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ABSTRACT: The storage of hydrogen (H2) is of economic and
ecological relevance, because it could potentially replace petro-
leum-based fuels. However, H2 storage at mild condition remains
one of the bottlenecks for its widespread usage. In order to devise
successful H2 storage strategies, there is a need for a fundamental
understanding of the weak and elusive hydrogen interactions at the
quantum mechanical level. One of the most promising strategies
for storage at mild pressure and temperature is physisorption.
Porous materials are specially effective at physisorption, however
the process at the quantum level has been under-studied. Here, we
present quantum calculations to study the interaction of H2 with
building units of porous materials. We report 240 H2 complexes
made of different transition metal (Tm) atoms, chelating ligands,
spins, oxidation states, and geometrical configurations. We found that both the dispersion and electrostatics interactions are the
major contributors to the interaction energy between H2 and the transition metal complexes. The binding energy for some of these
complexes is in the range of at least 10 kJ/mol for many interactions sites, which is one of these main requirements for practical H2
storage. Thus, these results are of a fundamental nature for practical H2 storage in porous materials.

1. INTRODUCTION

The world’s increasing energy demands, limited petroleum feed
stocks, and increasing greenhouse gas emissions are forcing us to
restructure our energy economy toward sustainable and
renewable energy sources. Finding low cost, safe, and efficient
energy storage materials is a major milestone toward developing
renewable energy technology which can potentially replace the
carbon-based fossil fuels. In this context, molecular hydrogen, or
H2 for short, with an energy content of 142 MJ kg−1 is an ideal
and widely accepted green fuel because of its environmental
friendliness, and sustainability. H2 has an energy density much
greater than gasoline and emits no green house gases such as
carbon dioxide (CO2) or carbon monooxide (CO) after
burning. One of the biggest challenges to reach practical
applications is to achieve high density hydrogen storage at mild
conditions. Free hydrogen does not occur naturally in large
quantities, and it should be generated from some other
renewable energy sources, e.g., artificial photosynthesis.1 In
other words, H2 is an energy carrier (like electricity), not a
primary energy source (like coal). For the advancement of
hydrogen technologies to be used in transportation and other
many applications; the research on hydrogen production,
storage, and transformation should be further developed.
Thus, hydrogen storage is a key enabling technology.
Accordingly, an energy efficient method for the storage of H2

is a necessary technology for its effective use as a fuel.

Recently, several studies and investigations showed that the
addition of a transitionmetal (Tm) atom inside porousmaterials
increases the total capacity of H2 storage.2−5 A reversible
mechanism for adsorption and release of H2 at mild conditions is
needed for any practical storage application, which can be
achieved with physisorption. Some examples of storage
materials capable of physisorption are metal−organic frame-
works (MOFs), covalent organic frameworks (COFs), and
zeolites, to mention a few.2−6 It has been hypothesized that the
ideal range for the heat of adsorption (Qst) is around 7−15 kJ/
mol for efficient charge/discharge physisorption at ambient
temperature (233−258 K).6 Recent work has shown that theQst

can be approximated by the binding enthalpy (Δ °Hbind)
computed by first-principles calculations.2 However, the nature
of the interactions of the porous materials’ molecular
components with H2 has not been studied in detail. Accordingly,
we present a study of these interactions. Current materials reach
heats of adsorption of less than 8 kJ/mol and decay as the first
sorption sites are saturated at ambient temperature.7,8 At the
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fundamental level, H2 can interact with other atoms, molecules,
and solids via electrostatics, dispersion, and orbital interac-
tions.9−11 The initial studies made use mostly of dispersion
interactions which are weak, while the orbital interactions are
the strongest. However, the nature of H2 interaction with d
orbitals of the chelated Tm atoms inside a nanoporous is not
well established yet.
In this article, the fundamental origin of the H2 interactions

with chelated transition metals is explained based on first-
principles calculations.12−14 Thus, we used unrestricted B3LYP-
D3 level of theory that takes into account dispersion and orbital
interactions of the Tm.15−21 The detailed computational
methods are described in the Supporting Information, and a
short description has been provided in the method section. The
primary goal of this paper is to present a fundamental
investigation into the interaction between hydrogen and organic
linkers to understand the chemical principles which influence
the overall adsorption and storage, which can be used in COFs,
MOFs, or other porous materials. Crystalline porous materials
such as MOFs and COFs are linked by organic ligands (also
known as “linker”), which can integrate organic units with
atomic precision into periodic structures.2,5,18 The linkers
studied here are shown in Figure 1: (E)-N′-benzylidene-
benzohydrazide (BBH), (E)-2-((phenylimino) methyl) phenol
(PIP), (E)-N-(pyridin-2-ylmethylene) aniline (PIA), 2,2′-
bipyridine (BPY),22,23 and phenanthroline (PHEN). These
linkers have been chosen because they are reported
experimentally and some of these linkers have been used for
some COFs and MOFs already.2 We studied all of the expected
geometries: square planar (Sqr), tetrahedral (Tet), trigonal
bipyramidal (Tbi), square pyramidal (Spy), octahedral (Oct),
and pentagonal bipyramidal (Pbi). We investigated the most
common oxidation state of the Tm atoms which are noted in
parentheses: Sc(III), V(V), Ti(IV), Cr(III), Mn(II), Fe(II),
Co(II), Ni(II), Cu(II), and precious transition metals: Pd(II)
and Pt(II). Different spins states configurations were calculated
for each Tm complex (see the SI). If these compounds and
interactions are understood well, then the design principles for
H2 storage materials will follow.We expect that this study will be
able to provide some guidelines for the preparation of future

successful H2 adsorbing linkers, which will offer more H2
storage.

2. METHODS
First-principles calculations based on hybrid density functional
theory (DFT, here B3LYP) with the localized Gaussian type
basis sets were used to perform all computations as implemented
in the Amsterdam Density Functional (ADF) suite code.24−26

The unrestricted B3LYP hybrid functional was used with
Grimme’s (-D3) dispersion corrections parameters, i.e.,
UB3LYP-D3.1,5,12−17,21,27,28 To incorporate the long-range
dispersion effects in the present computations, Grimme’s
dispersion corrections parameters have added in the DFT
method which is essential for the weakly bound sys-
tems.1,5,15−17,21,27,28 The correlation consistent triple-ζ- quality
basis sets (cc-pVTZ) of all atoms were used to perform all of the
calculations, including obtaining the equilibrium geometry.
Radial and angular points of the integration grid were generated
through Gauss-Legendre radial quadrature and Lebedev two-
dimensional angular point distributions. Vibrational frequencies
of the adsorbates were calculated for the optimized structures in
order to obtain the equilibrium geometry. The unrestricted DFT
approach was used to consider the spin polarization in the
present calculations. The detail description of computational
methods can be found in the Supporting Information.

3. RESULTS AND DISCUSSIONS
The 1st studied parameter is the distance of chelated Tm to the
centroid of the first absorbed H2 molecule as shown in Figure 2a
(top). In pristine ligands, without any Tm, the distances are
measured to the centroid of the binding site of the Tm, i.e.,
between O−N or N−N. Our calculations showed that Cr(III)
has the shortest distance between the Tm and the pristine
ligands, which suggest that the interaction is among the
strongest of all of the first row Tm atoms. The distance between
the H2 molecule and any particular Tm varies only slightly with
the type of ligand. However, the magnitude of the binding
enthalpy increases as the distance between Tm andH2 decreases
as shown in Figure 2a (bottom). In the case of PIP (Figure 2a),
the binding sites contain −OH where the H atom may rotate.
This H atom rotationmay explain the higher variation in binding

Figure 1. Different kinds of Ligands ((E)-N′-benzylidene-benzohydrazide (BBH), (E)-2- ((phenylimino) methyl) phenol (PIP), (E)-N-(pyridin-2-
ylmethylene) aniline (PIA), 2,2′-bipyridine (BPY), and phenanthroline (PHEN)) used as linkers in the design of crystalline porous materials which
contain plausible transition metal binding sites. Notice the change of geometry for different oxidation states.
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enthalpy observed in PIP compared to other ligands. We found
that the linkers chelated with Pt(II) have themost negative value
of H2 binding enthalpy, Δ °Hbind, which indicates they form the
most stable complexes among all chelated compounds studied
here. The average value of the binding energy for these Tm
complexes is very close to the desired idealΔ °Hbind for reversible
physisorption of 7−15 kJ/mol. Thus, our present study

demonstrates that the linkers chelated with Tm will bind H2

more strongly. The linkers discussed are based on widely used
chelating groups in coordination chemistry and can be used as
building blocks for future porous materials. Energy decom-
position analysis (EDA) and HOMO−LUMO gap of all of the
systems studied here are computed at the same level of theory,
i.e., B3LYP-D3 and shown in Figure 2b,c.

Figure 2. (a) Distance between chelated Tm with linkers (BBH, PIA, PIP, BPY, and PHEN) to the first H2 molecule (top) and the binding energy
(bottom); (b) their energy decomposition analysis; and (c) HOMO−LUMO gap.
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The 2nd studied parameter is the geometry which depends on
the total spin number S and coordination number.29,30 The
optimized structures of the chelated, BPY, interacting with four
H2molecules are shown in Figure 3. The numbers next to the H2
molecules represent the sequence of the H2 addition to theBPY-
TmClx. We choose BPY for the configuration analysis because
BPY is highly symmetric; therefore, the local minima sites for
the H2 are unrelated to other parameters such as dihedral angle
of the linker-TmClx complex. For the ligand alone, the H2
molecules form symmetrical configurations relative to the
binding site (Figure 3a). The chelated BPY-TmClx complexes
(where Tm=Cu, Pd, Co,Mn, Cr, Sc, Ti, and V) interacting with
various H2 molecules are shown in Figure 3b−i.
In the chelated-Tm with the square geometry: Cu(II), Pd(II),

and Pt(II), the first two H2 molecules are located at the open
sites of the Tm, which are above and below the Tm (as shown in
Figure 3b,c except Pt(II)), while the third H2 displaces the first
H2 from its initial location. Stronger binding enthalpy is
observed for any Tm, in the tetrahedral geometry than in the
square planar geometry. For example, in the BBH-NiCl2
complex, the Ni(II) has spin S = 2/2 in the tetrahedral geometry
with a binding enthalpy of 1.2 kJ/mol more negative than the
square planar geometry with spin S = 0. On the other hand, PIP-
CoCl2 with spin S = 3/2 and S = 1/2 are in a tetrahedral
geometry and have H2 similar binding enthalpies with less than
0.1 kJ/mol difference. Only the Tm with S = 0 can have a perfect
square geometry, e.g., Cu(II) with S = 1/2 forms a distorted
square geometry compound. In Co(II), Fe(II), Mn(II), and
Ni(II) with the tetrahedral geometry the first two H2 molecules
are on top or bottom of the ligand-TmClx complex and weakly
polarized toward the Cl− ions (Figure 3d of the BPY-CoCl2).
With the addition of the third and fourth H2 molecules, the
location of H2 molecules rearrange mostly into typical
configurations (Figure 3e-i). Transition metals with higher

oxidation states: Cr(III), Sc(III), V(V), and Ti(IV) form square
pyramidal, trigonal bipyramidal, octahedral, or pentagonal
bipyramidal geometries, respectively. The first H2 molecule
has a minimum energy at the nearest possible location to the Tm
and binding sites (N or O atoms). Some Tm have different
geometries depending on the bond length and ligand such as in
the ligand-VCl5 complexes. V(V) has pentagonal bipyramidal
geometry in PIA,BPY, and PHENwhile octahedral geometry in
BBH and PIP. In general, the distance between H2 to the Tm in
the pentagonal bipiramidal (Pbi) and octahedral (Oct)
geometries are about 1 Å longer than other geometries because
of the smaller amount of available space for the H2 to interact
directly with the Tm, and consequently have lower binding
enthalpy. In the trigonal bypiramidal Sc(III) and square
pyramidal Cr(III) configurations, the binding enthalpies are
comparable to the square planar and tetrahedral geometries,
respectively. In the case of Sc(III) or Cr(III), the first H2 have
strong binding enthalpy because it can get close (∼2.8 Å) to the
Tm centers and thus more interactions occur.
The 3rd studied parameter is the effect of electrostatics and

dispersion interactions between theH2molecules and the linker-
TmClx complexes. The leading permanent multipole moment of
theH2 is a weak quadropole moment, but it could also have weak
induced dipole moment.9,10,31 A fragment analysis proposed by
Ziegler and Berends has been performed to decompose the
binding enthalpy.32,33 To illustrate this we showed two cases: the
H2 with a quadrupole moment is attracted to Cu(II) more than
to V(V) by about 2.8 kJ/mol. In all of these compounds, the
effect of electrostatics is 5% smaller than the dispersion. The
dispersion energy, electrostatics, Pauli repulsions, and orbital
interactions in the binding enthalpy between the Tm-ligand
complexes and H2 for BPY are shown in Figure 2b. This analysis
shows that the dispersion energy and electrostatics are the
dominant factors for themagnitude of the binding enthalpy. The

Figure 3.Configurations BPY-TmClx complexes interacting with the first 4 H2 are shown: (a) ligand alone; (b) BPY-CuCl2, Cu(II) with S = 1/2; (c)
BPY-PdCl2, Pd(II) with S = 0; (d)BPY-CoCl2, Co(II) with S = 3/2; (e)BPY-MnCl2, Mn(II) with S = 5/2; (f)BPY-CrCl3, Cr(III) with S = 3/2 forms
a square pyramidal geometry; (g) BPY-ScCl3, Sc (III) with S = 0 forms a trigonal bipyramidal; (h)BPY-TiCl4, Ti(IV) with S = 0 has octahedral
geometry; and (i)BPY-VCl5, V(V) with S = 0 forms a pentagonal bipyramidal geometry.
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other ligands follow a similar trend as BPY (Supporting
Information, section 2).
The 4th studied parameter is the possible orbital interactions

between the s orbitals of H2 and the d orbitals of the Tm. This
can be estimated by the occupied molecular orbitals (MO) of
the complexes shown in Figure 4. In Figure 4b the occupiedMO

has some overlap between the s orbital from H2 and d orbital of
Cu(II). A similar phenomenon is observed in the PIP-VCl5
complex. The orbital interaction depends on the overlap
between the interacting orbitals and decays exponentially with
the distance between H2 and ligand-TmClx complex.9

Fragment analysis has been performed to differentiate the
molecular orbitals (MO) from each components of the complex
(H2, linker, and TmClx). The fragment analysis also computes
the contributing components of total energy. The s orbitals of H2
molecules are overlapped with the d orbitals of Tm atoms in the
linker-TmClx complexes, e.g., about 70% contribution of
molecular orbitals from H2 s orbitals are overlapped with the d
orbitals of the Cu atom in the PIP-CuCl2 complex (Figure 4).
Typically, the energy level of the occupied MO (HOMO) of H2
molecule alone (−11.72 eV) is far below the HOMO (−6.72
eV) of the whole system, e.g., CuCl2-PIP + H2 as shown in
Figure 5. This is consistent with the H2 as a poor charge donor
because of the deep energy level of its σ bonding of −11.72 eV
and also a poor charge acceptor because of the high level of its σ*
antibonding (beyond the scale of Figure 5). The profiles of
HOMO and LUMO gap of all of the complexes is shown in
Figure 2c. The HOMO−LUMO energy gap of the pure ligand is
higher than any chelated complex. The ligand-VCl5 complexes
have the lowest gap at ∼1.2 eV. Most of the complexes have an
energy gap in the visible light spectrum (1.6−3.2 eV); therefore,
these complexes are promising candidates as dye sensitizers.
Uptakes in weight percentage (% wt) for H2 in the linkers and
linker-metal complexes have been estimated. They fall in the
range of 1.62−4.92 % wt, which is similar to COFs with similar
linkers (see Table S6 in the Supporting Information). This is

another consequence of the relationship between binding
energy (ΔHbind) and the heat of adsorption (Qst).

4. CONCLUSIONS
In summary, the nature of intermolecular interactions between
H2 and linker-TmClx complexes is presented. The favorable sites
for the H2 molecules interactions depend mainly on the type of
the Tm, spin, and available space. An important conclusion of
this work concerns the design of chelated linkers for crystalline
porous materials such as COFs andMOFs. The chelation of Tm
inside porous frameworks through their linkers can enhance the
effective H2 storage as the interaction between the Tm atoms
and H2 can be tuned to get higher binding enthalpy Δ °Hbind.
Ultimately, the ability of the chelated linkers to bind H2
molecules is highly dependent on the Tm coordination sphere,
with the most important interaction given by the dispersion and
electrostatics.
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