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ABSTRACT 
This paper describes a question answering system that is designed 
to capitalize on the tremendous amount of data that is now 
available online.   Most question answering systems use a wide 
variety of linguistic resources.  We focus instead on the 
redundancy available in large corpora as an important resource.   
We use this redundancy to simplify the query rewrites that we 
need to use, and to support answer mining from returned snippets.  
Our system performs quite well given the simplicity of the 
techniques being utilized.  Experimental results show that 
question answering accuracy can be greatly improved by 
analyzing more and more matching passages.  Simple passage 
ranking and n-gram extraction techniques work well in our system 
making it efficient to use with many backend retrieval engines. 

Categories and Subject Descriptors 
H.3.1. [Content Analysis and Indexing], H.3.3 [Information 
Search and Retrieval]. 

General Terms 
Algorithms, Experimentation. 

1. INTRODUCTION 
Question answering has recently received attention from the 
information retrieval, information extraction, machine learning, 
and natural language processing communities [1][3][19][20] The 
goal of a question answering system is to retrieve ‘answers’ to 
questions rather than full documents or even best-matching 
passages as most information retrieval systems currently do.   The 
TREC Question Answering Track which has motivated much of 
the recent work in the field focuses on fact-based, short-answer 
questions such as “Who killed Abraham Lincoln?” or “How tall is 
Mount Everest?”.   In this paper we focus on this kind of question 
answering task, although the techniques we propose are more 
broadly applicable. 

The design of our question answering system is motivated by 
recent observations in natural language processing that, for many 
applications, significant improvements in accuracy can be attained 

simply by increasing the amount of data used for learning.  
Following the same guiding principle we take advantage of the 
tremendous data resource that the Web provides as the backbone 
of our question answering system.  Many groups working on 
question answering have used a variety of linguistic resources – 
part-of-speech tagging, syntactic parsing, semantic relations, 
named entity extraction, dictionaries, WordNet, etc. (e.g., 
[2][8][11][12][13][15][16]).We chose instead to focus on the 
Web as gigantic data repository with tremendous redundancy that 
can be exploited for question answering.   The Web, which is 
home to billions of pages of electronic text, is orders of magnitude 
larger than the TREC QA document collection, which consists of 
fewer than 1 million documents.   This is a resource that can be 
usefully exploited for question answering.    We view our 
approach as complimentary to more linguistic approaches, but 
have chosen to see how far we can get initially by focusing on 
data per se as a key resource available to drive our system design. 

Automatic QA from a single, small information source is 
extremely challenging, since there is likely to be only one answer 
in the source to any user’s question.  Given a source, such as the 
TREC corpus, that contains only a relatively small number of 
formulations of answers to a query, we may be faced with the 
difficult task of mapping questions to answers by way of 
uncovering complex lexical, syntactic, or semantic relationships 
between question string and answer string.  The need for anaphor 
resolution and synonymy, the presence of alternate syntactic 
formulations, and indirect answers all make answer finding a 
potentially challenging task.  However, the greater the answer 
redundancy in the source data collection, the more likely it is that 
we can find an answer that occurs in a simple relation to the 
question.  Therefore, the less likely it is that we will need to resort 
to solving the aforementioned difficulties facing natural language 
processing systems. 

2. EXPLOITING REDUNDANCY FOR QA 
We take advantage of the redundancy (multiple, differently 
phrased, answer occurrences) available when considering massive 
amounts of data in two key ways in our system. 

Enables Simple Query Rewrites.  The greater the number of 
information sources we can draw from, the easier the task of 
rewriting the question becomes, since the answer is more likely to 
be expressed in different manners.  For example, consider the 
difficulty of gleaning an answer to the question “Who killed 
Abraham Lincoln?” from a source which contains only the text 
“John Wilkes Booth altered history with a bullet.  He will forever 
be known as the man who ended Abraham Lincoln’s life,”   
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versus a source that also contains the transparent answer string, 
“John Wilkes Booth killed Abraham Lincoln.” 

Facilitates Answer Mining.  Even when no obvious answer 
strings can be found in the text, redundancy can improve the 
efficacy of question answering.  For instance, consider the 
question: “How many times did Bjorn Borg win Wimbledon?”  
Assume the system is unable to find any obvious answer strings, 
but does find the following sentences containing “Bjorn Borg” 
and “Wimbledon”, as well as a number: 

(1) Bjorn Borg blah blah  Wimbledon blah blah 5 blah  

(2) Wimbledon blah blah blah Bjorn Borg blah 37 blah. 

(3) blah Bjorn Borg blah blah 5 blah blah Wimbledon   

(4) 5 blah blah Wimbledon blah blah Bjorn Borg. 

By virtue of the fact that the most frequent number in these 
sentences is 5, we can posit that as the most likely answer.   

3. RELATED WORK 
Other researchers have recently looked to the web as a resource 
for question answering.   The Mulder system described by Kwok 
et al. [14] is similar to our approach in several respects.  For each 
question, Mulder submits multiple queries to a web search engine 
and analyzes the results.  Mulder does sophisticated parsing of the 
query and the full-text of retrieved pages, which is far more 
complex and compute-intensive than our analysis.  They also 
require global idf term weights for answer extraction and 
selection, which requires local storage of a database of term 
weights.  They have done some interesting user studies of the 
Mulder interface, but they have not evaluated it with TREC 
queries nor have they looked at the importance of various system 
components. 

Clarke et al. [9][10] investigated the importance of redundancy in 
their question answering system.   In [9] they found that the best 
weighting of passages for question answering involves using both 
passage frequency (what they call redundancy) and a global idf 
term weight.  They also found that analyzing more top-ranked 
passages was helpful in some cases and not in others.   Their 
system builds a full-content index of a document collection, in 

this case TREC.   In [10] they use web data to reinforce the scores 
of promising candidate answers by providing additional 
redundancy, with good success.   Their implementation requires 
an auxiliary web corpus be available for full-text analysis and 
global term weighting.   In our work, the web is the primary 
source of redundancy and we operate without a full-text index of 
documents or a database of global term weights. 

Buchholz’s Shapaqa NLP system [7] has been evaluated on both 
TREC and Web collections.  Question answering accuracy was 
higher with the Web collection (although both runs were poor in 
absolute terms), but few details about the nature of the differences 
are provided. 

These systems typically perform complex parsing and entity 
extraction for both queries and best matching web pages ([7][14]), 
which limits the number of  web pages that they can analyze in 
detail.   Other systems require term weighting for selecting or 
ranking the best-matching passages ([10][14]) and this requires 
auxiliary data structures.  Our approach is distinguished from 
these in its simplicity (simple rewrites and string matching) and 
efficiency in the use of web resources (use of only summaries and 
simple ranking).   We now describe how our system uses 
redundancy in detail and evaluate this systematically.    

4. SYSTEM OVERVIEW 
A flow diagram of our system is shown in Figure 1.  The system 
consists of four main components. 

Rewrite Query. Given a question, the system generates a number 
of rewrite strings, which are likely substrings of declarative 
answers to the question.  To give a simple example, from the 
question “When was Abraham Lincoln born?” we know that a 
likely answer formulation takes the form “Abraham Lincoln was 
born on <DATE>”.  Therefore, we can look through the collection 
of documents, searching for such a pattern.   

We first classify the question into one of seven categories, each of 
which is mapped to a particular set of rewrite rules.  Rewrite rule 
sets range in size from one to five rewrite types.   The output of 
the rewrite module is a set of 3-tuples of the form [string, 
L/R/-, weight], where “string” is the reformulated 



 

 

search query, “L/R/-” indicates the position in the text where 
we expect to find the answer with respect to the query string (to 
the left, right or anywhere) and “weight” reflects how much we 
prefer answers found with this particular query.  The idea behind 
using a weight is that answers found using a high precision query 
(e.g., “Abraham Lincoln was born on”) are more likely to be 
correct than those found using a lower precision query (e.g., 
“Abraham” AND “Lincoln” AND “born”). 

We do not use a parser or part-of-speech tagger for query 
reformulation, but do use a lexicon in order to determine the 
possible parts-of-speech of a word as well as its morphological 
variants.   We created the rewrite rules and associated weights 
manually for the current system, although it may be possible to 
learn query-to-answer reformulations and weights (e.g. see 
Agichtein et al. [4]; Radev et al. [17]).   

The rewrites generated by our system are simple string-based 
manipulations.  For instance, some question types involve query 
rewrites with possible verb movement; the verb “is” in the 
question “Where is the Louvre Museum located?” should be 
moved in formulating the desired rewrite to “The Louvre Museum 
is located in”.  While we might be able to determine where to 
move a verb by analyzing the sentence syntactically, we took a 
much simpler approach.  Given a query such as “Where is w1 w2 
… wn”, where each of the wi is a word, we generate a rewrite for 
each possible position the verb could be moved to (e.g. “w1 is w2 
… wn”, “w1 w2 is … wn”, etc).  While such an approach results in 
many nonsensical rewrites (e.g. “The Louvre is Museum located 
in”), these very rarely result in the retrieval of bad pages, and the 
proper movement position is guaranteed to be found via 
exhaustive search.  If we instead relied on a parser, we would 
require fewer query rewrites, but a misparse would result in the 
proper rewrite not being found. 

For each query we also generate a final rewrite which is a backoff 
to a simple ANDing of the non-stop words in the query.  We 
could backoff even further to ranking using a best-match retrieval 
system which doesn’t require the presence of all terms and uses 
differential term weights, but we did not find that this was 
necessary when using the Web as a source of data.  There are an 
average of 6.7 rewrites for the 500 TREC-9 queries used in the 
experiments described below.   

As an example, the rewrites for the query “Who created the 
character of Scrooge?” are: 

LEFT_5_”created +the character +of Scrooge” 

RIGHT_5_”+the character +of Scrooge +was created 
+by” 

AND_2_”created” AND “+the character” AND “+of 
Scrooge” 

AND_1_”created” AND “character” AND “Scrooge” 

To date we have used only simple string matching techniques.  
Soubbotin and Soubbotin [18] have used much richer regular 
expression matching to provide hints about likely answers, with 
very good success in TREC 2001, and we could certainly 
incorporate some of these ideas in our rewrites.    Note that many 
of our rewrites require the matching of stop words like “in” and 
“the”, in the above example.  In our system stop words are 
important indicators of likely answers, and we do not ignore them 
as most ranked retrieval systems do, except in the final backoff 
AND rewrite.   

The query rewrites are then formulated as search engine queries 
and sent to a search engine from which page summaries are 
collected and analyzed.  

Mine N-Grams.  From the page summaries returned by the search 
engine, n-grams are mined.   For reasons of efficiency, we use 
only the returned summaries and not the full-text of the 
corresponding web page.   The returned summaries contain the 
query terms, usually with a few words of surrounding context.  In 
some cases, this surrounding context has truncated the answer 
string, which may negatively impact results.  The summary text is 
then processed to retrieve only strings to the left or right of the 
query string, as specified in the rewrite triple.   

1-, 2-, and 3-grams are extracted from the summaries.  An N-gram 
is scored according the weight of the query rewrite that retrieved 
it.  These scores are summed across the summaries that contain 
the n-gram (which is the opposite of the usual inverse document 
frequency component of document/passage ranking schemes).  
We do not count frequency of occurrence within a summary (the 
usual tf component in ranking schemes).  Thus, the final score for 
an n-gram is based on the rewrite rules that generated it and the 
number of unique summaries in which it occurred.  When 
searching for candidate answers, we enforce the constraint that at 
most one stopword is permitted to appear in any potential n-gram 
answers. 

The top-ranked n-grams for the Scrooge query are: 
Dickens 117 
Christmas Carol 78 
Charles Dickens 75 
Disney 72 
Carl Banks 54 
A Christmas 41 
uncle 31 

Filter/Reweight N-Grams.  Next, the n-grams are filtered and 
reweighted according to how well each candidate matches the 
expected answer-type, as specified by a handful of handwritten 
filters.  The system uses filtering in the following manner. First, 
the query is analyzed and assigned one of seven question types, 
such as who-question, what-question, or how-many-question.  
Based on the query type that has been assigned, the system 
determines what collection of filters to apply to the set of potential 
answers found during n-gram harvesting. The answers are 
analyzed for features relevant to the filters, and then rescored 
according to the presence of such information.   

A collection of approximately 15 filters were developed based on 
human knowledge about question types and the domain from 
which their answers can be drawn.  These filters used surface 
string features, such as capitalization or the presence of digits, and 
consisted of handcrafted regular expression patterns.  

After the system has determined which filters to apply to a pool of 
candidate answers, the selected filters are applied to each 
candidate string and used to adjust the score of the string.  In most 
cases, filters are used to boost the score of a potential answer 
when it has been determined to possess the features relevant to the 
query type. In other cases, filters are used to remove strings from 
the candidate list altogether. This type of exclusion was only 
performed when the set of correct answers was determined to be a 



 

 

closed set (e.g. “Which continent….?”) or definable by a set of 
closed properties (e.g. “How many…?”). 

Tile N-Grams. Finally, we applied an answer tiling algorithm, 
which both merges similar answers and assembles longer answers 
out of answer fragments.  Tiling constructs longer n-grams from 
sequences of overlapping shorter n-grams. For example, "A B C" 
and "B C D" is tiled into "A B C D." The algorithm proceeds 
greedily from the top-scoring candidate - all subsequent 
candidates (up to a certain cutoff) are checked to see if they can 
be tiled with the current candidate answer. If so, the higher 
scoring candidate is replaced with the longer tiled n-gram, and the 
lower scoring candidate is removed. The algorithm stops only 
when no n-grams can be further tiled. 

The top-ranked n-grams after tiling for the Scrooge query are: 
Charles Dickens 117 
A Christmas Carol  78 
Walt Disney’s uncle 72 
Carl Banks 54 
uncle 31 

Our system works most efficiently and naturally with a backend 
retrieval system that returns best-matching passages or query-
relevant document summaries.   We can, of course, post-process 
the full text of matching documents to extract summaries for n-
gram mining, but this is inefficient especially in Web applications 
where the full text of documents would have to be downloaded 
over the network at query time. 

5. EXPERIMENTS 
For our experimental evaluations we used the first 500 TREC-9 
queries (201-700) [19]. For simplicity we ignored queries which 
are syntactic rewrites of earlier queries (701-893), although 
including them does not change the results in any substantive 
way.   We used the patterns provided by NIST for automatic 
scoring.  A few patterns were slightly modified to accommodate 
the fact that some of the answer strings returned using the Web 
were not available for judging in TREC-9.   We did this in a very 
conservative manner allowing for more specific correct answers 
(e.g., Edward J. Smith vs. Edward Smith) but not more general 
ones (e.g., Smith vs. Edward Smith), and simple substitutions 
(e.g., 9 months vs. nine months).   These changes influence the 
absolute scores somewhat but do not change relative performance, 
which is our focus here.   

Many of the TREC queries are time sensitive – that is, the correct 
answer depends on when the question is asked.  The TREC 
database covers a period of time more than 10 years ago; the Web 
is much more current.  Because of this mismatch, many correct 
answers returned from the Web will be scored as incorrect using 
the TREC answer patterns. 10-20% of the TREC queries have 
temporal dependencies.  E.g., Who is the president of Bolivia?  
What is the exchange rate between England and the U. S.?  We 
did not modify the answer key to accommodate these time 
differences, because this is a subjective job and would make 
comparison with earlier TREC results impossible.   

For the main Web retrieval experiments we used Google as a 
backend because it provides query-relevant summaries that make 
our n-gram mining techniques more efficient.  Thus we have 
access to more than 2 billion web pages.  For some experiments in 
TREC retrieval we use the standard QA collection consisting of 

news documents from Disks 1-5.  The TREC collection has just 
under 1 million documents [19]. 

All runs are completely automatic, starting with queries and 
generating a ranked list of 5 candidate answers.  Candidate 
answers are a maximum of 50 bytes long, and typically much 
shorter than that.  We report the Mean Reciprocal Rank (MRR) of 
the first correct answer, the Number of Questions Correctly 
Answered (NumCorrect), and the Proportion of Questions 
Correctly Answered (PropCorrect).  Correct answers at any rank 
are included in the number and proportion correct measures.  
Most correct answers are at the top of the list -- 70% of the correct 
answers occur in the first position and 90% in the first or second 
positions. 

Using our system with default settings for query rewrite weights, 
number of summaries returned, etc. we obtain a MRR of 0.507 
and answer 61% of the queries.  The average answer length was 
12 bytes, so the system is really returning short answers not 
passages.   This is very good performance and would place us near 
the top of 50-byte runs for TREC-9.  However, since we did not 
take part in TREC-9 it is impossible to compare our results 
precisely with those systems (e.g., we used TREC-9 for tuning our 
TREC-10 system increasing our score somewhat, but we return 
several correct answers that were not found in TREC-9 thus 
decreasing our score somewhat).   

Redundancy is used in two key ways in our data-driven approach.  
First, the occurrence of multiple linguistic formulations of the 
same answers increases the chances of being able to find an 
answer that occurs within the context of a simple pattern match 
with the query.  Second, answer redundancy facilitates the process 
of answer extraction by giving higher weight to answers that 
occur more often (i.e., in more different document summaries).   
We now evaluate the contributions of these experimentally. 

5.1 Number of Snippets 
We begin by examining the importance of redundancy in answer 
extraction.  To do this we vary the number of summaries 
(snippets) that we get back from the search engine and use as 
input to the n-gram mining process.   Our standard system uses 
100 snippets.    We varied the number of snippets from 1 to 1000.  
The results are shown in Figure 2.      

 

Performance improves sharply as the number of snippets increases 
from 1 to 50 (0.243 MRR for 1 snippet, 0.370 MRR for 5, 0.423 
MRR for 10, and 0.501 for 50), somewhat more slowly after that 
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Figure 2.  MRR as a function of number of 
snippets returned.  TREC-9, queries 201-700. 



 

 

(peaking 0.514 MRR with 200 snippets), and then falling off 
somewhat after that as more snippets are included for n-gram 
analysis.     Thus, over quite a wide range, the more snippets we 
consider in selecting and ranking n-grams the better.  We believe 
that the slight drop at the high end is due to the increasing 
influence that the weaker rewrites have when many snippets are 
returned.  The most restrictive rewrites return only a few matching 
documents.   Increasing the number of snippets increases the 
number of the least restrictive matches (the AND matches), thus 
swamping the restrictive matches.  In addition, frequent n-grams 
begin to dominate our rankings at this point. 

An example of failures resulting from too many AND matches is 
Query 594: What is the longest word in the English language?  
For this query, there are 40 snippets matching the rewrite “is the 
longest word in the English language” with weight 5, 40 more 
snippets matching the rewrite “the longest word in the English 
language is” with the weight 5, and more than 100 snippets 
matching the backoff AND query (“longest” AND “word” AND 
“English” AND “language”) with a weight of 1.  When 100 
snippets are used, the precise rewrites contribute almost as many 
snippets as the AND rewrite.   In this case we find the correct 
answer, “pneumonoultramicroscopicsilicovolcanokoniosis”, in the 
second rank.    The first answer, “1909 letters long”, which is 
incorrect, also matches many precise rewrites such as “the longest 
word in English is ## letters long”, and we pick up on this.    
When 1000 snippets are used, the weaker AND rewrites dominate 
the matches.  In this case, the correct answer falls to seventh on 
the list after “letters long”, “one syllable”, “is screeched”, “facts”, 
“stewardesses” and “dictionary”, all of which occur commonly in 
results from the least restrictive AND rewrite.   A very common 
AND match contains the phrase “the longest one-syllable word in 
the English language is screeched”, and this accounts for two of 
our incorrect answers.   

Using differential term weighting of answer terms, as many 
retrieval systems do, should help overcome this problem to some 
extent but we would like to avoid maintaining a database of global 
term weights.  Alternatively we could refine our weight 
accumulation scheme to dampen the effects of many weakly 
restrictive matches by sub-linear accumulation, and we are 
currently exploring several alternatives for doing this.      

Our main results on snippet redundancy are consistent with those 
reported by Clarke et al. [9], although they worked with the much 
smaller TREC collection.  They examined a subset of the TREC-9 
queries requiring a person’s name as the answer.  They varied the 
number of passages retrieved (which they call depth) from 25 to 
100, and observed some improvements in MRR.  When the 
passages they retrieved were small (250 or 500 bytes) they found 
improvement, but when the passages were larger (1000 or 2000 
bytes) no improvements were observed.   The snippets we used 
are shorter than 250 bytes, so the results are consistent.  Clarke et 
al. [9] also explored a different notion of redundancy (which they 
refer to as ci).  ci is the number of different passages that match an 
answer.  Their best performance is achieved when both ci and 
term weighting are used to rank passages.  We too use the number 
of snippets that an n-gram occurs in.   We do not, however, use 
global term weights, but have tried other techniques for weighting 
snippets as described below. 

5.2 TREC vs. Web Databases  
Another way to explore the importance of redundancy is to run 
our system directly on the TREC documents.   As noted earlier, 
there are three orders of magnitude more documents on the Web 
than in the TREC QA collection.     Consequently, there will be 
fewer alternative ways of saying the same thing and fewer 
matching documents available for mining the candidate n-grams.   
We suspect that this lack of redundancy will limit the success of 
our approach when applied directly on TREC documents.   

While corpus size is an obvious and important difference between 
the TREC and Web collections there are other differences as well.  
For example, text analysis, ranking, and snippet extraction 
techniques will all vary somewhat in ways that we can not control.  
To better isolate the size factor, we also ran our system against 
another Web search engine.     

For these experiments we used only the AND rewrites and looked 
at the first 100 snippets.   We had to restrict ourselves to AND 
rewrites because some of the search engines we used do not 
support the inclusion of stop words in phrases, e.g., “created +the 
character +of Scrooge”. 

5.2.1 TREC Database 
The TREC QA collection consists of just under 1 million 
documents.  We expect much less redundancy here compared to 
the Web, and suspect that this will limit the success of our 
approach.   An analysis of the TREC-9 query set (201-700) shows 
that no queries have 100 judged relevant documents.   Only 10 of 
the 500 questions have 50 or more relevant documents, which the 
results in Figure 2 suggest are required for the good system 
performance.  And a very large number of queries, 325, have 
fewer than 10 relevant documents.   

We used an Okapi backend retrieval engine for the TREC 
collection.   Since we used only Boolean AND rewrites, we did 
not take advantage of Okapi’s best match ranking algorithm.   
However, most queries return fewer than 100 documents, so we 
wind up examining most of the matches anyway. 

We developed two snippet extraction techniques to generate 
query-relevant summaries for use in n-gram mining.  A 
Contiguous technique returned the smallest window containing all 
the query terms along with 10 words of context on either side.  
Windows that were greater than 500 words were ignored.  This 
approach is similar to passage retrieval techniques albeit without 
differential term weighting.  A Non-Contiguous technique 
returned the union of two word matches along with 10 words of 
context on either side.  Single words not previously covered are 
included as well.  The search engine we used for the initial Web 
experiments returns both contiguous and non-contiguous snippets.     
Figure 3 shows the results of this experiment. 

MRR NumCorrect PropCorrect
Web1 0.450 281 0.562
TREC, Contiguous Snippet 0.186 117 0.234
TREC, Non-Contiguous Snippet 0.187 128 0.256

AND Rewrites Only, Top 100

Figure 3: Web vs. TREC as data source  



 

 

Our baseline system using all rewrites and retrieving 100 snippets 
achieves 0.507 MRR (Figure 2).  Using only the AND query 
rewrites results in worse performance for our baseline system with 
0.450 MRR (Figure 3).  More noticeable than this difference is 
the drop in performance of our system using TREC as a data 
source compared to using the much larger Web as a data source.   
MRR drops from 0.450 to 0.186 for contiguous snippets and 
0.187 for non-contiguous snippets, and the proportion of 
questions answered correctly drops from 56% to 23% for 
contiguous snippets and 26% for non-contiguous snippets.   It is 
worth noting that the TREC MRR scores would still place this 
system in the top half of the systems for the TREC-9 50-byte task, 
even though we tuned our system to work on much larger 
collections.  However, we can do much better simply by using 
more data.  The lack of redundancy in the TREC collection 
accounts for a large part of this drop off in performance.  Clarke et 
al. [10] have also reported better performance using the Web 
directly for TREC 2001 questions.   

We expect that the performance difference between TREC and the 
Web would increase further if all the query rewrites were used.   
This is because there are so few exact phrase matches in TREC 
relative to the Web, and the precise matches improve performance 
by 13% (0.507 vs. 0.450).     

We believe that database size per se (and the associated 
redundancy) is the most important difference between the TREC 
and Web collections.  As noted above, however, there are other 
differences between the systems such as text analysis, ranking, 
and snippet extraction techniques.  While we can not control the 
text analysis and ranking components of Web search engines, we 
can use the same snippet extraction techniques.  We can also use a 
different Web search engine to mitigate the effects of a specific 
text analysis and ranking algorithms.  

5.2.2 Another Web Search Engine 
For these experiments we used the MSNSearch search engine.  At 
the time of our experiments, the summaries returned were 
independent of the query.  So we retrieved the full text of the top 
100 web pages and applied the two snippet extraction techniques 
described above to generate query-relevant summaries.  As before, 
all runs are completely automatic, starting with queries, retrieving 
web pages, extracting snippets, and generating a ranked list of 5 
candidate answers.   The results of these experiments are shown in 
Figure 4.   The original results are referred to as Web1 and the 
new results as Web2. 

MRR NumCorrect PropCorrect
Web1 0.450 281 0.562
TREC, Contiguous Snippet 0.186 117 0.234
TREC, Non-Contiguous Snippet 0.187 128 0.256
Web2, Contiguous Snippet 0.355 227 0.454
Web2, Non-Contiguous Snippet 0.383 243 0.486

AND Rewrites Only, Top 100

Figure 4: Web vs. TREC as data source  
The Web2 results are somewhat worse than the Web1 results, but 
this is expected given that we developed our system using the 
Web1 backend, and did not do any tuning of our snippet 
extraction algorithms.  In addition, we believe that the Web2 

collection indexed somewhat less content than Web1 at the time 
of our experiments, which should decrease performance in and of 
itself.   More importantly, the Web2 results are much better than 
the TREC results for both snippet extraction techniques, almost 
doubling MRR in both cases.   Thus, we have shown that QA is 
more successful using another large Web collection compared to 
the small TREC collection.  The consistency of this result across 
Web collections points to size and redundancy as the key factors. 

5.2.3 Combining TREC and Web 
Given that the system benefits from having a large text collection 
from which to search for potential answers, then we would expect 
that combining both the Web and TREC corpus would result in 
even greater accuracy.  We ran two experiments to test this.  
Because there was no easy way to merge the two corpora, we 
instead combined the output of QA system built on each corpus.  
For these experiments we used the original Web1 system and our 
TREC system.  We used only the AND query rewrites, looked at 
the Top1000 search results for each rewrite, and used a slightly 
different snippet extraction technique.  For these parameter 
settings, the base TREC-based system had a MRR of .262, the 
Web-based system had a MRR of .416. 

First, we ran an oracle experiment to assess the potential gain that 
could be attained by combining the output of the Web-based and 
TREC-based QA systems.  We implemented a “switching oracle”, 
which decides for each question whether to use the output from 
the Web-based QA system or the TREC-based QA system, based 
upon which system output had a higher ranking correct answer.  
The switching oracle had a MRR of .468, a 12.5% improvement 
over the Web-based system.  Note that this oracle does not 
precisely give us an upper bound, as combining algorithms (such 
as that described below) could re-order the rankings of outputs. 

Next, we implemented a combining algorithm that merged the 
outputs from the TREC-based and Web-based systems, by having 
both systems vote on answers, where the vote is the score 
assigned to a particular answer by the system.  For voting, we 
defined string equivalence such that if a string X is a substring of 
Y, then a vote for X is also a vote for Y.  The combined system 
achieved a MRR of .433 (a 4.1% improvement over the Web-
based system) and answered 283 questions correctly. 

5.3 Snippet Weighting 
Until now, we have focused on the quantity of information 
available and less on its quality.     Snippet weights are used in 
ranking n-grams.   An n-gram weight is the sum of the weights for 
all snippets in which that n-gram appears. 

Each of our query rewrites has a weight associated with it 
reflecting how much we prefer answers found with this particular 
query.  The idea behind using a weight is that answers found 
using a high precision query (e.g., “Abraham Lincoln was born 
on”) are more likely to be correct than those found using a lower 
precision query (e.g., “Abraham” AND “Lincoln” AND “born”).  
Our current system has 5 weights.  

These rewrite weights are the only source of snippet weighting in 
our system.    We explored how important these weight are and 
considered several other factors that could be used as additional 
sources of information for snippet weighting.  Although we 
specify Boolean queries, the retrieval engine can provide a 
ranking, based on factors like link analyses, proximity of terms, 



 

 

location of terms in the document, etc.   So, different weights can 
be assigned to matches at different positions in the ranked list.  
We also looked at the number of matching terms in the best fixed 
width window, and the widow size of the smallest matching 
passage as indicators of passage quality. 

Rewrite Wts uses our heuristically determined rewrite weights as a 
measure the quality of a snippet.   This is the current system 
default.  Equal Wts gives equal weight to all snippets regardless of 
the rewrite rule that generated them.  To the extent that more 
precise rewrites retrieve better answers, we will see a drop in 
performance when we make all weights equal.  Rank Wts uses the 
rank of the snippet as a measure of its quality, SnippetWt = (100-
rank)/100.  NMatch Wts uses the number of matching terms in a 
fixed-width window as the measure of snippet quality.  Length 
Wts uses a measure of the length of the snippet needed to 
encompass all query terms as the measure of snippet quality.  We 
also look at combinations of these factors.  For example, 
Rewrite+Rank Wts uses both rewrite weight and rank according to 
the following formula, SnippetWt = RewriteScore + (100-
rank)/100.   All of these measures are available from query-
relevant summaries returned by the search engine and do not 
require analyzing the full text of the document. The results of 
these experiments are presented in Figure 4. 

Weighting MRR NumCorrect PropCorrect
Equal Wts 0.489 298 0.596
Rewrite Wts (Default) 0.507 307 0.614
Rank Wts 0.483 292 0.584
Rewrite + Rank Wts 0.508 302 0.604
NMatch Wts 0.506 301 0.602
Length Wts 0.506 302 0.604

Figure 5: Snippet Weighting  

Our current default 5-level weighting scheme which reflects the 
specificity of the query rewrites does quite well.   Equal weighting 
is somewhat worse, as we expected.   Interestingly search engine 
rank is no better for weighting candidate n-grams than equal 
weighting.   None of the other techniques we looked at surpasses 
the default weights in both MRR and PropCorrect.  Our heuristic 
rewrite weights provide a simple and effective technique for 
snippet weighting, that can be used with any backend retrieval 
engine.   
Most question answering systems use IR-based measures of 
passage quality, and do not typically evaluate the best measure of 
similarity for purposes of extracting answers.  Clarke et al. [9] 
noted above is an exception.   Soubbotin and Soubbotin [18] 
mention different weights for different regular expression 
matches, but they did not describe the mechanism in detail nor did 
they evaluate how useful it is.  Harabagiu et al. [11] have a kind 
of backoff strategy for matching which is similar to weighting, but 
again we do not know of parametric evaluations of its importance 
in their overall system performance.  The question of what kinds 
of passages can best support answer mining for question 
answering as opposed to document retrieval is an interesting one 
that we are pursuing. 

6. DISCUSSION AND FUTURE 
DIRECTIONS 
The design of our question answering system was motivated by 
the goal of exploiting the large amounts of text data that is 
available on the Web and elsewhere as a useful resource.   While 
many question answering systems take advantage of linguistic 
resources, fewer depend primarily on data.   Vast amounts of data 
provide several sources of redundancy that our system capitalizes 
on.   Answer redundancy (i.e., multiple, differently phrased, 
answer occurrences) enables us to use only simple query rewrites 
for matching, and facilitates the extraction of candidate answers.    

We evaluated the importance of redundancy in our system 
parametrically.   First, we explored the relationship between the 
number of document snippets examined and question answering 
accuracy. Accuracy improves sharply as the number of snippets 
included for n-gram analysis increases from 1 to 50, somewhat 
more slowly after that peaking at 200 snippets, and then falls off 
somewhat after that.  More is better up to a limit.  We believe that 
we can increase this limit by improving our weight accumulation 
algorithm so that matches from the least precise rewrites do not 
dominate. Second, in smaller collections (like TREC), the 
accuracy of our system drops sharply, although it is still quite 
reasonable in absolute terms.     Finally, snippet quality is less 
important to system performance than snippet quantity.  We have 
a simple 5-level snippet weighting scheme based on the specificity 
of the query rewrite, and this appears to be sufficient.   More 
complex weighting schemes that we explored were no more 
useful.   

The performance of our system shows promise for approaches to 
question answering which makes use of very large text databases 
even with minimal natural language processing.  Our system does 
not need to maintain its own index nor does it require global term 
weights, so it can work in conjunction with any backend retrieval 
engine.  Finally, since our system does only simple query 
transformations and n-gram analysis, it is efficient and scalable. 

One might think that our system has limited applicability, because 
it works best with large amounts of data.  But, this isn’t 
necessarily so.   First, we actually perform reasonably well in the 
smaller TREC collection, and could perhaps tune system 
parameters to work even better in that environment.    More 
interestingly,  Brill et al. [6] described a projection technique that 
can be used to combine the wealth of data available on the Web 
with the reliability of data in smaller sources like TREC or an 
encyclopedia.  The basic idea is to find candidate answers in a 
large and possibly noisy source, and then expand the query to 
include likely answers.   The expanded queries can then be used 
on smaller but perhaps more reliable collections – either directly 
to find support for the answer in the smaller corpus, or indirectly 
as a new query which is issued and mined as we currently do.   
This approach appears to be quite promising.   Our approach 
seems least applicable in applications that involve a small amount 
of proprietary data.   In these cases, one might need to do much 
more sophisticated analyses to map user queries to the exact 
lexical form that occur in the text collection rather than depend on 
primarily on redundancy as we have done. 

Although we have pushed the data-driven perspective, more 
sophisticated language analysis might help as well by providing 
more effective query rewrites or less noisy data for mining.    



 

 

Most question answering systems contain aspects of both – we use 
some linguistic knowledge in our small query typology and 
answer filtering, and more sophisticated systems often use simple 
pattern matching for things like dates, zip codes, etc.   

There are a number of open questions that we hope to explore.  In 
the short term, we would like to look systematically at the 
contributions of other system components.  Brill et al. [5] have 
started to explore individual components in more detail, with 
interesting results.  In addition, it is likely that we have made 
several sub-optimal decisions in our initial implementation (e.g., 
omitting most stop words from answers, simple linear 
accumulation of scores over matching snippets) that we would 
like to improve.   Most retrieval engines have been developed 
with the goal of finding topically relevant documents.  Finding 
accurate answers may require somewhat different matching 
infrastructure.  We are beginning to explore how best to generate 
snippets for use in answer mining.  Finally, time is an interesting 
issue.  We noted earlier how the correct answer to some queries 
changes over time.  Time also has interesting implications for 
using redundancy.  For example, it would take a while for a news 
or Web collection to correctly answer a question like “Who is the 
U. S. President?” just after an election. 

An important goal of our work is to get system designers to treat 
data as a first class resource that is widely available and 
exploitable.   We have made good initial progress, and there are 
several interesting issues remaining to explore. 
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