions having a critical
distance measure (σ clear) from the best κ solutions in the
population are cleared, meaning that their fitness values are
set to zero. However, the fitness of the best κ solutions are
unchanged. After the clearing is over, the candidate solutions
closer to the next best κ solutions are cleared as before and
the fitness values of these next best κ solutions are kept as
is. This procedure is continued till all candidate solutions are
considered. The pseudo-code for the canonical clearing based
niching is given in Algorithm 1.

The clearing procedure is shown to efficiently reduce the
genetic drift when used with an appropriate selection oper-
ator [7]. However, at line 16 of Algorithm 1, fitness value
of inferior individuals are set to minimum which restrict
them from participating in crossover or mutation operations
during the next generations. These cleared individuals take
the population slots without having to contribute towards
evolution which hinders the exploration capacity of the entire
evolutionary algorithm.

Therefore, we propose a modification to the clearing proce-
dure whereby, instead of wasting the population slots, we move
the cleared individuals to big empty and unexplored areas
within search space, in an attempt to find the better solutions
and subsequently form the niches/sub-populations within those
areas.

Our proposed approach uses Delaunay Triangulation to
locate the empty regions within the search space (Rn) as
explained in the next section.



Algorithm 1 Pseudo-code for canonical clearing-based niche
formation technique

1: procedure CLEARING(Pp) . Where Pp is population
2: Pp ← Sort(Pp) . Sort the population Pp in

decreasing order of their fitness values
3: for i ∈ [0, S − 1] do
4: if Fitness(Pp[i] = −∞) then
5: Continue
6: end if
7: nbWinners← 1
8: for j ∈ [i+ 1, S − 1] do
9: if Fitness(Pp[j]) = −∞ then

10: continue
11: end if
12: if Distance(Pp[i], Pp[j]) < σ then
13: if nbWinners < κ then
14: nbWinners← nbWinners+ 1
15: else
16: Fitness(Pp)← −∞
17: end if
18: end if
19: end for
20: end for
21: end procedure

Fig. 1: Visual depiction of circumcircle property of Delaunay
triangulations

B. Delaunay Triangulation

Delaunay triangulation for a set P of points in a plane is
a triangulation DT (P ) such that no point in P is inside the
circumcircle of any triangle in DT (P ) as shown in Figure 1.
Here “triangulation” is extended from the planar usage to
arbitrary dimension.

An important property of Delaunay Triangulations is Cir-
cumcircle property which states that any circumcircle formed
by any of the triangulations in Delaunay Triangulations is
empty as shown by empty blue circles in Figure 1.

Circumcircle property of Delaunay Triangulation is used to
find the empty circles, which are sorted by their radius to

find largest empty regions within the search space. For the
proposed method, Delaunay Triangulation algorithm packaged
with the standard Python’s Scipy library is used. Algorithm
used for Delaunay triangulation works with set of P where
P ∈ Rn and n ≥ 2.

C. Proposed Algorithm
After doing the clearing, as described in Algorithm 1, we

search for the cleared individuals which are identified with
fitness value of −∞. Thereafter, each of these individuals are
moved around the center of large empty hyper-spheres (empty
circles for 2D space) formed within the population. Empty
hyper-spheres are constructed using circumcircle property of
Delaunay Triangulation.

The proposed clearing approach is called before selection
operation of GA. This approach has all the strengths of clear-
ing method. In addition, the reallocation of inferior individuals
allows the method to explore empty regions of the search space
for better solutions and eventually forming more niches. By
placing the individuals around/to the center of large empty
hyper-spheres also ensuring that individuals are not placed
within other niches thus not disrupting the niching formations.

Pseudo-code for the proposed method is depicted in Al-
gorithm 2. The algorithm is the direct replacement of clear
method from the evolutionary algorithm’s main loop. There are
the following two important components within Algorithm 2:

• CalculateVolumeHS (line 6): Estimating the volume
enclosed in the intersection of hyper-spheres and search-
space.

• ReallocateInd (line 8): Reallocating strategy of cleared
individuals around the center of large empty hyper-
spheres

1) Estimate of the volume enclosed in intersection of Hyper-
Sphere HSi and Search Space: Since, empty hyper-spheres
represent the empty regions within the search space, it is
apparent that algorithm tries to move the cleared individuals
to the largest ones first.

Algorithm 3 Pseudo-code for finding the estimate for effective
volume Ve of hyper-sphere HSi

1: procedure ESTIMATE-EFFECTIVE-VOLUME(HS)
2: C ← Center(HS)
3: r ← Radius(HS)
4: Cmax = C + r
5: Cmin = C − r
6: Ret = 1 . Initial estimated volume
7: for i ∈ [0, n) do . n is cardinality of C
8: Lmax ← minCmax[i]Xmax[i]
9: Lmin ← maxCmin[i]Xmin[i]

10: Ret← Ret× (Lmax − Lmin)
11: end for
12: Return Ret
13: end procedure

Since search space is constrained to box-constraint i.e.
xl, xu. Therefore, sometimes, hyper-spheres formed from the



Algorithm 2 Pseudo-code for Delaunay Triangulation based clearing (DT-Clearing) for niche formation

1: procedure DT CLEARING(Pp) . Where Pp is population
2: Clear(Pp) . Call the original Clear procedure (algorithm 1)
3: Pif ← FindFitnessInd(Pp,−∞) . Select individuals with fitness value of −∞ as set by Clear
4: D ← CalculateDelaunayTriangulations(Pp) . Calculate Delaunay Triangulation from current population
5: S ← FindCircumHyperSpheres(D) . Calculate circum-hyper-spheres from triangulations
6: V S ← CalculateV olumeHS(S) . Calculate effective estimated volume of all the empty spheres
7: for i ∈ [0, Len(Pif )] do
8: ReallocateInd(Pif [i], V S) . Reallocate within empty hyper-spheres based on volumes V S
9: Fitness(Pif [i])← f(Pif [i]) . Refresh the fitness value after reallocation, f is fitness function

10: end for
11: Archive(Pp) . Perform archiving of the best individuals in the population
12: end procedure

population intersect with the search-space’s boundaries thus
reducing the effective region allowed for reallocation.

Effective Volume Ve – Volume (area for 2D problems) of
the space enclosed within intersection of empty hyper-sphere
HSi and the search space is called Effective Volume Ve of
hyper-sphere HSi.

In order to estimate the effective volume Ve, we use the vol-
ume of intersection between circum-hyper-rectangle of HSi

and search space as shown in Figure 2 (in 2D search space).
The estimate plays nicely with our algorithm as requirement of
the algorithm is to make only a relative comparison of absolute
effective volume (Ve).

Fig. 2: Area enclosed within red rectangle is used as estimate
for Effective Volume Ve; black dotted line represents the
boundaries of search space & blue circle represents empty
circle formed through Delaunay Triangulations.

The pseudo-code for calculating the estimate of effective
volume (Ve) hyper-sphere (HSi) is given in Algorithm 3. It
takes hyper-sphere HSi as input and calculates the Effective
Volume (Ve) by considering the volume of the space formed by
intersection of circum-hyper-rectangle of hyper-sphere (HSi)
and search-space.

2) Reallocation heuristics for the Cleared Individual (Ic):
After volume estimation step, we reallocate the cleared indi-
viduals within empty hyper-spheres determined through De-
launay Triangulation. Reallocation is repeated until all of the
cleared individuals are placed outside the niche of every can-
didate solution having a non-zero (or value-to-reach (VTR))
fitness.

There are two steps involved in reallocating of a given
cleared Individual Ic, 1) select an empty hyper-sphere for
reallocation, 2) choose a location within selected hyper-sphere.

We use heuristics for carrying out the steps defined above
in order to achieve the goal of higher exploration and efficient
niche formations while preserving stochastic nature of the
algorithm.

Selecting the hyper-sphere for reallocation: All the empty
hyper-spheres with their center lying within the existing niches
are filtered out. Then effective Volume Ve of all the remain-
ing empty hyper-sphere is calculated. The probability of an
individual Ic to be reallocated within a hyper-sphere HSi is
proportional to its Effective Volume Ve.

HS = HS1, HS2.., HSn HS is set of hyper-sphere
candidates for the
reallocation of individual Ic

V = V1, V2, .., Vn Vi is effective volume
of hyper-sphere HSi

P (HSi) =
Vi∑n
0 Vi

Probability to select HSi

Choosing the location within the selected hyper-sphere
for reallocating the Ic: Once the hyper-sphere HSi is
selected for reallocation of individual Ic, it is not always
moved to the center, instead, its relocation position is chosen
such that its distance from the center of hyper-sphere HSi is
normally distributed with mean µ of 0 and σ of R

3 (giving ∼
99% confidence within ±R from center). A cleared individual
Ic is reallocated in any random direction using unit vector ru.

C = Center(HSi) Center of HSi

R = Radius(HSi) Radius of HSi

RNn = randn(0,
R

3
) µ = 0 and σ =

R

3
ru = randu(n) Random unit vector
If = C + (ru ∗ (RNn ∗R)) New location of Ic



D. Archiving Procedure

All the optimum points found throughout the GA are stored
in archive. Archive allows querying centers of all the niches
formed and its associated solutions sorted according to their
fitness values. Archive is implemented as hierarchical tree in
Python using scipy’s cKDTree. First level nodes of the
tree represents the niche center and any node below them are
the individuals belonging to that niche found during the entire
history of GA. The nodes in archive tree are automatically
merged based on the defined minimum archive radius which
is kept around same as niching radius σ.

V. EXPERIMENTAL STUDY

The aim of multi-modal optimization is to locate multiple
peaks/optima in a single run and to maintain these found
optima until the end of a run. An algorithm for solving multi-
modal optimization problems should have following abilities:
1) nding maximum number of global/local optima, and 2)
preserve these found solutions until the end of algorithm.

A. Benchmark Overview

To evaluate performance of proposed DT Clearing, we em-
ployed the CEC 2013 Benchmark for multi-modal optimiza-
tion [21]. The benchmarks were ran on Sharcnet computing
cluster with code written in Python programming language.
The original benchmark contains 20 multi-modal test func-
tions. First three multi-modal test functions in the benchmark
suite were not used as they are 1D and our approach requires
at minimum 2D search space.

• F1 : [Not Used] Five-Uneven-Peak Trap (1D)
• F2 : [Not Used] Equal Maxima (1D)
• F3 : [Not Used] Uneven Decreasing Maxima (1D)
• F4 : Himmelblau (2D)
• F5 : Six-Hump Camel Back (2D)
• F6 : Shubert (2D, 3D)
• F7 : Vincent (2D, 3D)
• F8 : Modified Rastrigin (2D)
• F9 : Composite Function 1 (2D)
• F10 : Composite Function 2 (2D)
• F11 : Composite Function 3 (2D, 3D, 5D, 10D)
• F12 : Composition Function 4 (3D, 5D, 10D, 20D)

These multi-modal test functions are designed to have
following properties [22]:

1) Designed as maximization problems.
2) F6 to F8 are scalable multi-modal functions. The num-

ber of global optima for F6 and F7 are determined by
their dimension D. However, for F8, the number of
global optima is controlled by the user.

3) F9 to F12 are scalable multi-modal functions. F9 and
F10 are separable, and non-symmetric, while F11 and
F12 are non-separable, non-symmetric complex multi-
modal functions. The number of global optima in all
composition functions is independent from their dimen-
sion D, and therefore can be controlled by the user.

B. Performance Measures

The performance is measured in terms of the (i) peak
ratio PR, (ii) success rate SR, and (iii) averaged number
of evaluations, AveFEs, attained while locating all global
optima over NR multiple runs achieving for a given accuracy
ε.

Definition 1: Peak Ratio (PR) measures the average percent-
age of all known global optima found over NR runs and it is
calculated by the following equation:

PR =

∑NR
run=1NPFi

NKP ∗NR
,

where NPFi = number of global found at ith run and,
NKP = number of known global optima

Definition 2: Success Rate (SR) calculates the percentage
of successful runs out of all runs NR. A successful run is
defined when all global optima are found, given by:

SR =
NSR

NR
,

where NSR = number of successful runs,
NR = number of total runs

Definition 3: Convergence speed (AvgFEs) is calculated by
counting the average number of function calls that are required
to locate all optima for a given accuracy ε over NR runs and
it is given as follows:

AveFEs =

∑NR
run=1 FEi

NR
,

where FEi = number of functions calls at ith run

C. Experiment Settings

The evolutionary algorithm using proposed clearing ap-
proach and canonical clearing approach were implemented
and executed for multi-modal test problems with NR =
50 runs at each of the 5 levels of accuracy ε =
{10−1, 10−2, 10−3, 10−4, 10−5}. The maximum allowed func-
tion evaluations MaxFEs for each of the test problem is
selected using following rule as given in [21]:

• 5× 104 for F4 to F5 (2D)
• 2× 104 for F6 to F11 (2D)
• 4× 104 for F6 to F12 (≥ 3D)

Each run finishes when number of function call reaches
the MaxFEs. For every ith run FEi is calculated which
represents the number of function evaluations required until
all global optima were located.

Table I shows properties of test problems in CEC 2013
benchmark, where first column Index is index of multi-
modal function in original benchmark suite, Function shows
function name and dimension of the function, r is niche radius,
F∗ is value of global optima and last column NKP show
number of global optima.



TABLE I: Properties of multimodal functions in CEC 2013
benchmark

Index Function r F ∗ NKP

4 F4(2D) 0.01 200.0 4
5 F5(2D) 0.5 1.03163 2
6 F6(2D) 0.5 186.7309 18
7 F7(2D) 0.2 1.0 36
8 F6(3D) 0.5 2709.0935 81
9 F7(3D) 0.2 1.0 216
10 F8(2D) 0.01 -2.0 12
11 F9(2D) 0.01 0.0 6
12 F10(2D) 0.01 0.0 8
13 F11(2D) 0.01 0.0 6
14 F11(3D) 0.01 0.0 6
15 F12(3D) 0.01 0.0 8
16 F11(5D) 0.01 0.0 6
17 F12(5D) 0.01 0.0 8
18 F11(10D) 0.01 0.0 6
19 F12(10D) 0.01 0.0 8
20 F12(20D) 0.01 0.0 8

D. Results

Both the clearing schemes – proposed and standard are
implemented over the base evolutionary algorithm with same
parameters as given in Table II.

Locations of optima point found by standard clearing (left)
and proposed clearing scheme (right) are shown in Figure 3
for various multi-modal functions taken at 200th generation.
It should be noted that red points are archived optima and
white ones are optima found in generation. It is evident from
Figure 3 that proposed method is much efficient in exploring
the landscape. Figure 4 shows the error plot for one of the run
of both the approaches on Griewank function, it can be seen
that proposed approach converges much faster and with lesser
variance.
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Fig. 4: Error plot for number of optima located every 50th

generation by proposed clearing vs standard clearing for
Griewank function

Table III and IV show peak ratio PR and success ratio
SR for proposed clearing approach and standard clearing ap-
proach. It can be seen that proposed algorithms is significantly
better in exploring and maintaining the multiple solutions.
From function index 4–10 are highly multi-modal, thus PR
and SR are much higher for our proposed algorithms com-
pared to the standard clearing approach. If the given archiving

algorithm is able to sustain the found optima, then PR
parameter intuitively gives information about how fast and how
many optima are being discovered throughout the algorithms.
The PR value of proposed algorithms are generally higher
than PR values of standard clearing for all the test problems at
all levels of accuracy. However, both the approaches have hard
time in finding all the optima points highly multi-modal or
very high dimensional problems, however standard clearing is
not able to get even single successful run for F12(3D) however
proposed clearing is able to get 11 successful runs at accuracy
level of e−1.

TABLE II: Parameters setting for used for running multi-
modal test functions

Parameters Values

GA Specific Parameters

Population Size 100
Mating Two-point crossover
Mutation Function Gaussian(σ = 0.1)
Selection Function Tournament(size = 3)
Mutation Prob. 0.1
Crossover Prob 0.5

Clearing Specific Parameters

Niche radius σ Dependent on function
Winner per niche κ 1

Converge speed AvgFes for proposed clearing method
stayed lower than standard clearing method. Since on most
test problem both algorithms could not achieve successful
runs, therefore most of time convergence speed is maximum
allowed function evaluations MaxFEs. It can be seen from
table III for F8(2D), SR values of modified approach is very
high compared to canonical clearing, showing quick better
superiority of finding/sustaining multiple solutions. Further-
more, high difference in PR values of highly multi-modal
problem F7(3D) with 216 optima is also an indication of
better landscape visibility of proposed clearing scheme.

VI. CONCLUSION

In this paper, a new multi-modal optimization evolutionary
search scheme – Delaunay Triangulation based Clearing DT-
Clearing has been proposed which involves reallocating the
cleared individuals within empty regions of population to
enhance the canonical clearing procedure. In this study, we
have also considered incorporating the archiving procedure
with proposed as well as canonical clearing scheme.

Performance of our proposed algorithms was compared with
standard clearing using multi-modal test problems. The results
has shown that the proposed clearing scheme finds many more
optima than standard clearing scheme at much faster pace.
But, benefits of proposed method also comes with the extra
computation effort (specially calculation of Delaunay Trian-
gulations) during the evolutionary process. However both the
clearing schemes require the predefined niche radius σ and κ
parameters which are difficult to determine without knowledge
of solution landscape. Delaunay Triangulation sometimes have



(a) Griewank Function (b) Rastrigin Function

(c) Schwefel Function (d) Ackley Function

Fig. 3: Optima found using standard clearing (left) vs proposed clearing (right) using same archiving and base evolutionary
algorithm for various multi-modal functions (white dots represents current generation solutions and red dots represents solutions
within archive).

TABLE III: Peak ratios (PR) and success rate (SR) of Canonical vs Modified clearing approach for F4(2D) – F11(10D)

Accuracy
level ε

F4(2D) F5(2D) F6(2D) F7(2D) F6(3D)

Canonical Modified Canonical Modified Canonical Modified Canonical Modified Canonical Modified

PR SR PR SR PR SR PR SR PR SR PR SR PR SR PR SR PR SR PR SR

1.0e−1 0.725 0.480 1.000 1.000 1.000 0.980 1.000 0.980 0.230 0.000 0.410 0.000 0.326 0.000 0.210 0.000 0.123 0.000 0.289 0.000
1.0e−2 0.610 0.500 1.000 1.000 1.000 0.900 1.000 0.900 0.133 0.000 0.323 0.000 0.230 0.000 0.360 0.000 0.071 0.000 0.234 0.000
1.0e−3 0.540 0.440 0.995 0.980 1.000 0.860 1.000 0.900 0.110 0.000 0.323 0.000 0.153 0.000 0.311 0.000 0.061 0.000 0.111 0.000
1.0e−4 0.480 0.440 0.980 0.980 0.725 0.200 0.900 0.900 0.090 0.000 0.260 0.000 0.152 0.000 0.223 0.000 0.051 0.000 0.060 0.000
1.0e−5 0.310 0.420 0.995 0.980 0.710 0.200 0.680 0.240 0.020 0.000 0.250 0.000 0.080 0.000 0.170 0.000 0.001 0.000 0.060 0.000

Accuracy
level ε

F7(3D) F8(2D) F9(2D) F10(2D) F11(2D)

Canonical Modified Canonical Modified Canonical Modified Canonical Modified Canonical Modified

PR SR PR SR PR SR PR SR PR SR PR SR PR SR PR SR PR SR PR SR

1.0e−1 0.089 0.000 0.430 0.000 0.739 0.440 1.000 1.000 0.725 0.000 1.000 1.000 0.431 0.000 0.455 0.000 0.625 0.100 0.710 0.320
1.0e−2 0.071 0.000 0.203 0.000 0.810 0.000 1.000 1.000 0.610 0.000 0.930 0.660 0.433 0.000 0.433 0.000 0.611 0.000 0.653 0.020
1.0e−3 0.034 0.000 0.207 0.000 0.833 0.000 1.000 1.000 0.567 0.000 0.920 0.640 0.322 0.000 0.356 0.000 0.609 0.000 0.653 0.000
1.0e−4 0.031 0.000 0.105 0.000 0.650 0.000 1.000 1.000 0.563 0.000 0.980 0.425 0.311 0.000 0.310 0.000 0.567 0.000 0.737 0.000
1.0e−5 0.001 0.000 0.100 0.000 0.750 0.000 0.950 0.980 0.534 0.000 0.650 0.300 0.133 0.000 0.278 0.000 0.156 0.000 0.610 0.000

Accuracy
level ε

F11(3D) F12(3D) F11(5D) F12(5D) F11(10D)

Canonical Modified Canonical Modified Canonical Modified Canonical Modified Canonical Modified

PR SR PR SR PR SR PR SR PR SR PR SR PR SR PR SR PR SR PR SR

1.0e−1 0.510 0.020 0.710 0.310 0.683 0.000 0.963 0.220 0.22 0.000 0.663 0.000 0.000 0.000 0.345 0.000 0.000 0.000 0.123 0.000
1.0e−2 0.483 0.000 0.653 0.020 0.578 0.000 0.756 0.000 0.220 0.000 0.663 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1.0e−3 0.321 0.000 0.567 0.000 0.571 0.000 0.542 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1.0e−4 0.311 0.000 0.333 0.000 0.432 0.000 0.525 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1.0e−5 0.311 0.000 0.333 0.000 0.160 0.000 0.565 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

TABLE IV: Peak ratios (PR) and success rate (SR) of Modified vs Canonical clearing approach for F12(10D) and F12(20D)

Accuracy
level ε

F12(10D) F12(20D)

Canonical Modified Canonical Modified

PR SR PR SR PR SR PR SR

1.0e−1 0.000 0.000 0.020 0.000 0.000 0.000 0.000 0.000
1.0e−2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1.0e−3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1.0e−4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1.0e−5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000



also failed to find the required triangulations satisfying the
property of forming empty circles (hyper-sphere) within the
search space, if individuals in the population are co-linear,
in those cases then proposed approach fails to clear any
individual. However in our experiments, it never occurred
as all the problems are defined in real space. However, one
could expect it to happen often in discrete or constraint search
spaces.

For future extension of the proposed method, authors would
like to incorporate 1) adaptive niche radius using techniques,
viz in [13, 23, 24], 2) fast approach for calculating Delaunay
Triangulation as in [25], 3) dynamic archiving of best optima
points, viz in [16] and 4) performing local search around best
solution of each niche (for higher accuracy) as in [26, 26, 27].

It can be concluded that idea of using Delaunay Tri-
angulation to find empty regions to accelerate exploration
capability of multi-modal optimization has a lot of potential
to be a competitive technique. This the first research paper
that has used Delaunay Triangulation combined with clearing
to achieve superior niching, however authors feel it can be
implemented across various optimization algorithms (such as
CMA-ES) for further enhancing their capabilities. It is also
intended to extend the application of DT-Clearing to various
real life applications in order to test its performance. The idea
proposed in this paper can be extended for constrained multi-
modal optimization.
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