

Web Question Answering: Is More Always Better?

Susan Dumais, Michele Banko, Eric Brill, Jimmy Lin, Andrew Ng
Microsoft Research
One Microsoft Way

Redmond, WA 98052 USA

{sdumais, mbanko, brill}@research.microsoft.com
jimmylin@ai.mit.edu; ang@cs.berkeley.edu

ABSTRACT
This paper describes a question answering system that is designed
to capitalize on the tremendous amount of data that is now
available online. Most question answering systems use a wide
variety of linguistic resources. We focus instead on the
redundancy available in large corpora as an important resource.
We use this redundancy to simplify the query rewrites that we
need to use, and to support answer mining from returned snippets.
Our system performs quite well given the simplicity of the
techniques being utilized. Experimental results show that
question answering accuracy can be greatly improved by
analyzing more and more matching passages. Simple passage
ranking and n-gram extraction techniques work well in our system
making it efficient to use with many backend retrieval engines.

Categories and Subject Descriptors
H.3.1. [Content Analysis and Indexing], H.3.3 [Information
Search and Retrieval].

General Terms
Algorithms, Experimentation.

1. INTRODUCTION
Question answering has recently received attention from the
information retrieval, information extraction, machine learning,
and natural language processing communities [1][3][19][20] The
goal of a question answering system is to retrieve ‘answers’ to
questions rather than full documents or even best-matching
passages as most information retrieval systems currently do. The
TREC Question Answering Track which has motivated much of
the recent work in the field focuses on fact-based, short-answer
questions such as “Who killed Abraham Lincoln?” or “How tall is
Mount Everest?”. In this paper we focus on this kind of question
answering task, although the techniques we propose are more
broadly applicable.

The design of our question answering system is motivated by
recent observations in natural language processing that, for many
applications, significant improvements in accuracy can be attained

simply by increasing the amount of data used for learning.
Following the same guiding principle we take advantage of the
tremendous data resource that the Web provides as the backbone
of our question answering system. Many groups working on
question answering have used a variety of linguistic resources –
part-of-speech tagging, syntactic parsing, semantic relations,
named entity extraction, dictionaries, WordNet, etc. (e.g.,
[2][8][11][12][13][15][16]).We chose instead to focus on the
Web as gigantic data repository with tremendous redundancy that
can be exploited for question answering. The Web, which is
home to billions of pages of electronic text, is orders of magnitude
larger than the TREC QA document collection, which consists of
fewer than 1 million documents. This is a resource that can be
usefully exploited for question answering. We view our
approach as complimentary to more linguistic approaches, but
have chosen to see how far we can get initially by focusing on
data per se as a key resource available to drive our system design.

Automatic QA from a single, small information source is
extremely challenging, since there is likely to be only one answer
in the source to any user’s question. Given a source, such as the
TREC corpus, that contains only a relatively small number of
formulations of answers to a query, we may be faced with the
difficult task of mapping questions to answers by way of
uncovering complex lexical, syntactic, or semantic relationships
between question string and answer string. The need for anaphor
resolution and synonymy, the presence of alternate syntactic
formulations, and indirect answers all make answer finding a
potentially challenging task. However, the greater the answer
redundancy in the source data collection, the more likely it is that
we can find an answer that occurs in a simple relation to the
question. Therefore, the less likely it is that we will need to resort
to solving the aforementioned difficulties facing natural language
processing systems.

2. EXPLOITING REDUNDANCY FOR QA
We take advantage of the redundancy (multiple, differently
phrased, answer occurrences) available when considering massive
amounts of data in two key ways in our system.

Enables Simple Query Rewrites. The greater the number of
information sources we can draw from, the easier the task of
rewriting the question becomes, since the answer is more likely to
be expressed in different manners. For example, consider the
difficulty of gleaning an answer to the question “Who killed
Abraham Lincoln?” from a source which contains only the text
“John Wilkes Booth altered history with a bullet. He will forever
be known as the man who ended Abraham Lincoln’s life,”

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGIR’02, August 11-15, 2002, Tampere, Finland.
Copyright 2002 ACM 1-58113-561-0/02/0008…$5.00.

jimmylin
In Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2002), August, 2002

Question Rewrite Query <Search Engine>

Collect Summaries,
Mine N-grams

Filter N-GramsTile N-Grams N-Best Answers

Where is the Louvre
Museum located?

“+the Louvre Museum +is located”
“+the Louvre Museum +is +in”
“+the Louvre Museum +is near”
“+the Louvre Museum +is”
Louvre AND Museum AND near

in Paris France 59%
museums 12%
hostels 10%

Figure 1. System Architecture

Question Rewrite Query <Search Engine>

Collect Summaries,
Mine N-grams

Filter N-GramsTile N-Grams N-Best Answers

Where is the Louvre
Museum located?

“+the Louvre Museum +is located”
“+the Louvre Museum +is +in”
“+the Louvre Museum +is near”
“+the Louvre Museum +is”
Louvre AND Museum AND near

in Paris France 59%
museums 12%
hostels 10%

Figure 1. System Architecture

versus a source that also contains the transparent answer string,
“John Wilkes Booth killed Abraham Lincoln.”

Facilitates Answer Mining. Even when no obvious answer
strings can be found in the text, redundancy can improve the
efficacy of question answering. For instance, consider the
question: “How many times did Bjorn Borg win Wimbledon?”
Assume the system is unable to find any obvious answer strings,
but does find the following sentences containing “Bjorn Borg”
and “Wimbledon”, as well as a number:

(1) Bjorn Borg blah blah Wimbledon blah blah 5 blah

(2) Wimbledon blah blah blah Bjorn Borg blah 37 blah.

(3) blah Bjorn Borg blah blah 5 blah blah Wimbledon

(4) 5 blah blah Wimbledon blah blah Bjorn Borg.

By virtue of the fact that the most frequent number in these
sentences is 5, we can posit that as the most likely answer.

3. RELATED WORK
Other researchers have recently looked to the web as a resource
for question answering. The Mulder system described by Kwok
et al. [14] is similar to our approach in several respects. For each
question, Mulder submits multiple queries to a web search engine
and analyzes the results. Mulder does sophisticated parsing of the
query and the full-text of retrieved pages, which is far more
complex and compute-intensive than our analysis. They also
require global idf term weights for answer extraction and
selection, which requires local storage of a database of term
weights. They have done some interesting user studies of the
Mulder interface, but they have not evaluated it with TREC
queries nor have they looked at the importance of various system
components.

Clarke et al. [9][10] investigated the importance of redundancy in
their question answering system. In [9] they found that the best
weighting of passages for question answering involves using both
passage frequency (what they call redundancy) and a global idf
term weight. They also found that analyzing more top-ranked
passages was helpful in some cases and not in others. Their
system builds a full-content index of a document collection, in

this case TREC. In [10] they use web data to reinforce the scores
of promising candidate answers by providing additional
redundancy, with good success. Their implementation requires
an auxiliary web corpus be available for full-text analysis and
global term weighting. In our work, the web is the primary
source of redundancy and we operate without a full-text index of
documents or a database of global term weights.

Buchholz’s Shapaqa NLP system [7] has been evaluated on both
TREC and Web collections. Question answering accuracy was
higher with the Web collection (although both runs were poor in
absolute terms), but few details about the nature of the differences
are provided.

These systems typically perform complex parsing and entity
extraction for both queries and best matching web pages ([7][14]),
which limits the number of web pages that they can analyze in
detail. Other systems require term weighting for selecting or
ranking the best-matching passages ([10][14]) and this requires
auxiliary data structures. Our approach is distinguished from
these in its simplicity (simple rewrites and string matching) and
efficiency in the use of web resources (use of only summaries and
simple ranking). We now describe how our system uses
redundancy in detail and evaluate this systematically.

4. SYSTEM OVERVIEW
A flow diagram of our system is shown in Figure 1. The system
consists of four main components.

Rewrite Query. Given a question, the system generates a number
of rewrite strings, which are likely substrings of declarative
answers to the question. To give a simple example, from the
question “When was Abraham Lincoln born?” we know that a
likely answer formulation takes the form “Abraham Lincoln was
born on <DATE>”. Therefore, we can look through the collection
of documents, searching for such a pattern.

We first classify the question into one of seven categories, each of
which is mapped to a particular set of rewrite rules. Rewrite rule
sets range in size from one to five rewrite types. The output of
the rewrite module is a set of 3-tuples of the form [string,
L/R/-, weight], where “string” is the reformulated

search query, “L/R/-” indicates the position in the text where
we expect to find the answer with respect to the query string (to
the left, right or anywhere) and “weight” reflects how much we
prefer answers found with this particular query. The idea behind
using a weight is that answers found using a high precision query
(e.g., “Abraham Lincoln was born on”) are more likely to be
correct than those found using a lower precision query (e.g.,
“Abraham” AND “Lincoln” AND “born”).

We do not use a parser or part-of-speech tagger for query
reformulation, but do use a lexicon in order to determine the
possible parts-of-speech of a word as well as its morphological
variants. We created the rewrite rules and associated weights
manually for the current system, although it may be possible to
learn query-to-answer reformulations and weights (e.g. see
Agichtein et al. [4]; Radev et al. [17]).

The rewrites generated by our system are simple string-based
manipulations. For instance, some question types involve query
rewrites with possible verb movement; the verb “is” in the
question “Where is the Louvre Museum located?” should be
moved in formulating the desired rewrite to “The Louvre Museum
is located in”. While we might be able to determine where to
move a verb by analyzing the sentence syntactically, we took a
much simpler approach. Given a query such as “Where is w1 w2
… wn”, where each of the wi is a word, we generate a rewrite for
each possible position the verb could be moved to (e.g. “w1 is w2
… wn”, “w1 w2 is … wn”, etc). While such an approach results in
many nonsensical rewrites (e.g. “The Louvre is Museum located
in”), these very rarely result in the retrieval of bad pages, and the
proper movement position is guaranteed to be found via
exhaustive search. If we instead relied on a parser, we would
require fewer query rewrites, but a misparse would result in the
proper rewrite not being found.

For each query we also generate a final rewrite which is a backoff
to a simple ANDing of the non-stop words in the query. We
could backoff even further to ranking using a best-match retrieval
system which doesn’t require the presence of all terms and uses
differential term weights, but we did not find that this was
necessary when using the Web as a source of data. There are an
average of 6.7 rewrites for the 500 TREC-9 queries used in the
experiments described below.

As an example, the rewrites for the query “Who created the
character of Scrooge?” are:

LEFT_5_”created +the character +of Scrooge”

RIGHT_5_”+the character +of Scrooge +was created
+by”

AND_2_”created” AND “+the character” AND “+of
Scrooge”

AND_1_”created” AND “character” AND “Scrooge”

To date we have used only simple string matching techniques.
Soubbotin and Soubbotin [18] have used much richer regular
expression matching to provide hints about likely answers, with
very good success in TREC 2001, and we could certainly
incorporate some of these ideas in our rewrites. Note that many
of our rewrites require the matching of stop words like “in” and
“the”, in the above example. In our system stop words are
important indicators of likely answers, and we do not ignore them
as most ranked retrieval systems do, except in the final backoff
AND rewrite.

The query rewrites are then formulated as search engine queries
and sent to a search engine from which page summaries are
collected and analyzed.

Mine N-Grams. From the page summaries returned by the search
engine, n-grams are mined. For reasons of efficiency, we use
only the returned summaries and not the full-text of the
corresponding web page. The returned summaries contain the
query terms, usually with a few words of surrounding context. In
some cases, this surrounding context has truncated the answer
string, which may negatively impact results. The summary text is
then processed to retrieve only strings to the left or right of the
query string, as specified in the rewrite triple.

1-, 2-, and 3-grams are extracted from the summaries. An N-gram
is scored according the weight of the query rewrite that retrieved
it. These scores are summed across the summaries that contain
the n-gram (which is the opposite of the usual inverse document
frequency component of document/passage ranking schemes).
We do not count frequency of occurrence within a summary (the
usual tf component in ranking schemes). Thus, the final score for
an n-gram is based on the rewrite rules that generated it and the
number of unique summaries in which it occurred. When
searching for candidate answers, we enforce the constraint that at
most one stopword is permitted to appear in any potential n-gram
answers.

The top-ranked n-grams for the Scrooge query are:
Dickens 117
Christmas Carol 78
Charles Dickens 75
Disney 72
Carl Banks 54
A Christmas 41
uncle 31

Filter/Reweight N-Grams. Next, the n-grams are filtered and
reweighted according to how well each candidate matches the
expected answer-type, as specified by a handful of handwritten
filters. The system uses filtering in the following manner. First,
the query is analyzed and assigned one of seven question types,
such as who-question, what-question, or how-many-question.
Based on the query type that has been assigned, the system
determines what collection of filters to apply to the set of potential
answers found during n-gram harvesting. The answers are
analyzed for features relevant to the filters, and then rescored
according to the presence of such information.

A collection of approximately 15 filters were developed based on
human knowledge about question types and the domain from
which their answers can be drawn. These filters used surface
string features, such as capitalization or the presence of digits, and
consisted of handcrafted regular expression patterns.

After the system has determined which filters to apply to a pool of
candidate answers, the selected filters are applied to each
candidate string and used to adjust the score of the string. In most
cases, filters are used to boost the score of a potential answer
when it has been determined to possess the features relevant to the
query type. In other cases, filters are used to remove strings from
the candidate list altogether. This type of exclusion was only
performed when the set of correct answers was determined to be a

closed set (e.g. “Which continent….?”) or definable by a set of
closed properties (e.g. “How many…?”).

Tile N-Grams. Finally, we applied an answer tiling algorithm,
which both merges similar answers and assembles longer answers
out of answer fragments. Tiling constructs longer n-grams from
sequences of overlapping shorter n-grams. For example, "A B C"
and "B C D" is tiled into "A B C D." The algorithm proceeds
greedily from the top-scoring candidate - all subsequent
candidates (up to a certain cutoff) are checked to see if they can
be tiled with the current candidate answer. If so, the higher
scoring candidate is replaced with the longer tiled n-gram, and the
lower scoring candidate is removed. The algorithm stops only
when no n-grams can be further tiled.

The top-ranked n-grams after tiling for the Scrooge query are:
Charles Dickens 117
A Christmas Carol 78
Walt Disney’s uncle 72
Carl Banks 54
uncle 31

Our system works most efficiently and naturally with a backend
retrieval system that returns best-matching passages or query-
relevant document summaries. We can, of course, post-process
the full text of matching documents to extract summaries for n-
gram mining, but this is inefficient especially in Web applications
where the full text of documents would have to be downloaded
over the network at query time.

5. EXPERIMENTS
For our experimental evaluations we used the first 500 TREC-9
queries (201-700) [19]. For simplicity we ignored queries which
are syntactic rewrites of earlier queries (701-893), although
including them does not change the results in any substantive
way. We used the patterns provided by NIST for automatic
scoring. A few patterns were slightly modified to accommodate
the fact that some of the answer strings returned using the Web
were not available for judging in TREC-9. We did this in a very
conservative manner allowing for more specific correct answers
(e.g., Edward J. Smith vs. Edward Smith) but not more general
ones (e.g., Smith vs. Edward Smith), and simple substitutions
(e.g., 9 months vs. nine months). These changes influence the
absolute scores somewhat but do not change relative performance,
which is our focus here.

Many of the TREC queries are time sensitive – that is, the correct
answer depends on when the question is asked. The TREC
database covers a period of time more than 10 years ago; the Web
is much more current. Because of this mismatch, many correct
answers returned from the Web will be scored as incorrect using
the TREC answer patterns. 10-20% of the TREC queries have
temporal dependencies. E.g., Who is the president of Bolivia?
What is the exchange rate between England and the U. S.? We
did not modify the answer key to accommodate these time
differences, because this is a subjective job and would make
comparison with earlier TREC results impossible.

For the main Web retrieval experiments we used Google as a
backend because it provides query-relevant summaries that make
our n-gram mining techniques more efficient. Thus we have
access to more than 2 billion web pages. For some experiments in
TREC retrieval we use the standard QA collection consisting of

news documents from Disks 1-5. The TREC collection has just
under 1 million documents [19].

All runs are completely automatic, starting with queries and
generating a ranked list of 5 candidate answers. Candidate
answers are a maximum of 50 bytes long, and typically much
shorter than that. We report the Mean Reciprocal Rank (MRR) of
the first correct answer, the Number of Questions Correctly
Answered (NumCorrect), and the Proportion of Questions
Correctly Answered (PropCorrect). Correct answers at any rank
are included in the number and proportion correct measures.
Most correct answers are at the top of the list -- 70% of the correct
answers occur in the first position and 90% in the first or second
positions.

Using our system with default settings for query rewrite weights,
number of summaries returned, etc. we obtain a MRR of 0.507
and answer 61% of the queries. The average answer length was
12 bytes, so the system is really returning short answers not
passages. This is very good performance and would place us near
the top of 50-byte runs for TREC-9. However, since we did not
take part in TREC-9 it is impossible to compare our results
precisely with those systems (e.g., we used TREC-9 for tuning our
TREC-10 system increasing our score somewhat, but we return
several correct answers that were not found in TREC-9 thus
decreasing our score somewhat).

Redundancy is used in two key ways in our data-driven approach.
First, the occurrence of multiple linguistic formulations of the
same answers increases the chances of being able to find an
answer that occurs within the context of a simple pattern match
with the query. Second, answer redundancy facilitates the process
of answer extraction by giving higher weight to answers that
occur more often (i.e., in more different document summaries).
We now evaluate the contributions of these experimentally.

5.1 Number of Snippets
We begin by examining the importance of redundancy in answer
extraction. To do this we vary the number of summaries
(snippets) that we get back from the search engine and use as
input to the n-gram mining process. Our standard system uses
100 snippets. We varied the number of snippets from 1 to 1000.
The results are shown in Figure 2.

Performance improves sharply as the number of snippets increases
from 1 to 50 (0.243 MRR for 1 snippet, 0.370 MRR for 5, 0.423
MRR for 10, and 0.501 for 50), somewhat more slowly after that

0

0.1

0.2

0.3

0.4

0.5

0.6

1 10 100 1000

Number of Snippets

M
R

R

Figure 2. MRR as a function of number of
snippets returned. TREC-9, queries 201-700.

(peaking 0.514 MRR with 200 snippets), and then falling off
somewhat after that as more snippets are included for n-gram
analysis. Thus, over quite a wide range, the more snippets we
consider in selecting and ranking n-grams the better. We believe
that the slight drop at the high end is due to the increasing
influence that the weaker rewrites have when many snippets are
returned. The most restrictive rewrites return only a few matching
documents. Increasing the number of snippets increases the
number of the least restrictive matches (the AND matches), thus
swamping the restrictive matches. In addition, frequent n-grams
begin to dominate our rankings at this point.

An example of failures resulting from too many AND matches is
Query 594: What is the longest word in the English language?
For this query, there are 40 snippets matching the rewrite “is the
longest word in the English language” with weight 5, 40 more
snippets matching the rewrite “the longest word in the English
language is” with the weight 5, and more than 100 snippets
matching the backoff AND query (“longest” AND “word” AND
“English” AND “language”) with a weight of 1. When 100
snippets are used, the precise rewrites contribute almost as many
snippets as the AND rewrite. In this case we find the correct
answer, “pneumonoultramicroscopicsilicovolcanokoniosis”, in the
second rank. The first answer, “1909 letters long”, which is
incorrect, also matches many precise rewrites such as “the longest
word in English is ## letters long”, and we pick up on this.
When 1000 snippets are used, the weaker AND rewrites dominate
the matches. In this case, the correct answer falls to seventh on
the list after “letters long”, “one syllable”, “is screeched”, “facts”,
“stewardesses” and “dictionary”, all of which occur commonly in
results from the least restrictive AND rewrite. A very common
AND match contains the phrase “the longest one-syllable word in
the English language is screeched”, and this accounts for two of
our incorrect answers.

Using differential term weighting of answer terms, as many
retrieval systems do, should help overcome this problem to some
extent but we would like to avoid maintaining a database of global
term weights. Alternatively we could refine our weight
accumulation scheme to dampen the effects of many weakly
restrictive matches by sub-linear accumulation, and we are
currently exploring several alternatives for doing this.

Our main results on snippet redundancy are consistent with those
reported by Clarke et al. [9], although they worked with the much
smaller TREC collection. They examined a subset of the TREC-9
queries requiring a person’s name as the answer. They varied the
number of passages retrieved (which they call depth) from 25 to
100, and observed some improvements in MRR. When the
passages they retrieved were small (250 or 500 bytes) they found
improvement, but when the passages were larger (1000 or 2000
bytes) no improvements were observed. The snippets we used
are shorter than 250 bytes, so the results are consistent. Clarke et
al. [9] also explored a different notion of redundancy (which they
refer to as ci). ci is the number of different passages that match an
answer. Their best performance is achieved when both ci and
term weighting are used to rank passages. We too use the number
of snippets that an n-gram occurs in. We do not, however, use
global term weights, but have tried other techniques for weighting
snippets as described below.

5.2 TREC vs. Web Databases
Another way to explore the importance of redundancy is to run
our system directly on the TREC documents. As noted earlier,
there are three orders of magnitude more documents on the Web
than in the TREC QA collection. Consequently, there will be
fewer alternative ways of saying the same thing and fewer
matching documents available for mining the candidate n-grams.
We suspect that this lack of redundancy will limit the success of
our approach when applied directly on TREC documents.

While corpus size is an obvious and important difference between
the TREC and Web collections there are other differences as well.
For example, text analysis, ranking, and snippet extraction
techniques will all vary somewhat in ways that we can not control.
To better isolate the size factor, we also ran our system against
another Web search engine.

For these experiments we used only the AND rewrites and looked
at the first 100 snippets. We had to restrict ourselves to AND
rewrites because some of the search engines we used do not
support the inclusion of stop words in phrases, e.g., “created +the
character +of Scrooge”.

5.2.1 TREC Database
The TREC QA collection consists of just under 1 million
documents. We expect much less redundancy here compared to
the Web, and suspect that this will limit the success of our
approach. An analysis of the TREC-9 query set (201-700) shows
that no queries have 100 judged relevant documents. Only 10 of
the 500 questions have 50 or more relevant documents, which the
results in Figure 2 suggest are required for the good system
performance. And a very large number of queries, 325, have
fewer than 10 relevant documents.

We used an Okapi backend retrieval engine for the TREC
collection. Since we used only Boolean AND rewrites, we did
not take advantage of Okapi’s best match ranking algorithm.
However, most queries return fewer than 100 documents, so we
wind up examining most of the matches anyway.

We developed two snippet extraction techniques to generate
query-relevant summaries for use in n-gram mining. A
Contiguous technique returned the smallest window containing all
the query terms along with 10 words of context on either side.
Windows that were greater than 500 words were ignored. This
approach is similar to passage retrieval techniques albeit without
differential term weighting. A Non-Contiguous technique
returned the union of two word matches along with 10 words of
context on either side. Single words not previously covered are
included as well. The search engine we used for the initial Web
experiments returns both contiguous and non-contiguous snippets.
Figure 3 shows the results of this experiment.

MRR NumCorrect PropCorrect
Web1 0.450 281 0.562
TREC, Contiguous Snippet 0.186 117 0.234
TREC, Non-Contiguous Snippet 0.187 128 0.256

AND Rewrites Only, Top 100

Figure 3: Web vs. TREC as data source

Our baseline system using all rewrites and retrieving 100 snippets
achieves 0.507 MRR (Figure 2). Using only the AND query
rewrites results in worse performance for our baseline system with
0.450 MRR (Figure 3). More noticeable than this difference is
the drop in performance of our system using TREC as a data
source compared to using the much larger Web as a data source.
MRR drops from 0.450 to 0.186 for contiguous snippets and
0.187 for non-contiguous snippets, and the proportion of
questions answered correctly drops from 56% to 23% for
contiguous snippets and 26% for non-contiguous snippets. It is
worth noting that the TREC MRR scores would still place this
system in the top half of the systems for the TREC-9 50-byte task,
even though we tuned our system to work on much larger
collections. However, we can do much better simply by using
more data. The lack of redundancy in the TREC collection
accounts for a large part of this drop off in performance. Clarke et
al. [10] have also reported better performance using the Web
directly for TREC 2001 questions.

We expect that the performance difference between TREC and the
Web would increase further if all the query rewrites were used.
This is because there are so few exact phrase matches in TREC
relative to the Web, and the precise matches improve performance
by 13% (0.507 vs. 0.450).

We believe that database size per se (and the associated
redundancy) is the most important difference between the TREC
and Web collections. As noted above, however, there are other
differences between the systems such as text analysis, ranking,
and snippet extraction techniques. While we can not control the
text analysis and ranking components of Web search engines, we
can use the same snippet extraction techniques. We can also use a
different Web search engine to mitigate the effects of a specific
text analysis and ranking algorithms.

5.2.2 Another Web Search Engine
For these experiments we used the MSNSearch search engine. At
the time of our experiments, the summaries returned were
independent of the query. So we retrieved the full text of the top
100 web pages and applied the two snippet extraction techniques
described above to generate query-relevant summaries. As before,
all runs are completely automatic, starting with queries, retrieving
web pages, extracting snippets, and generating a ranked list of 5
candidate answers. The results of these experiments are shown in
Figure 4. The original results are referred to as Web1 and the
new results as Web2.

MRR NumCorrect PropCorrect
Web1 0.450 281 0.562
TREC, Contiguous Snippet 0.186 117 0.234
TREC, Non-Contiguous Snippet 0.187 128 0.256
Web2, Contiguous Snippet 0.355 227 0.454
Web2, Non-Contiguous Snippet 0.383 243 0.486

AND Rewrites Only, Top 100

Figure 4: Web vs. TREC as data source
The Web2 results are somewhat worse than the Web1 results, but
this is expected given that we developed our system using the
Web1 backend, and did not do any tuning of our snippet
extraction algorithms. In addition, we believe that the Web2

collection indexed somewhat less content than Web1 at the time
of our experiments, which should decrease performance in and of
itself. More importantly, the Web2 results are much better than
the TREC results for both snippet extraction techniques, almost
doubling MRR in both cases. Thus, we have shown that QA is
more successful using another large Web collection compared to
the small TREC collection. The consistency of this result across
Web collections points to size and redundancy as the key factors.

5.2.3 Combining TREC and Web
Given that the system benefits from having a large text collection
from which to search for potential answers, then we would expect
that combining both the Web and TREC corpus would result in
even greater accuracy. We ran two experiments to test this.
Because there was no easy way to merge the two corpora, we
instead combined the output of QA system built on each corpus.
For these experiments we used the original Web1 system and our
TREC system. We used only the AND query rewrites, looked at
the Top1000 search results for each rewrite, and used a slightly
different snippet extraction technique. For these parameter
settings, the base TREC-based system had a MRR of .262, the
Web-based system had a MRR of .416.

First, we ran an oracle experiment to assess the potential gain that
could be attained by combining the output of the Web-based and
TREC-based QA systems. We implemented a “switching oracle”,
which decides for each question whether to use the output from
the Web-based QA system or the TREC-based QA system, based
upon which system output had a higher ranking correct answer.
The switching oracle had a MRR of .468, a 12.5% improvement
over the Web-based system. Note that this oracle does not
precisely give us an upper bound, as combining algorithms (such
as that described below) could re-order the rankings of outputs.

Next, we implemented a combining algorithm that merged the
outputs from the TREC-based and Web-based systems, by having
both systems vote on answers, where the vote is the score
assigned to a particular answer by the system. For voting, we
defined string equivalence such that if a string X is a substring of
Y, then a vote for X is also a vote for Y. The combined system
achieved a MRR of .433 (a 4.1% improvement over the Web-
based system) and answered 283 questions correctly.

5.3 Snippet Weighting
Until now, we have focused on the quantity of information
available and less on its quality. Snippet weights are used in
ranking n-grams. An n-gram weight is the sum of the weights for
all snippets in which that n-gram appears.

Each of our query rewrites has a weight associated with it
reflecting how much we prefer answers found with this particular
query. The idea behind using a weight is that answers found
using a high precision query (e.g., “Abraham Lincoln was born
on”) are more likely to be correct than those found using a lower
precision query (e.g., “Abraham” AND “Lincoln” AND “born”).
Our current system has 5 weights.

These rewrite weights are the only source of snippet weighting in
our system. We explored how important these weight are and
considered several other factors that could be used as additional
sources of information for snippet weighting. Although we
specify Boolean queries, the retrieval engine can provide a
ranking, based on factors like link analyses, proximity of terms,

location of terms in the document, etc. So, different weights can
be assigned to matches at different positions in the ranked list.
We also looked at the number of matching terms in the best fixed
width window, and the widow size of the smallest matching
passage as indicators of passage quality.

Rewrite Wts uses our heuristically determined rewrite weights as a
measure the quality of a snippet. This is the current system
default. Equal Wts gives equal weight to all snippets regardless of
the rewrite rule that generated them. To the extent that more
precise rewrites retrieve better answers, we will see a drop in
performance when we make all weights equal. Rank Wts uses the
rank of the snippet as a measure of its quality, SnippetWt = (100-
rank)/100. NMatch Wts uses the number of matching terms in a
fixed-width window as the measure of snippet quality. Length
Wts uses a measure of the length of the snippet needed to
encompass all query terms as the measure of snippet quality. We
also look at combinations of these factors. For example,
Rewrite+Rank Wts uses both rewrite weight and rank according to
the following formula, SnippetWt = RewriteScore + (100-
rank)/100. All of these measures are available from query-
relevant summaries returned by the search engine and do not
require analyzing the full text of the document. The results of
these experiments are presented in Figure 4.

Weighting MRR NumCorrect PropCorrect
Equal Wts 0.489 298 0.596
Rewrite Wts (Default) 0.507 307 0.614
Rank Wts 0.483 292 0.584
Rewrite + Rank Wts 0.508 302 0.604
NMatch Wts 0.506 301 0.602
Length Wts 0.506 302 0.604

Figure 5: Snippet Weighting

Our current default 5-level weighting scheme which reflects the
specificity of the query rewrites does quite well. Equal weighting
is somewhat worse, as we expected. Interestingly search engine
rank is no better for weighting candidate n-grams than equal
weighting. None of the other techniques we looked at surpasses
the default weights in both MRR and PropCorrect. Our heuristic
rewrite weights provide a simple and effective technique for
snippet weighting, that can be used with any backend retrieval
engine.
Most question answering systems use IR-based measures of
passage quality, and do not typically evaluate the best measure of
similarity for purposes of extracting answers. Clarke et al. [9]
noted above is an exception. Soubbotin and Soubbotin [18]
mention different weights for different regular expression
matches, but they did not describe the mechanism in detail nor did
they evaluate how useful it is. Harabagiu et al. [11] have a kind
of backoff strategy for matching which is similar to weighting, but
again we do not know of parametric evaluations of its importance
in their overall system performance. The question of what kinds
of passages can best support answer mining for question
answering as opposed to document retrieval is an interesting one
that we are pursuing.

6. DISCUSSION AND FUTURE
DIRECTIONS
The design of our question answering system was motivated by
the goal of exploiting the large amounts of text data that is
available on the Web and elsewhere as a useful resource. While
many question answering systems take advantage of linguistic
resources, fewer depend primarily on data. Vast amounts of data
provide several sources of redundancy that our system capitalizes
on. Answer redundancy (i.e., multiple, differently phrased,
answer occurrences) enables us to use only simple query rewrites
for matching, and facilitates the extraction of candidate answers.

We evaluated the importance of redundancy in our system
parametrically. First, we explored the relationship between the
number of document snippets examined and question answering
accuracy. Accuracy improves sharply as the number of snippets
included for n-gram analysis increases from 1 to 50, somewhat
more slowly after that peaking at 200 snippets, and then falls off
somewhat after that. More is better up to a limit. We believe that
we can increase this limit by improving our weight accumulation
algorithm so that matches from the least precise rewrites do not
dominate. Second, in smaller collections (like TREC), the
accuracy of our system drops sharply, although it is still quite
reasonable in absolute terms. Finally, snippet quality is less
important to system performance than snippet quantity. We have
a simple 5-level snippet weighting scheme based on the specificity
of the query rewrite, and this appears to be sufficient. More
complex weighting schemes that we explored were no more
useful.

The performance of our system shows promise for approaches to
question answering which makes use of very large text databases
even with minimal natural language processing. Our system does
not need to maintain its own index nor does it require global term
weights, so it can work in conjunction with any backend retrieval
engine. Finally, since our system does only simple query
transformations and n-gram analysis, it is efficient and scalable.

One might think that our system has limited applicability, because
it works best with large amounts of data. But, this isn’t
necessarily so. First, we actually perform reasonably well in the
smaller TREC collection, and could perhaps tune system
parameters to work even better in that environment. More
interestingly, Brill et al. [6] described a projection technique that
can be used to combine the wealth of data available on the Web
with the reliability of data in smaller sources like TREC or an
encyclopedia. The basic idea is to find candidate answers in a
large and possibly noisy source, and then expand the query to
include likely answers. The expanded queries can then be used
on smaller but perhaps more reliable collections – either directly
to find support for the answer in the smaller corpus, or indirectly
as a new query which is issued and mined as we currently do.
This approach appears to be quite promising. Our approach
seems least applicable in applications that involve a small amount
of proprietary data. In these cases, one might need to do much
more sophisticated analyses to map user queries to the exact
lexical form that occur in the text collection rather than depend on
primarily on redundancy as we have done.

Although we have pushed the data-driven perspective, more
sophisticated language analysis might help as well by providing
more effective query rewrites or less noisy data for mining.

Most question answering systems contain aspects of both – we use
some linguistic knowledge in our small query typology and
answer filtering, and more sophisticated systems often use simple
pattern matching for things like dates, zip codes, etc.

There are a number of open questions that we hope to explore. In
the short term, we would like to look systematically at the
contributions of other system components. Brill et al. [5] have
started to explore individual components in more detail, with
interesting results. In addition, it is likely that we have made
several sub-optimal decisions in our initial implementation (e.g.,
omitting most stop words from answers, simple linear
accumulation of scores over matching snippets) that we would
like to improve. Most retrieval engines have been developed
with the goal of finding topically relevant documents. Finding
accurate answers may require somewhat different matching
infrastructure. We are beginning to explore how best to generate
snippets for use in answer mining. Finally, time is an interesting
issue. We noted earlier how the correct answer to some queries
changes over time. Time also has interesting implications for
using redundancy. For example, it would take a while for a news
or Web collection to correctly answer a question like “Who is the
U. S. President?” just after an election.

An important goal of our work is to get system designers to treat
data as a first class resource that is widely available and
exploitable. We have made good initial progress, and there are
several interesting issues remaining to explore.

7. REFERENCES
[1] AAAI Spring Symposium Series (2002). Mining Answers

from Text and Knowledge Bases.

[2] S. Abney, M. Collins and A. Singhal (2000). Answer
extraction. In Proceedings of the 6th Applied Natural
Language Processing Conference (ANLP 2000), 296-301.

[3] ACL-EACL (2002). Workshop on Open-domain Question
Answering.

[4] E. Agichtein, S. Lawrence and L. Gravano (2001). Learning
search engine specific query transformations for question
answering. In Proceedings of the 10th World Wide Web
Conference (WWW10), 169-178.

[5] E. Brill, S. Dumais and M. Banko (2002). An analysis of the
AskMSR question-answering system. In Proceedings of
2002 Conference on Empirical Methods in Natural
Language Processing (EMNLP 2002).

[6] E. Brill, J. Lin, M. Banko, S. Dumais and A. Ng (2002).
Data-intensive question answering. In Proceedings of the
Tenth Text REtrieval Conference (TREC 2001).

[7] S. Buchholz (2002). Using grammatical relations, answer
frequencies and the World Wide Web for TREC question
answering. In Proceedings of the Tenth Text REtrieval
Conference (TREC 2001).

[8] J. Chen, A. R. Diekema, M. D. Taffet, N. McCracken, N. E.
Ozgencil, O. Yilmazel, E. D. Liddy (2002). Question

answering: CNLP at the TREC-10 question answering track.
In Proceedings of the Tenth Text REtrieval Conference
(TREC 2001).

[9] C. Clarke, G. Cormack and T. Lyman (2001). Exploiting
redundancy in question answering. In Proceedings of the
24th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval
(SIGIR’2001), 358-365.

[10] C. Clarke, G. Cormack and T. Lynam (2002). Web
reinforced question answering. In Proceedings of the Tenth
Text REtrieval Conference (TREC 2001).

[11] S. Harabagiu, D. Moldovan, M. Pasca, R. Mihalcea, M.
Surdeanu, R. Bunescu, R. Girju, V. Rus and P. Morarescu
(2001). FALCON: Boosting knowledge for question
answering. In Proceedings of the Ninth Text REtrieval
Conference (TREC-9), 479-488.

[12] E. Hovy, L. Gerber, U. Hermjakob, M. Junk and C. Lin
(2001). Question answering in Webclopedia. In
Proceedings of the Ninth Text REtrieval Conference (TREC-
9), 655-664.

[13] E. Hovy, U. Hermjakob and C. Lin (2002). The use of
external knowledge in factoid QA. In Proceedings of the
Tenth Text REtrieval Conference (TREC 2001).

[14] C. Kwok, O. Etzioni and D. Weld (2001). Scaling question
answering to the Web. In Proceedings of the 10th World
Wide Web Conference (WWW’10), 150-161.

[15] M. A. Pasca and S. M. Harabagiu (2001). High performance
question/answering. In Proceedings of the 24th Annual
International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR’2001), 366-
374.

[16] J. Prager, E. Brown, A. Coden and D. Radev (2000).
Question answering by predictive annotation. In
Proceedings of the 23rd Annual International ACM SIGIR
Conference on Research and Development in Information
Retrieval (SIGIR’2000), 184-191.

[17] D. R. Radev, H. Qi, Z. Zheng, S. Blair-Goldensohn, Z.
Zhang, W. Fan and J. Prager (2001). Mining the web for
answers to natural language questions. In Proceeding of the
2001 ACM CIKM: Tenth International Conference on
Information and Knowledge Management, 143-150

[18] M. M. Soubbotin and S. M. Soubbotin (2002). Patterns and
potential answer expressions as clues to the right answers. In
Proceedings of the Tenth Text REtrieval Conference (TREC
2001).

[19] E. Voorhees and D. Harman, Eds. (2001). Proceedings of
the Ninth Text REtrieval Conference (TREC-9). NIST
Special Publication 500-249.

[20] E. Voorhees and D. Harman, Eds. (2002). Proceedings of
the Tenth Text REtrieval Conference (TREC 2001).). NIST
Special Publication 500-250.

