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Multi-objective parametrization of interatomic potentials for
large deformation pathways and fracture of two-dimensional
materials
Xu Zhang1,6, Hoang Nguyen1,6, Jeffrey T. Paci 2, Subramanian K. R. S. Sankaranarayanan3, Jose L. Mendoza-Cortes 4 and
Horacio D. Espinosa 1,5✉

This investigation presents a generally applicable framework for parameterizing interatomic potentials to accurately capture large
deformation pathways. It incorporates a multi-objective genetic algorithm, training and screening property sets, and correlation
and principal component analyses. The framework enables iterative definition of properties in the training and screening sets,
guided by correlation relationships between properties, aiming to achieve optimal parametrizations for properties of interest.
Specifically, the performance of increasingly complex potentials, Buckingham, Stillinger-Weber, Tersoff, and modified reactive
empirical bond-order potentials are compared. Using MoSe2 as a case study, we demonstrate good reproducibility of training/
screening properties and superior transferability. For MoSe2, the best performance is achieved using the Tersoff potential, which is
ascribed to its apparent higher flexibility embedded in its functional form. These results should facilitate the selection and
parametrization of interatomic potentials for exploring mechanical and phononic properties of a large library of two-dimensional
and bulk materials.
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INTRODUCTION
Molecular dynamics (MD) simulation based on force fields is a
powerful tool for studying the temporal behaviors of materials at
submicron scales. With continual improvements in hardware and
algorithms, MD simulations are becoming increasingly accurate
and widely adopted in several frontier problems in materials
science and biology1. While such advances have greatly expanded
the capability of MD simulations in size, timescale, and complexity,
their predictive powers rely heavily on the accuracy of empirical
interatomic potentials in approximating the interactions between
atoms. Given the rapid emergence of new two-dimensional (2D)
materials2,3 that have demonstrated promising electrical, chemi-
cal, optical, thermal, and mechanical properties, an increasing
demand for accurate interatomic potentials needs to be fulfilled to
facilitate mechanistic understandings of their behaviors at scales
representative of those used in applications.
Typically, interatomic potentials are formulated for a specific

class of materials and are parameterized for a selected list of
properties. Consequently, their accuracies on materials beyond
the target class or for properties not included in the parametriza-
tion need further validation by more accurate methods, i.e., ab
initio calculations. When those validations are conducted, in
general they fail to achieve accurate predictions and re-
parametrization or new formulations are necessary. For instance,
a reactive many-body potential parameterized for molybdenum
disulfide4 was found to yield artificial stiffening at large strain, and
an ad hoc parameter-tuning was conducted to correct such
behavior5. A more systematic interatomic potential parametriza-
tion would be indispensable in this case, but becomes a complex
and specialized task that requires strong domain expertise and in

most cases deep chemical intuition. One of the complexity of the
parametrizing procedure is to reasonably capture nonequilibrium
properties, such as vacancy formation energies and uniaxial
tension behaviors at the same time. Typical training data
(structures, energies, and bond stiffness of atomic clusters or
primitive cells6–8) are found insufficient to accurately reflect such
properties5,9. Furthermore, there is little guidance beyond
chemical intuition for choosing more appropriate training data,
thus posing potential limitations on the accuracy and efficiency of
the parametrization. Another complication arises due to the fact
that interatomic potentials are often parameterized for a finite
number of target properties, and some multi-objective optimiza-
tion schemes may inevitably rely on human interventions.
Specifically, a common approach, the weighted-sum method,
converts the multi-objective problems into single-objective
problems with user-defined, objective-specific weights10–12. How-
ever, the choice of a priori weights may bias the optimization13,
thus limiting a holistic evaluation of the performance of
interatomic potentials on various properties. This motivated
researchers to formulate other optimization approaches, e.g., the
Pareto front approach14,15. The last problem of the parametriza-
tion is to obtain a set of parameters for a chosen potential form.
The selection of a potential form for a new material requires a vast
domain knowledge of not only the physics of the material at hand,
but also the specific details of such a form. This limitation
inevitably hinders the big-picture view of whether interatomic
potentials can be parametrized to simulate the behaviors of some
special class of materials, e.g., 2D materials, whose atomic
structures and properties are distinct from bulk crystals. As a
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result, it prevents a direct comparison of performance between
various potentials for the same material.
Despite several successful parametrizations over the past

decade4,10,16–22, an in-depth evaluation of the suitability of
existing interatomic potentials for the prediction of phase
transition and fracture of 2D materials is still lacking. Herein, we
propose a robust parametrization method built upon density
functional theory (DFT) data sets (considered as ground truth) and
the evolutionary multi-objective optimization algorithm, NSGA-
III23. Similar to other genetic algorithms, NSGA-III avoids the
dependence on gradient computation, hence it can be applied to
any functional form (potential). In addition, this algorithm enables
a generation of more widely distributed points on the Pareto front
in the criterion space, allowing a more thorough search for an
optimum interval. As a result, this algorithm, along with adoption
of a machine-learning-inspired protocol, shows good transfer-
ability and performance, and offer higher parametrization
flexibility. The proposed method is applied to several interatomic
potentials of increasing complexity, namely, Buckingham24,
Stillinger-Weber (SW)7, and Tersoff8 for the structural, mechanical,
and thermal properties of monolayer 2D materials in both the
equilibrium and nonequilibrium regimes (see “Parametrization
method” for our classification of properties). The modified reactive
empirical bond-order potential for transition metal dichalcogen-
ides (referred to as REBO-TMDC)4 is also considered for
comparison. As a case study, we perform the parametrization of
MoSe2 and prioritize its mechanical behavior. We use the structure
and stability of various surfaces, and thermal properties to
examine the interatomic potentials’ transferability. All of the
parameterized potentials have better accuracy in nonequilibrium
properties when compared with existing MoSe2 potentials,
highlighting the effectiveness of the proposed parametrization
method. We further explore the parametrization flexibility of the
selected interatomic potentials by conducting correlation and
principal component analyses on their prediction errors, which
reveals a positive correlation between the complexities of
interatomic potentials, their flexibility, and their performances
on MoSe2. Together, these results suggest a robust potential
parametrization approach and a quantitative potential selection
criterion, which may be generalized for a wide range of materials
and materials properties beyond those explored in this study.

RESULTS
Selection of materials and interatomic potentials
Among existing 2D materials, TMDC are one group of materials
described by MX2, where M is a transition metal (Mo, W, etc.) and
X is from the oxygen family (S, Se, etc.). Most TMDCs in monolayer
form are semiconducting with strong photoluminescence25, thus
making them promising candidates for applications, such as
transistors26, photodetectors27, supercapacitor electrodes28, and
solar cells29. We set out to parameterize interatomic potentials for
TMDCs with a focus on failure-related properties, which are critical
to the stability and reliability of systems that require frequent
mechanical deformation, e.g., flexible electronics. Specifically, we
selected monolayer MoSe2 and its stable phase 2H for which
existing interatomic potentials, parameterized primarily for
equilibrium properties (structures at equilibrium, phonon disper-
sion, etc.)16,30, show major deviations in comparison to DFT for
nonequilibrium properties, including surface stability and uniaxial
stress–strain response. This implies necessities to expand the
parametrization to the nonequilibrium regime, defined as states
with large perturbations from the equilibrium positions or systems
possessing point defects.
We selected interatomic potentials according to their applic-

ability for TMDCs and ability to describe atomic chemical
environments. To the best of our knowledge, existing

parametrizations for TMDCs include SW potentials for the
mechanical and thermal properties of MoS2(

10,16,18,20),
MoSe2(

16,31), and WSe2(
31); a Tersoff potential for the thermal

properties of WSe2
21; a ReaxFF potential for the mechanical and

transitional behaviors of MoS2(
17,32); and a REBO-TMDC potential

for the interfacial and mechanical properties of MoS2(
4,5). Those

interatomic potentials can be segmented into cluster potentials
(SW), cluster functionals (Tersoff), and reactive cluster functionals
(ReaxFF and REBO-TMDC) with increased levels of complexity and
capabilities33. Specifically, from the simplest pair potentials (e.g.,
Lennard-Jones potentials), cluster potentials introduce many-body
(>2) interactions, cluster functionals incorporate bond-order terms
for coordination-dependent bond strength, and reactive cluster
functionals enable simulation of chemical reactions. Herein, we
chose SW, Tersoff, REBO-TMDC, and also the Buckingham
potential24, a simple pair potential widely used for ionic crystals.
The formulations of the selected interatomic potentials are
detailed in Supplementary Note 4.

Parametrization method
Parametrization of the selected interatomic potentials was
performed in an iterative manner. Each iteration consists of three
steps, referred to as training, screening, and evaluation (Fig. 1). In
the training step, the parameters of the interatomic potentials are
optimized with the multi-objective genetic algorithm to minimize
the errors for a selected group of properties in comparison to ab
initio data. Next, the optimized parameters are screened for the
remaining properties with a set of user-specified maximum
percentage errors to identify promising candidates. Such a
protocol is inspired by machine-learning methods, in which the
full data set is separated into training and validation sets to
balance underfitting and overfitting34. The evaluation step,
including correlation and principal component analyses, is
deployed to identify the correlation relationships between
properties and redundancy in them. The information is used to
(a) guide the selection of training and screening properties for the
next iteration, and (b) to quantify parametrization flexibilities of
interatomic potentials.
To predict the failure of MoSe2, we hypothesized that an

essential list of materials properties (Fig. 2), in both the equilibrium
and nonequilibrium regime, needs to be captured by the
interatomic potentials. In the equilibrium regime, we selected
the lattice structure and cohesive energy of MoSe2 at equilibrium,
equation of state (near equilibrium), elastic constants (C11 and
C12), surface energies (armchair (AC) and zigzag (ZZ) surfaces), and
surface stability. For nonequilibrium properties, we selected the
following: bond dissociation energy landscapes (along the AC and
ZZ directions), vacancy formation energies (seven types), and
uniaxial stress–strain curves under elastic instability and soft mode
(along the AC and ZZ directions, see Supplementary Note 1 for
discussion on elastic instability and soft mode). Moreover, the
energy landscape of a 2H-1T phase transition was included to
characterize phase changes observed in TMDCs under uniaxial
and biaxial strain35, doping36, or vacancy reorganization32. For the
Tersoff and REBO-TMDC potential, an additional set of properties
for Se systems is needed. Following Chan et al.21, we selected the
structures and cohesive energies of Se clusters (Se2, Se3, Se6, and
Se8), stability and dissociation of Se6 and Se8, and expanded the
nonequilibrium regime by including the dissociation energy
landscapes for Se3, Se6, and Se8 (see Supplementary Note 3). Ab
initio calculations at the DFT level of theory were carried out on all
the above properties, which were used as ground truth for
parameterizing the interatomic potentials.
The properties are divided into optimization and validation sets.

The former is further segmented into training and screening sets,
and the optimized parameters are then applied into the validation
set after the optimization is finalized. Some training properties
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imply screening properties and vice versa, although they contain
some inherently different information, e.g., the near-equilibrium
data points of uniaxial stress–strain curves versus elastic constants,
uniaxial stress–strain curves under elastic instability versus curves
under soft mode (see Supplementary Note 1). We started an
optimizing process by selecting simple properties for training,
such as bond dissociation energy landscapes, and more complex
properties, e.g., vacancy formation energies, as screening

properties17,18. Another factor that affected this choice is the size
and type of calculation needed to be carried out for a given
property. For example, a single-point energy calculation would be
favored over one that requires MD equilibration, and a system
consisting of a primitive unit cell will be prioritized unless a larger
system with more atoms would provide more representative data.
This criterion accelerates the optimization since the simpler
properties often require single-point calculations that are faster

Fig. 2 Target properties of monolayer MoSe2 and Se systems. The properties are segmented with regard to their regime (equilibrium versus
nonequilibrium), as well as their purposes for the parametrization (training versus screening). Properties of MoSe2 are used for all interatomic
potentials, while properties of Se are only used for parameterizing single-element interactions of the Tersoff and REBO-TMDC potentials.
Atomic illustrations show the structure of MoSe2 and Se clusters.

Fig. 1 Schematic of interatomic potential parametrization approach. In the training step, the multi-objective genetic algorithm NSGA-III is
used to optimize the parameters of the interatomic potentials for the training properties (Fig. 2). MD simulations are integrated into the
genetic algorithm workflow for the evaluation of errors. After reaching a predefined number of generations, the optimization terminates, and
the optimized parameters are passed to the screening step for the evaluation of the screening properties (Fig. 2). The training and screening
properties together are considered for the selection of promising candidates with percentage errors for all properties within a user-specified
threshold. Meanwhile, correlation and principal component analyses are carried out in the evaluation step to reveal the correlation
relationships between properties and the performance of interatomic potentials. This information guides the selection of training properties
for the next iteration of parametrization.
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to perform than those that require energy minimization or extra
MD steps. These extra steps occasionally suffered from conver-
gence issues due to the emergence of unphysical interatomic
potential parameters during the first several steps of optimization.
Moreover, properties of the same general attribute, i.e., uniaxial
stress–strain curves, were used in both stages with different levels
of perturbation. Specifically, stress–strain curves under elastic
instability were used as training properties and the curves under
soft mode were used as screening properties (see Supplementary
Note 1). As such, we selected the following properties as training
properties: lattice structure and cohesive energy at equilibrium,
equation of state, bond dissociation energy landscapes along both
the AC and ZZ directions, and uniaxial stress–strain curves under
elastic instability along both the AC and ZZ directions. We note
that such a choice is not fixed. Rather, its effect on the
parametrization results can be determined from the correlation
analysis, as discussed later.
Our training step involves solving a multi-objective optimization

problem for which two major approaches prevail: scalarization and
vector optimization methods13. Scalarization methods convert
multi-objective optimization problems into single-objective opti-
mization problems using methods such as weighted-sum, and are
predominantly used for parameterizing interatomic potentials. On
the other hand, vector optimization methods treat each objective
independently and aim at exploring the Pareto optimal solutions—
solutions that cannot be further improved without worsening at
least one objective. These methods assign equal importance to
each objective and allow users to emphasize or exclude certain
objectives without biasing the optimization. This is helpful in
preventing solutions from being swamped out, but may be a
limitation if relative importance between objectives is known. We
overcame this limitation in the screening step by assigning a lower
objective-specific percentage error (discussed later), if one wants to
focus on a specific property. Among various vector optimization
methods, we adopted a multi-objective genetic algorithm named
NSGA-III23. As a genetic algorithm, it conducts a global optimiza-
tion through an iterative process that loosely mimics Darwin’s
theory of natural selection, i.e., via mutation, crossover, and
selection operations on a population of individuals. Moreover, the
algorithm incorporates a nondominated sorting procedure and a
niche-preservation operator to identify nondominated individuals
that are well-spread in the criterion space. As a result, this specific
algorithm shows superiority by sampling more widely distributed
points on the Pareto front. To the best of our knowledge, we report
the first application of NSGA-III for parameterizing interatomic
potentials. In most optimization problems with three to ten
objectives, it outperforms its predecessor, NSGA-II37, which has
been the predominant algorithm applied in similar problems14,15.
Moreover, we found that it is more efficient in overcoming local
minimum states during the optimization in comparison to a
hierarchical genetic algorithm optimization framework21 (see
Supplementary Note 2).
As shown in Fig. 1, the optimization starts from an initial

population of individuals (i.e., sets of parameters for a given
interatomic potential) that are randomly generated within a
predefined range according to potential-specific requirements
(see Supplementary Note 4). In each generation, mutation and
crossover operations are first conducted on the current population
according to specified probabilities. The parameters after muta-
tion and crossover are not allowed to exceed the predefined
initialization range. The value to be minimized for each objective
during the optimization, i.e., the fitness value, is defined as follows:

fi xð Þ ¼
XK

j¼1

wj
i vji xð Þ � v̂ji
� �2

; i ¼ 1; ¼ ;Mt (1)

where x represents an individual whose dimension equals the
number of parameters to be optimized for a given interatomic

potential, vi
j(x) denotes predictions from interatomic potentials

with parameter set x for objective i, v̂ji represents ab initio results
for objective i, superscript j represents the jth point for objective
i, and wi

j is the corresponding weight for the jth point. The weight
is used to emphasize certain regions of the training data, e.g., the
elastic regime of the stress–strain curves. The values of the
weights are provided in Supplementary Note 10, and are found to
have an insignificant effect on parametrization results. The point-
wise errors are squared, scaled, and summed over all points for
objective i. Thus, the fitness value is the squared error for
objectives with K= 1 (e.g., elastic constant C11 etc.), and is the sum
of (weighted) squared errors for objectives with K > 1 (e.g.,
stress–strain curves). For each parameter set x, there are Mt

fitness values corresponding to the Mt training objectives
(properties). Individuals of the current generation are ranked
based on whether they are dominated by other individuals. An
individual x is nondominated if and only if there does not exist
another individual x� in the current population such that fi x�ð Þ �
fi xð Þ for any i with at least one fi x�ð Þ< fi xð Þ. All nondominated
individuals (Pareto optimal solutions) are ranked lowest and are
selected first, followed by individuals that are only dominated by
those Pareto optimal solutions and so on. The selected individuals
are passed to the next generation, where the same protocol
repeats until the predefined total number of generations is
reached. For each interatomic potential, multiple optimizations are
carried out concurrently with different random seeds to explore a
large parameter space and various optimization paths.
Prior to the screening step, the optimized individuals from

multiple optimizations are gathered, and the fitness values for the
remaining properties (screening properties in Fig. 2) are calculated
following Eq. (1). Those values are combined with the fitness
values of the training properties to form a matrix of dimension
N ×M, where N is the total number of optimized individuals and M
is the total number of properties. This matrix is then screened with
the criterion defined as follows:

fi xð Þ �
XK

j¼1

wj
i piv̂

j
i

� �2
; i ¼ 1; ¼ ; M (2)

where fi xð Þ, wj
i , and v̂ji follow the same definitions as in Eq. (1), and

pi is an objective-specific percentage value. The criterion defines a
maximum percentage error for objectives with one data point
(K= 1), and resembles the sum of squared percentage error (SSPE)
for objectives with multiple data points. Indeed, this criterion and
the SSPE measurement agree well in magnitude and variation
according to a sampling test on a harmonic function (see
Supplementary Note 6). The parameters pi reflect the relative
importance of each objective and provide a desirable level of
flexibility for the parametrization without biasing the optimization,
which is a major advantage over the prevalent weighted-sum
method. The parameter sets that pass the screening step are
deemed promising candidates.
Our approach is unique in several respects. In our implementa-

tion of screening sets, we used explicit criteria for selecting fittest
interatomic potential parameters and evaluating the parametriza-
tion flexibility. This emerges when we evaluate the effect of one
criterion on the validation properties or the entire set of
properties. This approach is different to most, if not all,
parametrization of empirical interatomic potentials in which the
validation sets are used for examining the presumptive transfer-
ability instead of guiding the optimization. For instance, the
validation test for a recently developed CHARMM force field38 is
conducted on chemically similar species with respect to the
optimization sets. Such a validation should and indeed does reveal
good transferability as it follows the underlying assumptions of
the CHARMM General Force Field39. By contrast, several intera-
tomic potentials for MoSe2, as reported in the literature, have poor
transferability (see the next section). In the present approach,
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the improvement on transferability can be done by redefining
allowable errors for the screening sets (and training sets) that have
more impact on a desired validation property (e.g., phonon
dispersion and thermal conductivity). Thanks to this protocol, we
were able to ascertain transferability and infer directions for
balancing parametrization tradeoffs of specific properties. Lastly,
we introduced correlation and principal component statistical
analyses to ascertain correlation relationship between properties
and infer parametrization flexibilities of interatomic potentials,
both of which remain unexplored in the literature. We note that
the statistical information closes the parametrization loop by
guiding the selection of training and screening properties for the
next iteration, as further elaborated in subsequent sections.

Parametrization results
Table 1 and Fig. 3 summarize the predictions of the parameterized
interatomic potentials in comparison to ab initio calculations, as
well as existing SW16 and SNAP30 potentials for monolayer MoSe2.
In selecting the parameter sets for each interatomic potential with
Eq. (2), we emphasize the accuracy of uniaxial stress–strain curves
(under soft mode), while maintaining other properties to be at
least within 90% error. The parameterized potentials are listed in
Supplementary Note 5. Not surprisingly, since the SW potential
parameterized by Kandemir et al. and the SNAP potential
parameterized by Gu and Zhao are primarily trained for
equilibrium properties, including structures and thermal transport,
they show limited accuracy for the nonequilibrium properties
studied herein: vacancy formation energies (Table 1) deviate from
ab initio results (the surface and vacancies structures cannot be
equilibrated with the SNAP potential); bond dissociation energy
landscapes along the AC (Fig. 3a) and ZZ (Fig. 3b) directions
deviate from ab initio curves at strain > 0.1; uniaxial stress–strain
curves along both the AC (Fig. 3e) and ZZ (Fig. 3f) directions
deviate significantly from ab initio results at strains larger than
0.05. In comparison, the parameterized interatomic potentials here
reported yield predictions that are vastly more accurate for those
properties due to the augmented ab initio training data in the

nonequilibrium regime and an explicit screening step that further
defines maximum allowable errors.
Figure 3d shows the phase transition energy landscape

identified by climbing image nudged elastic band simulations40

(see Supplementary Video 1 for the movie of this simulation).
Under the screening criteria, which prioritize stress–strain
responses, all the parameterized interatomic potentials incorrectly
predict the 1T phase to be the minimum energy state. For the
Tersoff potential, an individual with the correct relative energy
between the 2H and 1T phase have less accuracy on other
properties (see Supplementary Note 7). The results suggest an
important limitation of the Tersoff potential, which is the
capturing of the phase transition energy landscape. This finding
is confirmed by the correlation analysis discussed in the next
section.
Notably, the Tersoff potential has the overall best performance

among the selected interatomic potentials. It provides a smooth
uniaxial tension curve closely matching the ab initio results,
whereas the Buckingham and SW potentials predict an artificial
2H-1T phase transition during uniaxial tension at ~0.2 strain,
manifested as kinks in Fig. 3e, f. This data seems to advocate a
positive correlation between the complexity of the interatomic
potential and its overall accuracy for monolayer MoSe2. Such
observation is further corroborated by the correlation analysis, as
described in the next section. We note the importance of direct
force fitting (i.e., stress–strain curves as training data) for the
Tersoff potential to achieve good accuracy for uniaxial tension
response. Similarly, forces and other higher order derivatives of
energies were found critical for accurate predictions of phonon
dispersion and thermal transport in crystalline Si and Ge11. Thus,
inclusion of force fitting during parametrization should result in
better transferability of the interatomic potentials.

Correlation and principal component analyses
As part of the screening step, a matrix of dimension N ×M is
constructed where each of the N rows contains the fitness values,
Eq. (2), of all the M properties. Treating each row as a sample point

Table 1. Comparison of the parameterized interatomic potentials with ab initio results.

Ab initio Buckingham SW Tersoff SW (Kandemir et al.16) SNAP (Gu and Zhao30)

Ecoh (eV) −4.77 −3.33 −4.35 −5.10 −4.59 −2.11

dMo–Se (Å) 2.57 2.47 2.48 2.52 2.54 2.53

dSe–Se (Å) 3.39 3.08 3.10 3.25 3.29 3.26

C11 (GPa) 129.34 145.66 124.59 129.29 149.96 138.52

C12 (GPa) 35.36 62.82 13.66 22.78 57.28 28.77

ΓZZ (eV Å−1) 0.72 0.67 0.43 0.39 1.17 —
a

ΓAC (eV Å−1) 0.77 0.74 0.64 0.42 1.35 —

EMo (eV) 6.51 2.85 7.25 5.59 0.60 —

EMo2F (eV) 11.69 5.70 14.53 10.61 1.20 —

EMo2C (eV) 10.44 5.39 14.10 10.55 0.17 —

ESe (eV) 3.30 0.62 0.57 2.14 6.93 4.12

ESe2 (eV) 6.23 3.92 4.20 3.98 12.52 7.24

EMoSe3 (eV) 10.94 1.66 4.76 8.51 16.70 —

EMoSe6 (eV) 20.27 6.64 8.78 10.79 15.71 —

RMSD at 300 K (Å) — 0.25 0.25 0.24 0.15 0.25

Two existing SW16 and SNAP30 potentials for monolayer MoSe2 are also included. The comparison includes predictions of cohesive energy per atom, Ecoh,
equilibrium distance between Mo–Se and Se–Se atoms (Se atoms above and below the Mo layer), elastic constants C11 and C12, armchair and zigzag surface
energies ΓAC and ΓZZ, vacancy formation energies of Mo monovacancy EMo, non-adjacent Mo divacancies EMo2F, adjacent Mo divacancies EMo2C, Se
monovacancy ESe, Se divacancies (one above and one below the Mo layer) ESe2, one Mo and three adjacent Se vacancies (in the same Se atomic layer) EMoSe3,
one Mo and six adjacent Se vacancies EMoSe6, and root mean square displacements (RMSD) at 300 K.
aA dash denotes that the system with surface or vacancy undergoes significant structural changes, and cannot be equilibrated with the SNAP potential.
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in the M-dimensional design space enables a quantitative
assessment of the relations between the M properties through
statistical analysis. From the N ×M matrix, we construct an M ×M
correlation matrix where each element Rij is the Pearson
correlation coefficient between property i and property j. A
graphical representation of those coefficients for the Tersoff
potential is shown in Fig. 4. The correlation coefficients in Fig. 4
correspond to individuals with percentage errors <100% for all
properties. Such setting aims at exploring regions in the criterion
space where promising candidates are selected. Rij ranges from
−1 to 1, denoting strongly negative and positive correlations,
respectively. In the context of our problem, a positive Rij between
property i and j indicates simultaneous increase or decrease of
their prediction errors, and hence nonconflicting relations
between the two properties. In comparison, a negative Rij
suggests a conflicting relationship between property i and j: the
errors for property i cannot be minimized without compromising
the accuracy of property j.

As shown in Fig. 4, the Tersoff potential (the bottom triangle)
possesses several pairs of properties that are strongly positively
correlated. Conforming to chemical intuition, properties of similar
nature have strong positive correlations, e.g., bond dissociation
energies along the AC and ZZ directions (R= 0.7), AC and ZZ
surface energies (R= 0.9), and vacancy formation energies of Mo
and Mo2F (R= 1). Similar relations were identified for the
Buckingham and SW potential (see Supplementary Note 8). The
correlation matrix also reveals conflicting properties that cannot
be directly deduced from chemical intuition. Specifically, the
phase transition energy landscape is conflicting to almost all
properties. This agrees with our observation of accuracy degrada-
tion of most properties when the phase transition energy
landscape is prioritized (see Supplementary Note 7). Thus, the
correlation matrix offers a direct gauge of the accuracy (and hence
the parameters) of the parameterized interatomic potential on all
properties should the relative importance between properties be
different.

Fig. 3 Prediction results of the parameterized interatomic potentials in comparison to ab initio results, as well as the existing SW16 and
SNAP potentials30. a, b Bond dissociation energy landscape along the armchair (a) and zigzag (b) directions. Two snapshots along the
landscape are shown and correspond to strain of 0 and 0.6, respectively. c Equation of state. d 2H-1T phase transition energy landscape. The
two snapshots from left to right correspond to reaction coordinates of 0 and 1, respectively (see Supplementary Video 1 for the movie of this
simulation). e, f Uniaxial stress–strain curve at 1 K in comparison to ab initio curves under soft mode (see Supplementary Note 1) along the
armchair (e) and zigzag (f) directions. The snapshots in e and f show the formation of the 1T phase during uniaxial tension for the Buckingham
potential, which is also predicted by the SW potential during uniaxial tension along the zigzag direction. Legends of a, b, d–f are identical to
that in c, and are omitted for clarity. In the atom snapshots, Mo atoms are colored cyan, and Se atoms are colored orange.
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To assess the parametrization flexibility of any interatomic
potential, we propose evaluating a quantity F defined as

F ¼
P

i<j Rij
M

; i; j ¼ 1; 2; ¼M (3)

For an ideal interatomic potential approaching an ab initio level of
accuracy, there should exist a region in the criterion space, where
the prediction errors of all properties have strong positive
correlations, and thus can be minimized simultaneously, which
allows a large level of flexibility for parametrization. For the ideal
interatomic potential, Fideal= (M− 1)/2. We sampled five regions
in the criterion space near 100% percentage errors (pi= 80–120%)
with enough individuals (>30) in each region. FTersoff, FSW, and
FBuckingham were found to be 1.44 ± 0.12, 0.71 ± 0.25, and 0.77 ±
0.12, respectively. Notably, the Tersoff potential has the highest
flexibility, consistent with our observation that the parameterized
Tersoff potential predicts the most accurate uniaxial stress–strain
curves.
To further explore the intrinsic relationships between proper-

ties, we conducted principal component analysis on the correla-
tion matrix. It was originally proposed to identify redundant
objectives during multi-objective optimizations41, and is used
herein to find redundant properties, i.e., properties that can be
automatically captured if essential properties are captured with
either the training or screening step. The protocol is detailed in
Supplementary Note 9. The analysis reveals that all the training
data are nonredundant for all the interatomic potentials, thus
indicating optimized training properties. Furthermore, it shows
that the formation energies of certain vacancies are redundant
with respect to others (see Supplementary Note 9), in agreement
with chemical intuition.

Validation and transferability of parameterized potentials
We evaluated the validity and transferability of the optimized
Tersoff potential on the edge stability and thermal properties of
monolayer MoSe2, which are relevant for applications in
nanoelectronics16,30 and catalysis42, but are not parameterized
within the scope of this study. This can also be referred as the
“test” data set in other machine learning frameworks34. Figure 5
shows ab initio molecular dynamics (AIMD) and Tersoff predictions
on the stability of various edge configurations at 300 0K and
elevated temperatures. Those configurations correspond to the
Mo-Klein, Mo-ZZ, Se-ZZ, and the AC edge, which were identified
by scanning transmission electron microscopy (Fig. 5) in
nanoporous MoS2 films grown with molecular beam epitaxy
under high Mo flux42. The Tersoff potential shows a decent level of
transferability owing to its higher flexibility in its functional form: it

Fig. 4 Correlation matrix of the Tersoff potential. The Pearson
correlation coefficient for the corresponding pair of properties,
ranging from −1 to 1, is shown in each cell. When calculating the
correlation coefficients, individuals with percentage errors > 100%
for any property were excluded to explore the region in the criterion
space, where promising candidates are selected. Two correlation
matrices are shown; the bottom corresponds to the as-optimized
Tersoff potential and the top corresponds to the same population
with additional screening on the three acoustic phonon modes, ZA,
LA, and TA. Since each correlation matrix is symmetric, only half of
the correlation matrix is shown and the diagonal components
(always equal to 1) are removed for clarity. For visualization
purposes, all correlation coefficients are rounded to a decimal.
Thus, a value of “−0” means the true correlation coefficient is within
[−0.05, 0]. The cells are colored according to their correlation
coefficients. Uniaxial tension items herein refer to curves under soft
mode (see Supplementary Note 1).

Fig. 5 Transferability test for the parametrized potentials (Tersoff and Tersoff-ZTL) on edge stability of monolayer MoSe2. The edges
were observed in nanoporous MoS2 films grown with molecular beam epitaxy under high Mo flux42. Scanning transmission electron
microscopy images of the corresponding edge structures for MoS2 were retrieved from Zhao et al.42 and are shown herein. Red dashed lines
highlight the Mo atomic layers, and the scale bars represent 0.5 nm. The same edge configuration was equilibrated with ab initio MD (AIMD;
for 1 ps) and MD (500 ps) at the specified temperature. An “unstable” configuration is defined as a configuration that undergoes breakage and
reformation of chemical bonds during equilibration (see Supplementary Videos 2–5 for the movies of those simulations). We note a longer
simulation time for MD to reveal the unstable edge configurations due to limitations of interatomic potentials to reflect electronic interactions
embedded in the AIMD simulations. In the atomic snapshots, Mo atoms are colored cyan, and Se atoms are colored orange. The Tersoff-ZTL
corresponds to the parameterized potential with the training data of “Tersoff” plus the three acoustic phonon modes, i.e., ZA, LA, and TA.
Reprinted (adapted) with permission from Zhao et al.42 Copyright (2018) American Chemical Society.
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reproduces AIMD predictions for all the edges at 300 0K, for the
Mo-Klein and Se-ZZ edges at elevated temperatures (650 and
750 0K, respectively), but tends to overstabilize the Mo-ZZ edges at
650 0K (see Supplementary Videos 2–5 for the movies of those
simulations). Figure 6a shows the phonon dispersions predicted
by the parameterized Tersoff potential in comparison to the ab
initio results. The Tersoff potential predicts no negative frequency
and correct Γ point for acoustic bands albeit lower frequencies for
the out-of-plane (ZA) mode and a smaller phonon band gap. Such
inconsistency results in lower in-plane thermal conductivity in
comparison to first-principles calculations43 and experimental
measurements on a suspended monolayer MoSe2 membrane44, as
shown in Fig. 6b. However, we note that the excellent accuracy of
the longitudinal (LA) and in-plane transversal acoustic band (TA)
was captured by the Tersoff potential, due to the inclusion of force
fitting in training, i.e., uniaxial stress–strain curves along two
directions.
We next discuss how the correlation and principal component

analyses are employed to close the parametrization loop and
improve the accuracy of phonon dispersion. We screened the
optimized Tersoff population on the three acoustic phonon
modes, and conducted a correlation analysis. The correlation
matrix (Fig. 4, top triangle) shows that the ZA mode is more
conflicting to other properties in comparison to the TA and LA
modes, i.e., for C11, uniaxial stress–strain curves along the ZZ
direction, and stability at 300 0K. Such results suggest that adding
the ZA mode into the training data will increase the accuracy of
ZA mode at the expense of decreased accuracy on the
aforementioned properties. However, the worsening effect may
be mitigated by including the other two modes that possess
relatively positive correlation relationships. We carried out two
iterations, one with the addition of the ZA mode and the other
with the addition of all three modes to the training data set. The
results support the above statement (see Supplementary Note 11).
Specifically, the iteration with all three modes, referred as Tersoff-
ZTL, resulted in a more accurate ZA mode (Fig. 6a) and thermal
conductivity (Fig. 6b) with minimum deterioration of other
properties (Supplementary Fig. 9 and Fig. 5). We note that the
bending rigidity of 2D materials is directly related to the ZA
mode45. Thus, the Tersoff-ZTL should possess improved accuracy
on bending rigidity.

DISCUSSION
We propose a robust approach of parameterizing interatomic
potentials. It incorporates the multi-objective genetic algorithm
NSGA-III, a machine-learning-inspired protocol, and a correlation

and principal component analyses framework. Using monolayer
MoSe2 as a testbed, we demonstrate the effectiveness of the
proposed approach in capturing properties of monolayer MoSe2 in
both the equilibrium and nonequilibrium regimes. Compared with
existing parametrization methods, our approach incorporates a
more efficient optimization algorithm, provides more flexibility for
balancing the tradeoff and priority of specific properties without
biasing the optimization, and shows good transferability for
various interatomic potentials with different levels of complexity.
In all cases, the method is straightforward to implement, given the
appropriate computer codes. Moreover, this approach enables the
exploration of the intrinsic relationships between properties
through correlation and principal component analyses, which is
absent in other parametrization frameworks, such as GARField46

and Paramfit47. With the correlation matrix, one can (a) evaluate
the feasibility of improving the parametrization of a given
potential; (b) assess the parametrization flexibility of a given
potential with the value of F. At this stage, the analyses are used to
close the parametrization loop through selections made by the
user. An automated workflow could be developed by adopting
other machine learning algorithms, such as logistic regression and
decision trees on a cross-validating set, which would further
minimize human intervention34. Such approaches are left to future
studies.
In the approach here presented, the choice of interatomic

potentials and parametrization parameters constitute an iterative
process. One should start by using computationally inexpensive
properties (see the “Parametrization method” section) for training,
to cover a wider range of configurations and achieve better
optimization efficiency. The correlation and principal component
analyses are then employed to guide the selection of training and
screening properties for the next iteration, e.g., exclude redundant
properties from the training set or include properties into the
training set after evaluating the effect on other properties. We
note that simple expansion of the data base, without considering
their correlation with other properties of interest, is not a suitable
approach.
We identified intrinsic conflicting relationships between certain

properties for the parameterized interatomic potentials and
attributed such behaviors to the limitations of the functional
forms. To examine if more sophisticated functional forms can
alleviate this issue, we parameterized a modified reactive
emperical bond-order potential for TMDCs (referred to as REBO-
TMDC)4, using the same training data as Tersoff-ZTL. In
comparison to Tersoff-ZTL, the REBO-TMDC shows improved
accuracy on phase transition, but decreased accuracy on several
other properties (see Supplementary Note 12). This suggests that

Fig. 6 Transferability test for the parameterized Tersoff potentials (Tersoff and Tersoff-ZTL) on thermal properties of monolayer MoSe2.
a Phonon dispersion predicted by the Tersoff potential in comparison to ab initio results. b Thermal conductivity predicted by the Tersoff
potential in comparison to first principle calculations by solving the Peierls-Boltzmann transport equation (PBTE)43, as well as experimental
measurements on suspended monolayer MoSe2 using optothermal Raman techniques44. The Tersoff-ZTL corresponds to the parameterized
potential with the training data of “Tersoff” plus the three acoustic phonon modes, i.e., ZA, LA, and TA.
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the intrinsic conflicting roles of properties are always present and
that more sophisticated interatomic potentials do not necessarily
translate into better accuracy across all properties. Rather, as can
be seen from the example of Tersoff and Tersoff-ZTL, attention
needs to be paid as to how properties correlate for each functional
form (potential).
We leave the parametrization of more complex functional

forms, with a larger number of parameters, e.g., ReaxFF48, for
future work. Nevertheless, when equilibrium properties are the
primary interest of parametrization, simpler interatomic potentials
are worth exploring due to the ease of parametrization and better
computational efficiency. Indeed, common interatomic potentials
were found to be overdesigned for the purpose of exclusively
modeling equilibrium properties, including phonon dispersion
and thermal transport in crystalline Si and Ge11, thus suggesting
sufficient flexibilities for parametrization. In either circumstance,
our approach offers a framework for future studies aiming at
expanding the capability of empirical interatomic potentials for
quantifying unconventional chemical and physical phenomena in
emerging new materials.
We highlight the better performance of the NSGA-III algorithm

over several existing multi-objective global optimization algo-
rithms. We also note that other multi-objective global optimiza-
tion algorithms, e.g., MOES49 and GARField46, have been
developed for parameterizing ReaxFF for molecular crystals and
SiC. Future work should perform comparison among existing
approaches. Furthermore, for TMDCs, the transferability test can
be expanded to other DFT calculations and in situ transmission
electron microscopy observations, including vacancy induced
phase transition32, formation of inversion domains50, atomic
morphologies of the crack tip5, etc., which we leave for future
exploration.

METHODS
Ab initio calculations
The training data for the optimization were created by ab initio
calculations. These simulations were carried out using the density
functional approach via SIESTA 4.0.2 software51. We applied the non-
spin-polarized generalized gradient approximation in the Perdew-Burke-
Ernzerhof (PBE) form52 together with the split polarized valence double-
zeta (DZP) basis set53. For the molybdenum and selenium atoms,
nonrelativistic norm-conserving Troullier-Martins pseudopotentials54 were
utilized. The energy shift and mesh cutoff were selected to be 250 eV and
300 Ry (~4081 eV), respectively, at which energy convergence was
attained. Geometry optimization was conducted without any symmetry
constraints, until the forces acting on the atoms became <0.01 eV Å−1. The
interaction between monolayers (or molecules) were prevented by a 40 Å
vacuum layer. A monolayer thickness of 7.726 Å was used to calculate per-
area quantities (e.g., monolayer stresses)55. To achieve accurate electronic
structure calculations, we allowed a 15 Å cutoff for the set of k-points in the
first Brillouin zone. The resultant k-grids were chosen in an optimal way,
according to the method of Moreno and Soler (which utilized an effective
super cell close to spherical shape, thus minimizing the number of k-points
for a given precision)56. The self-consistent and the conjugate gradient
minimization schemes were employed for the electronic structure
calculation and for the geometry optimization, respectively. The cohesive
energy of a compound was computed from

Ecoh ¼ Epristine � nMoEMo � nseESe (4)

where Epristine is the energy of the compound, EMo and ESe are the energies
of an isolated Mo and Se atom, and nMo and nSe are the numbers of
corresponding atoms in the compound. The elastic constants were
extracted from uniaxial stress–strain curves in the small-deformation
regime. A fitting procedure reported by Cooper et al.57 was used to extract
the polynomial of the finite-deformation Green tensor of different orders,
and the second-order terms were used in the screening process. Vacancy
formation energies were calculated with the following equation:

Ef ¼ Edefected þ nMoμMo þ nSeμSe � Epristine (5)

where Edefected is the energy of the defected system, Epristine is the energy

of the pristine system, nMo and nSe are the number of missing Mo and Se
atoms in the vacancy, and μMo and μSe are chemical potentials for Mo in its
stable BCC structure and Se in Se8 rings, respectively.

Phonon dispersion calculation
In order to obtain the phonon dispersion curves and densities of states, the
theory of lattice dynamics on a Born-Oppenheimer surface was applied.
Assuming that atomic displacements are in the form of plane-wave
functions with different wave numbers, lattice vibration turns into an
eigenvalue problem. Siesta51 offers utility functions (e.g., vibra and fcbuild)
that displace each atom in the monolayer and measure the reaction of
other atoms to form the stiffness matrix. The wave dispersion along the
path connecting symmetry points of the hexagonal lattice Γ−M−K−Γ in
the first Brillouin zone for MoSe2 monolayers were investigated. These
points are located at (0,0,0), (0.5,0,0), and (0.333,0.333,0) in reciprocal space.
These symmetry directions stem from the hexagonal lattice 2H MoSe2,
similar to graphene. To sample the dispersion within the first Brillouin
zone, a super cell of 4 × 4 × 1 repetitive unit cells was utilized to include all
possible attenuations of the real-space force constants within it. To avoid
interactions between monolayers, a vacuum layer of 40 Å was set.

Molecular dynamics simulations
MD simulations were conducted with LAMMPS58 (3Mar20, serial version for
optimization and mpi version for simulating larger systems). To compare
MD simulations with ab initio calculations, we used the same atomic
systems for most objectives except for the lattice structures and cohesive
energies, in which we enlarged the size of the system for better sampling.
For energy landscapes (equation of states, bond dissociation, phase
transition, and dissociation of Se clusters), single-point calculations were
performed on the equilibrated structures from ab initio calculations
without energy minimization. For the remaining objectives, an energy
minimization step was carried out on the input structures with the
conjugate gradient algorithm (energy tolerance 0 eV, force tolerance
10−10 eV Å−1) before calculating the energies. For simulations with MD
steps, a time step of 1 fs was used. Phonon dispersion calculations were
performed with phonopy (2.4.1.post5)59. Thermal conductivity was
calculated using the equilibrium Green-Kubo formalism60,61. A monolayer
MoSe2 flake of 2.3 by 2.3 nm was first equilibrated with an NVT ensemble
for 0.1 ns, followed by an NVE step of 1 ns during which the ensemble
average of the autocorrelation of the heat flux was measured for
calculating the thermal conductivity. We computed in-plane thermal
conductivities as the average over conductivities along the AC and ZZ
direction. The thermal conductivity at a given temperature was further
averaged over 6 replicas with different initial random velocities. Atomic
visualizations were created with OVITO62.

Nudged elastic band simulations
Climbing image nudged elastic band simulations were carried out with
LAMMPS40. Fourteen replicas including the initial and final configurations
were used. The energy and force cutoff for energy minimization were
selected to be 0.1 eV and 0.01 eV Å−1. The spring constant for the nudging
force was set as 1 eV Å−1. The minimum energy path was found using the
Tersoff potential and was adopted by ab initio simulations and other
interatomic potentials.

Optimization parameters and system setup
The population size was set to be 156 for the genetic algorithm
optimizations following Deb and Jain23. Each optimization was conducted
for 500 generations with which the optimization converged. We submitted
20 runs concurrently with different random seeds. We used a simulated
binary crossover operator with a crossover probability of 1 and a crowding
degree, η of 30. For mutation operations, we used polynomial mutation
with a mutation probability of 1 and a η value of 20. We stored and output
statistics of the entire population for every certain number of generations
to monitor the optimization progress. After all runs finished, we combined
the optimized parameters from all runs for the subsequent screening
process. The optimization environment was set up with Python (3.7.7) and
the genetic algorithm optimization was based on the DEAP framework
(1.3.0)63. Parameter initialization, genetic algorithm operations, and
calculations of statistics were conducted with DEAP. When the evaluation
for an individual was needed, the code initiated a LAMMPS calculation via
a system-level call, and read the output from LAMMPS log files.
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Parallel programing was enabled by SCOOP (0.7.1.1)64 to offer accelerated
performance on supercomputer clusters. The optimization times scaled
with the complexity of the interatomic potentials and were in the range of
several hours to several days.

DATA AVAILABILITY
The parameterized interatomic potentials, as well as the corresponding potential files,
are documented and included in the Supplementary Information.
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