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Role of spin currents on electron-electron interaction in the quantum spin Hall phase
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The spin current density functional theory (SCDFT) is the generalization of the standard DFT to treat a
fermionic system embedded in the effective external field produced by the spin-orbit coupling interaction. Even
in the absence of a spin polarization, the SCDFT requires the electron-electron potential to depend on the spin
currents Jx , Jy, and Jz, which only recently was made possible for practical relativistic quantum-mechanical
simulations, through the inclusion of a fraction of nonlocal Fock exchange into local-density or generalized-
gradient density functional approximations [J. K. Desmarais, J.-P. Flament, and A. Erba, Phys. Rev. B 102,
235118 (2020)]. Here, we apply the SCDFT to the quantum spin Hall phase and show how it improves (even
qualitatively) the description of its electronic features relative to the DFT. We study the Bi (001) 2D bilayer and
its band insulator to topological insulator phase transition (via s + pz ↔ px + ipy band inversion) as a function
of mechanical strain. We show that the explicit account of spin currents in the electron-electron potential of the
SCDFT is key to the appearance of a Dirac cone at the � point in the valence band structure at the onset of
the topological phase transition. Finally, the valence band structure of this system is rationalized using a simple
first-order k · p quasidegenerate perturbation theory model.
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Quantum spin Hall (QSH) systems (or topological insula-
tors, TIs) are insulating in the bulk while they exhibit gapless
edge states (ESs) that hold spin currents with little or no
dissipation. Notably, and in contrast to its relative (i.e., the
quantum Hall phase), the appearance of the conducting ES
does not require breaking of time-reversal symmetry (TRS)
[1–3]. The existence of the QSH phase was first proposed in
the analytical model for graphene of Kane and Mele (KM)
in 2005 from an inclusion of spin-orbit coupling (SOC) in
the effective tight-binding Hamiltonian of Haldane [4,5]. The
same authors later showed that the QSH phase is in fact
topologically distinct from other insulating states, being char-
acterized by a Z2 topological invariant [6]. This implies that
the conducting ESs with desirable spin-transport properties
are, in fact, particularly robust against perturbations.

Despite these early successes, the KM model is limited
by the lack of renormalization of the SOC potential by the
electron-electron (ee) interaction. At about the same time,
Bencheikh showed how the spin current density functional
theory (SCDFT) of Vignale and Rasolt [7] would provide a
formulation of the DFT for a fermionic system in the ef-
fective external field produced by SOC [8]. It follows that
the SCDFT provides the necessary theoretical framework to
the description of the missing ee terms on the QSH phase.
On the other hand, a conventional DFT treatment would not
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guarantee an accurate description because its ee term does not
satisfy certain invariance relations in the presence of SOC [9].
For TRS-preserving states (such as those relevant to the QSH
effect), the SCDFT dictates that the ee potential must depend
on the electron density n, and on the three spin current densi-
ties Jx, Jy, and Jz [10–12]. The latter are exactly those physical
quantities at the core of the peculiar transport phenomena in
the QSH phase, and whose effect on the ee potential has been
missing in previous treatments [13–21], with a notable excep-
tion being the study by Trushin and Görling of the AlBi and
SnTe 3D TIs by use of the exact-exchange (EXX) functional
[10]. With the latter approach, however, electron correlation is
neglected. Some of the authors of this Letter have recently for-
mulated a practical strategy to SCDFT calculations including
the effects of electron correlation [11,12,22].

The need for spin current densities to enter the xc func-
tional in the presence of SOC is evidenced by the SCDFT
energy formula, which contains contributions

∫
Ac · Jc re-

flecting the coupling of the fermionic system (through its Jc,
c = x, y, z) to the external field of SOC (described by the non-
Abelian potentials Ac) [7]. The necessity of such an extended
set of density variables is also reflected by considering their
dependence on spin blocks of the complex two-component
Kohn-Sham single-particle density matrix. Indeed, each of the
n, Jx, Jy, and Jz are associated to one of the four nonvanishing
spin blocks of the density matrix for a system preserving
time-reversal symmetry in the presence of SOC [9,11,12].

In this Letter, we apply the SCDFT to the QSH phase and
show how the corresponding electronic structure differs even
qualitatively from that predicted by the standard DFT. As a
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FIG. 1. Electronic structure of the Bi (001) bilayer as described by the DFT and SCDFT. (a) Band structure along the M-�-K path [shown
to the right of the structure in (b)] as a function of strain (from the equilibrium lattice up to a +20% strain). Dashed black lines are from
scalar-relativistic DFT (without SOC), blue continuous lines are from DFT with SOC [that is, from the potential of Eq. (2)], and red continuous
lines are from SCDFT with SOC [that is, from the potential of Eq. (1)]. The “character” of the top of valence and bottom of conduction bands
in the vicinity of the � point is reported (in terms of the leading atomic orbital contributions). (b) Atomic structure of the Bi (001) bilayer: side
view (top) and top view (bottom). On the top, the plane between the two atomic layers is shown as a red plane. On the right the M-�-K path is
shown for the R3m space group. (c) Spin current densities Jx , Jy, and Jz for the +15% strain case in the plane highlighted in the top-left panel
in (b). The color identifies the absolute value in the selected plane while the length and direction of the superimposed black arrows represent
the magnitude and direction of their in-plane Cartesian components. (d) 3D representation of the top valence bands at +15% strain in the
vicinity of � as obtained with the DFT (left) and SCDFT (right). (e) 3D representation of the top valence bands and bottom conduction band
in the vicinity of � at +20% strain as obtained with the SCDFT.

prototypical example, we study the band insulator to topo-
logical insulator phase transition in the Bi (001) 2D bilayer
[13,14,19,20,23,24]. We demonstrate that modification of the
ee potential by the SOC-induced spin currents in SCDFT not
only captures the expected band inversion phenomenon at the
phase transition but also predicts the existence of previously
overlooked Dirac fermions emerging as quasiparticles close to
the top of the valence band at the � point at the onset of the
topological phase transition.

All calculations are performed with a developmental ver-
sion of the CRYSTAL17 program [9,25–28]. The computational
details are reported in the Supplemental Material [29] (see
also Refs. [30–47] included therein).

Our DFT and SCDFT calculations are based on hybrid
exchange-correlation (xc) functionals, employing the local-
density or generalized gradient approximations (LDA and

GGA). Indeed, in the LDA and GGA of the SCDFT for TRS-
preserving electronic states, an adiabatic connection formula
for the xc potential v̂SCDFT

xc may be derived, by exploiting the
short-range behavior of the exchange hole, yielding [11,12,48]

v̂SCDFT
xc [n, Jx, Jy, Jz] = v̂c[n] + (1 − α) v̂x[n]

+α X̂ [n, Jx, Jy, Jz], (1)

where α is the dimensionless fraction of exact exchange (with
its associated potential X̂ ), and where v̂x and v̂c are exchange
and correlation potentials in the LDA or GGA. On the other
hand, in the DFT, the corresponding expression reads

v̂DFT
xc [n] = v̂c[n] + (1 − α) v̂x[n] + α X̂ ′[n]. (2)

The EXX potential X̂ ′ in Eq. (2) may be obtained from a
unitary transformation of X̂ , using an approach described in
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Ref. [12], and also sketched in the Supplemental Material. As
for functionals in the meta-GGA, these include longer-range
contributions from the curvature of the exchange hole (and
hence the kinetic energy-density). Reference [48] provides
minimal substitution formulas for the meta-GGA case, which
also fulfill all necessary gauge symmetries.

In Eq. (1), Jc(r) with c = x, y, z are spin current densities
defined as follows (for simplicity we report the expression for
the one-electron nonperiodic case):

Jc(r) = 1

2i
{ψ†(r)σc[∇ψ (r)] − [∇ψ†(r)]σcψ (r)}, (3)

where ψ (r) is a one-electron two-component (2c) spinor, σc is
the cth Pauli matrix, and i = √−1. Therefore, a comparison
of predictions from Eqs. (1) and (2) provides a probe to study
the effect on the electronic structure of including the spin cur-
rent densities in the ee potential. Here, the xc GGA potential
is PBE and α = 10%.

Starting from the conventional rhombohedral R3m bulk
crystal structure of Bi [49], we extract a 2D layered structure
by cutting over a plane orthogonal to the [001] direction,
leading to the buckled-honeycomb bilayer shown in Fig. 1(b).
Then, we fully relax the structure (in terms of both lattice
parameters and atomic positions) at the scalar-relativistic (SR)
level, under the only constraints provided by the hexagonal
layer group symmetry. Strained configurations are explored
by constraining the lattice parameters to larger values com-
pared to the equilibrium ones (+5%, +10%, +15%, and
+20%) and by letting the atoms relax within the strained cells.

The evolution of the electronic band structure as a function
of strain is reported in Fig. 1(a) as predicted by SR calcu-
lations (i.e., without SOC) and by inclusion of SOC within
a DFT and SCDFT framework. For the Bi (001) bilayer,
the bands are constrained by both TRS [ε↑(k) = ε↓(−k)]
and space-inversion symmetry [ε↑(k) = ε↑(−k)] leading to
ε↑(k) = ε↓(k), such that the bands are doubly degenerate and
SOC-induced spin splitting does not occur. The DFT bands
resulting from calculations with α = 0 are also provided in
Fig. S1 of the Supplemental Material.

At the equilibrium structure [Fig. 1(a), leftmost panel],
the effect of SOC is manifested through the drastic reduction
of the direct band gap at � (from 0.75 eV to 0.02 eV), as
already noted from previous DFT calculations [15]. Moving
to the right panels, as the lattice parameter is expanded, a
typical band-inversion (BI) profile is observed. The BI can
be tracked through an analysis of the principal atomic-orbital
components of the crystalline single-particle orbitals at �. At
the equilibrium configuration, the top of the valence band is
of mixed s + pz character, while the bottom of the conduc-
tion band is of the type px + ipy. As the lattice is expanded,
these components are initially mixed in both states (see +5%
and +10% strained configurations) and eventually inverted
at +15% strain, a typical signature of the topological phase
transition (TPT) [1,21,50]. We also note that at the TPT, the
band gap opens significantly.

Remarkably, at the onset of the TPT (i.e., at +15% strain),
the SCDFT predicts the formation of a doubly degenerate
Dirac cone (DC) at the top of the valence band at �, which
is not predicted by the DFT [see Figs. 1(a) and 1(d)]. That
is, the formation of such a distinctive electronic feature is

FIG. 2. Effect of orbital relaxation through the self-consistent
field process on spin current densities in DFT and SCDFT calcu-
lations. The reported quantities are differences between the final
electronic solution and the initial one: �Jc = Jc

final − Jc
initial, with

c = x, y, z. The panels show color maps of the spatial distribution
of these quantities in the same plane as in Fig. 1(c).

only predicted by inclusion of the spin current densities in
the ee potential. Even more remarkably, this same DC was
noted in previous angle-resolved photoemission spectroscopy
experiments, but was attributed as being due to the interaction
with the substrate [23].

We rationalize the formation of this DC by means of a
first-order k · p quasidegenerate perturbation theory model of
the valence band structure, inspired by Kane’s model [51,52].
Formal aspects are given in the Supplemental Material. We
show that when the SOC-induced gap at the � point, E� , is
large, the model predicts a dispersion relation for the four
highest-lying valence bands exactly along a doubly degener-
ate DC:

ε(k) = ±v|k|, (4)

where v is the band velocity. Thus, the formation of the DC
by the SCDFT correlates with the larger SOC-induced gap
of E� = 0.40 eV compared to that of E� = 0.28 eV by the
DFT where the DC does not emerge. As discussed above, this
is entirely due to the dependence on the three spin current
densities Jx, Jy, and Jz of the SCDFT ee potential of Eq. (1).
Figure 1(c) shows the spatial distribution of these vector quan-
tities in the central plane of the Bi (001) bilayer.
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The leading effect of including the three spin current den-
sities in the ee potential has been discussed above and is
further highlighted and quantified below. Let us stress that, in
the presence of SOC, spin current densities can be computed
from Eq. (3) within both a DFT and an SCDFT approach.
However, we show in Fig. 2 that their inclusion in the ee po-
tential in the SCDFT case results in their significant evolution
along the self-consistent field process (i.e., orbital relaxation),
which, on the other hand, is lacking in the DFT. Figure 2
shows color maps of the orbital relaxation of the three spin
current densities along the SCF: �Jc = Jc

final − Jc
initial, with

c = x, y, z, where the initial quantities are calculated from a
second-variational treatment of SOC (i.e., after a single diag-
onalization of the 2c Hamiltonian built from SR orbitals). The
color scale describes the magnitude of the quantities while
the arrows represent their local orientation and magnitude in
the selected plane (the same as in Fig. 1). The figure clearly
shows that DFT calculations are incapable of accounting for

the orbital relaxation of the spin currents. On the other hand,
the SCDFT calculation allows for the significant buildup of
spin currents along the SCF process. Ultimately, this enhanced
role of the spin currents in the SCDFT compared to the DFT
is at the core of the formation of the DC in the valence bands
of the Bi (001) bilayer at the onset of the TPT. For future
developments, it is interesting to consider the possibility of
extending the present approach to not only LDA and GGA
hybrids, but also meta-GGA hybrid functionals, in accordance
with the formalism of Ref. [48].
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