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Abstract

A fractal can be generated by using recursion, and fractal set of data can be analyzed
in the same way. This paper regards a box-counting algorithm which exploits self-similarity
via recursion. The speed of the algorithm is O(n), where n is the number of points in the
set. The algorithm is applied to multifractal analysis of the binomial multiplicative process.
The algorithm does not involve sorting the floating-point summation; a brief examination
of the sorting issue is presented. Scattering for negative ¢, characteristic of box-counting
algorithms, is encountered, and is explained for the simple case of a uniform 1-D set.

1. Introduction

The computation of fractal dimensions is important in many fields, such as chaotic
dynamics, turbulence, geology, physiology, and satellite imagery. There are many different
ways of computing dimensions. Commonly used dimensions are the fractal dimension (limit
capacity), information dimension, and correlation dimension. In monofractal analysis, the
analyst chooses one of these in the dimensionality study. Chaos analysts have typically
chosen correlation dimension or information dimension for efficiency [Moon, 1992]. In
general, however, different types of dimension calculations will sometimes produce different
values for the dimension of the set. In such case, the set constitutes a multifractal, and
can actually be characterized by a spectrum of dimensions.

Box counting is one method for computing generalized dimensions in point sets. Some
memory-efficient box-counting algorithms involve data sorting [Barth et al., 1992; Block
et al., 1990; Meisel et al., 1992; Hou et al., 1990; Liebovitch and Toth, 1989]. The top
speed of such a code is O(nlogn), where n is the number of data. The agglomeration
method [Meisel et al., 1992], on the other hand, is not memory efficient, but its speed is
independent of n. Chachere [1992], Grassberger [1993], and Molteno [1993] reported O(n),
memory-efficient algorithms for box counting.

In this paper, we discuss an O(n) box-counting algorithm, and apply it to multifractal
analysis. The method performs no sorting. It is based on recursion. It consists of a function
which zooms into a subset of the data region, and identifies the data which lie therein.
Then, as if this subregion were an original region, the function calls itself, zooms and
identifies. This process continues. Thus, the algorithm itself is self-similar.

The algorithm is similar to that of Molteno [1993]. This work differs by pursuing a
broad range of generalized dimensions, including the estimations of the singularity spec-
trum f(«) (to be discussed shortly), varying the resolution in the box sizes, and addressing
the effect of not sorting the partition sum.

This paper is organized as follows. The next section summarizes the theoretical de-
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velopment of multifractals and the application of box-counting. This is followed by a
description of the fast algorithm for box-counting multifractal analysis. The absense of
sorting is then discussed The algorithm is then applied, and a discussion on scattering is
included.

2. Theory

Fractals have been defined as objects which are self similar at various scales, or sets
which have fractional dimension [Feder, 1988].

We start by discussing dimension in a box-covering sense. The fractal dimension, or
limit capacity, of a set is defined as the scaling exponent dy in the relationship

N(r) ~ Ar—%, r—0, (1)

where N (r) is the number of boxes of length, or “size”, r necessary to cover the set, and
A is a constant [Mandelbrot, 1983; Feder, 1988].

Suppose the set is represented by a large number of points. If these points are uni-
formly distributed across the fractal, then the fractal dimension completely characterizes
the dimension of the set. However, the situation gets more interesting if the points are
not distributed uniformly. It is possible that the mass distribution of the points varies. If
so, at a given box length r, it is possible to identify regions of the same masses . In a
multifractal, these regions of mass p comprise a fractal subset of the original set [Feder,
1988|. Introducing the scaling exponent «, such that

p=ro

the dimension of mass distributions can be plotted as a function f(«). This is called the
dimension spectrum.

The spectrum f(«) is not always computed directly. People often choose to compute
another representation of generalized dimensions. These can be described through mass
exponents. The mass, or probability density, can be estimated within a box of size r as
w; = n;/n, where n; is the number of points in the box, and n is the total number of
points. Then a measure can be constructed as

Md(Qa ’I") = Z :U’grd7

=1

where N is the number of boxes that cover the set. As r — 0, My(q,7) — 0 if d > 7(q),
and My(q,7) — oo if d < 7(q). d = 7(q) is called the mass exponent, at which My(q,r)
converges to some finite value. It is customary to define Z(q,r) = Zil pl as the partition
function. Then Z(q,r) ~ r~7(@ and thus,



From this, one can define generalized dimensions called Rényi dimensions, defined as
[Rényi, 1970; Grassberger, 1983; Hentschel and Procaccia, 1983]

_ 7@ _ .. 1ogZ(gr)
Dla) = (g—1) }—m (g—1logr’

In the limit as ¢ — 1, this expression reduces to

N
1 i log 1
D(].) — hm Zz:l l’l’ Og,l,t )
r—0 logr

D(1) is the information dimension.
The dimension functions D(q) and f(«) are related through a Legendre transformation

[Halsey et al., 1986]:
a(q) = —d%T(Q)

f(a(q)) = qa(q) + 7(q).

Typically, the D(g) are computed by estimating Z(q,r) = Y u] for various values of
r, and then by fitting the slope in the plot of log Z(q,7)/(q — 1) vs. logr.

One way to compute the y; is to cover the set with boxes of size r. In box ¢ there are
n; boxes. The probability associated with each box is p; = n;/n. The partition function
is then Z(gq,7) = > o, pf, where n, is the number of boxes of size r that cover the set.
After doing this for many values of r, D(q) is approximated from the slope of the plot of
log Z(q,7)/(q — 1) vs. logr.

Box counting has some drawbacks, such as scattering for negative ¢ [Borgani et al.,
1993; Meisel et al., 1992; Aharnoy, 1990; Buczkowski et al., 1988], and other sources of error
[Barth et al., 1992]. Methods for reducing scattering and other errors have been proposed
[e.g. Pastor-Satorras and Riedi, 1996; Yamaguti and Prado, 1997; Alber and Peinke, 1998].
Alternatives to this fixed-volume box counting include fixed-mass box counting [Badii and
Broggi, 1988; Mach et al., 1995], generalized correlation integrals [Pawelzik and Schuster,
1987], and direct computation of the f(«) spectrum [Chhabra and Jensen, 1989; Meneveau
and Sreenivasan, 1989; Yamaguti and Prado, 1995]. The use of wavelet transforms [Muzy
et al., 1994] is a powerful method free of scattering problems, and employs a broadly used
transform tool. There are further options if the data is generated by a dynamical process.
One such method uses the additional information of the dynamics of the set, and estimates
probabilities by looking at return times in the iterations of points. This approach produced
very accurate results for the circle map and Bénard convection data [Jensen et al., 1985].
Another is based on the extraction of unstable periodic orbits [Grebogi et al., 1988].

Despite its drawbacks, box counting continues to be used [recent examples include
Kurokawa et al., 1999; Laferriere and Gaonach, 1999; Fernandez et al., 1999], perhaps
because it is directly related to the presentation of multifractal theory through partition
functions, making it a natural way to approach multifractal computations. An any case,
this paper focuses on box counting. The task is to describe an efficient algorithm for
computing the y; in the cover of boxes with size r. Our focus is on estimating Z (g, r) and
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hence generating D(q). We choose the Legendre transform for converting to f(«). The
usage of the Legendre transformation and its associated issues are not addressed here, but
can be found elsewhere [e.g. Chhabra and Jensen, 1989)].

3. Self-Similar Box-Counting Algorithm

The basic idea applied in this algorithm is to use a recursive function, i.e. a function
that calls itself. This gives rise to an algorithmic structure that is self similar. This is
essentially the same structure as that presented by Molteno [1993]. Here, we apply it in
the computation of the partition functions.

We want to build the partition functions Z(gq,r) for a set S of points in some E-
dimensional embedding space. Let us first think of a set embedded in two dimensions.
The coordinates of the data are stored in a n X 2 array called DATA. The set of points
can be normalized to lie in the unit square I x I, where I = [0, 1]. The axes of the set can
be stretched proportionately to avoid dimensional distortions. We will cover the set with
square boxes whose side length is r. Trivially, one box of size » = 1 will cover the set S.
This corresponds to the zeroth order of the fractal.

The box-covering method requires that we shrink the box size r. To produce evenly
distributed results, this should be done in logarithmic increments. Suppose the box size
diminishes by a factor of two. The zeroth order covering can now be subdivided into four
boxes. These four subregions represent the first-order level of the fractal algorithm. By
checking each box to see if any of the points of S are included, we can see which boxes are
part of the first-order covering. Each subregion which contains points in S is then viewed
as its own original zeroth-order region, and is subdivided into four smaller boxes.

Figure 1 shows four boxes in the first level of the algorithm. The boxes are labeled
(0,0), (0,1), (1,0), and (1,1). Together they cover the image. Suppose some subset of the
data lies in box (0,0). These m1 points are inventoried by an integer array INDEX of length
my. This array includes the row indices of the original data set DATA corresponding to
those points which lie in (0,0) of the first level. The length scale shrinks by a factor of
two, and the box is subdivided into four smaller boxes. These smaller boxes, part of the
second level of the algorithm, are again labeled (0,0), (0,1), (1,0), and (1,1). One by one,
the program checks which, if any, of the mj points are contained in the subregion. If
so, this subregion is part of the second-level cover. Suppose there are ms points in this
subregion. (Note that each subregion will have a different number of points, and thus a
different value for ms.) Then, a global partition function, whose index corresponds to the
level of magnification, is incremented by (mso/n)?. (Note that when ¢ = 0, this reduces
to simple box-covering, as in a limit-capacity calculation.) The program then zooms into
the subregion, taking with it an integer array of length mo which contains the row indices
of DATA included in the subregion. At this new level of magnification, the process is
repeated.

To prevent this from being an infinite recursion, the zooming function only calls itself
if a certain maximum level of magnification has not been reached.

The result is a logarithmically spaced output array of box sizes, and an output array of
partition functions for each box size, which reduces to the number of boxes in the cover for
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q = 0. Since the spacing of the box sizes is logarithmic, it does not take many increments
to span the meaningful range of box sizes. To increase the output resolution, the entire
process is repeated with increments in the initial, zeroth-order region. These increments
are made logarithmically between one and two. For example, to increase the resolution
by a factor of ten, the initial box size is incremented by lengths 2%/ n =1,...,10. An
outline of the algorithm for two-dimensional sets is as follows:

0. Read and normalize the data such that it lies in the unit square I x I. Array DATA
contains n points, array INDEX contains n indices, and LEVEL is initialized at the
current level of zero. Initialize the zeroeth-order region R, =1 x I.

1. Subdivide this region into four equal subregions by cutting the length scale by a factor
of two.

2. Using subrouting ZOOM, zoom into each subregion, taking with it the current LEVEL
and the array INDEX of the indices of all data found in the mother region. At level
zero, this means all indices. Increment LEVEL = LEVEL + 1. The subregion is a
box of size r = 2~ LFVEL,

3. In the current subregion, identify which of the indices in INDEX are associated with
data in that subregion, and store them in newINDEX, defined within the subroutine.
The length 14, of newINDEX indicates the number of points in the subregion or
box, and its probability measure is p = Npep/n. Increment the partition function
Z(q,r) = Z(q,7) + pi.

4. If a maximum zooming level MAXLEVEL has not been reached, and if newINDEX
is not empty, repeat step 2, with newINDEX playing the role of INDEX.

5. Repeat step 1. for a logarithmically incremented initial region R,. This will increase
resolution in the logr output.

At each level, n indices are checked, and n components of the partition sum are
performed. Hence, there are an order of n¥xMAXLEVEL computations. Therefore the
speed of the algorithm is O(n).

Let us consider the memory requirements. We require a data array of length n x 2.
This is a global variable. There is also an array INDEX which has a maximum length of
n. A new INDEX is created locally in each subrouting. At any given instant, the program
is in, at most, MAXLEVEL subroutines, each of which defines INDEX locally. Thus,
together with DATA, there is a storage requirement of n*(MAXLEVEL + 2), plus the
contribution of a few extraneous variables. Thus, the memory requirement is also O(n).

4. No Sorting

This algorithm does not perform sorting. Sorting is generally required for computer
summations to prevent the contribution of small numbers from being lost when added to
numbers of much greater magnitude. In the case of fractal partition functions, the concern
is that extremely large values of p] may overshadow smaller values of p] such that the latter
are lost when added together in the floating point sum. This would be detrimental if the
small values of p], by their distribution in the fractal set, have and important contribution
to the true sum. However, since sorting is an n logn operation, it would defeat the speed
advantage of this algorithm. In any case, this algorithm is applied in a later section, and
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good results are obtained. Grassberger [1993] has also proposed an O(n) algorithm, and
states outright that no sorting is performed in the calculation.

Do multifractal box counts require sorting? If so, under what conditions? It is likely
that such questions can be answered by examining the sum and applying the properties
of multifractals. The ideas in this section are intended to gain some insight as to whether
sorting may be significant, and, if so, under what conditions.

The partition sum involves Zf;l pf, where p; = r®i, and the subscript on «; is defined
to correlate a value of a with a mass p; found in a box of size r. When ¢ > 0, the maximum
true quantity in the partition sum is [p9]mee = r*ming, and the minimum true quantity in
the partition sum is [p9]m,in = r*me=q. Likewise, when ¢ < 0, the maximum true quantity
in the partition sum is [u9],4, = r*me*q, and the minimum true quantity in the partition
sum is [p?]min = r*ming. The reference to a “true” quantity is in regard to the expected
occurrence of anomolous densities found in boxes which are partially filled, due to either
finite data limitations or partial overlap of the box onto the substrate of the data.

Let us reformulate the sum in terms of a discretized « space, as done, for example, by
Dubrulle and Lachiéze-Rey [1994] and also in integral form by Halsey et al. [1986]. If the
« space were discretized into M small intervals, each interval would be associated with a
number N; of associated boxes, defined by the multifractal distribution, such that N; =
Ar—f(@) "as f(a;) is the dimension of the approximate distribution of masses y; = r%.
Nj is approximate in the sense of a discrete « interval, a finite 7, and a finite data set.
Then, we could approximate the partition sum in terms of this sum on the « intervals,
such that Z(q,r) = Z;‘il Nj,ug = Z;‘il Ar@it=f(2) where a1 = tmin and oy = Cmag-

The values in this sum are expected to vary widely in magnitude, perhaps enough
to warrant a sorted sum. Let us suppose that the sum has a dominant term, or at least
a maximum term, corresponding to a dominant value of o. This maximum term occurs
where

d Y o Flos

- (res1@)) = (g — f'(@))r 1@ n(r) = 0,

do

i.e. the maximum thus occurs when ¢ = f’(«). This relationship is in essence the Legendre
transformation relating f(«) to 7(q) [Halsey et al., 1986; Dubrulle and Lachiéze-Rey, 1994].
Under this condition,

da? (Tajq_f(aj)) — _f”(a)rajq—f(aj) ln(r) <0

since f"(a) < 0, confirming a local maximum [Halsey et al., 1986]. The minimum term
occurs at one of the endpoints in the sum. Thus the dominant term in the partition sum
corresponds to the contribution of masses of dimension f(«), or those distributed according
to D(q), and does not correspond to terms of maximum 9.

For example, when ¢ = 0, the dominant or maximum term of the partition sum occurs
at the value of o where f(«) is maximum, i.e. where f(a) = D(0). (In such case, all values
of p? =1, and so no sorting is needed in computing D(0).) When g > 0 is very large, the
highest term in the sum is given by « near ay,;,, where ,u? is nearly its maximum. The
/1,? dominating terms are “similar” in magnitude to the maximum values. Terms lost in
the sum by not sorting, should such terms exist, are distant on the « axis, and are far
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from dominating. Hence, it is conceivable that the terms that may be lost by not sorting
may be terms that are not significant to the entire sum. Similarly, if ¢ < 0 is large in
magnitude, the largest contributing ,ug correspond to a value of a0 near «,,,, and thus
the largest contributing ,ug are near [u9],q.- Again, it is conceivable that the terms lost
by not sorting may not be significant to the partition sum.

If we consider small values of ¢, we find that the largest contributing terms in the sum
correspond to values of a which produce relatively high values of f(«). Thus, it is the
large numbers of boxes with the corresponding masses that contribute most significantly,
rather than fewer numbers of extreme masses. The hope is that the values of ,u? of the
maximum contribution to the sum do not differ from the [u9],,q4, to the extent that /1,? +
(1) maz = [ maz in a floating-point sum, i.e. that the maximum value does not eclipse
the contributing values when summoned in the sum.

To this end, let us consider the floating point sum =z +y = z, or 1 + y/z = 1, due to
an extremely small ratio of ¢ = y/x. The machine epsilon € can be estimated in a while
loop, in which € starts with the value 1.0, and is successively halved until 1 + € = 1 is
satisfied in the machine [Forsythe et al., 1977]. Running this loop with Matlab on our
current machine, the equation is satisfied when € = 2=2, with A = 54.

In our problem, the sum of terms [11%]n4, and pJ would be “meaningful” if [u%]qz/ 1] =}

romind — p@i4 < 274 (for ¢ > 0). This requirement reduces to

(05 — amin) > —A/qlogy(r).

Suppose A = 52 (for a couple of digits of substance), «; — amin = 1, and our scaling
region runs through log,(r) = —5. Then we may be satisfied with g up to values of ten. A
likewise discussion can be made for negative q.

Thus, depending on parameters such as the range of «, it may turn out that sorting
is not crucial for smaller magnitudes of ¢ since the values of M? do not differ excessively.
For larger ranges of a (or D(q)), and smaller the scaling ranges r, this statement weakens.
Parameters in some systems may be such that the structure of the partition sum with
values of ¢ of intermediate magnitude is not as clear. More rigorous studies could be made
into this, if there is interest in performing O(n) box counting computations. A quantitative
estimate of the error as a function of the scaling exponents, machine epsilon, and box scale,
would then be beneficial.

5. Application and Discussion

The speed of the program has been investigated with uniform two-dimensional data,
and one-dimensional data embedded in I x I. The two-dimensional data requires recursion
at all levels in all four quadrants of box-reduction scheme, and hence the time requirement
should roughly provide an upperbound on the time needed for sets embedded in two di-
mensions. The one-dimensional data should provide a lower bound for sets of dimension
greater than one embedded in two dimensions. Thus, the usage of uniform data for de-
picting the speed should not accompany any loss of generality. The output resolution was
one box count per binary decade in 7. The program ran on a Sun 4/690 equipped with 4
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central processing units, under a load of 20-25 users. Figure 2 displays a plot of cpu vs.
n (in thousands), indicating that the algorithm speed is O(n). The similarity in speeds
suggests that n has a stronger influence on speed than the distribution of the data.

Because of this order of speed, there will be some value of n where it becomes more
efficient than an algorithm of speed O(nlogn). Molteno [1993] provides a quantititive
comparison between the speeds of recursive box covering and the sort-based method of
Hou et al. [1990].

The program’s accuracy has been tested on 16K samples of a stochastic binomial mul-
tiplicative process [Feder, 1988]. We do not investigate the idiosyncrasies of box counting
(through examing many sets), since the nature of box counting has been studied in other
works. For any box-counting multifractal analysis, the results should be closely scrutinized
before they are trusted.

The binomial multiplicative process was generated by using an iterated function sys-
tem [Barnsley, 1988]. The functions were fi(z) = x/2, and fa(xz) = 1/2 + x/2. The
probabilities associated with the two functions were skewed, with p; = 0.25 and ps = 0.75,
leading to a multifractal distribution of points. Figure 3 depicts the results for D(g) and
f(a), with a box-counting computation performed only at box sizes r = 27¢, where i is
an integer. The circles indicate calculated values, and the solid lines show the theoretical
curves. In reference to the discussion on sorting in Section 4., the values of a(q) in Fig-
ure 3 are rather near the extremes for, say, |¢| = 5, and the scaling region runs through,

say, logy(r) = —6 (Figure 4). Thus, we might not expect significant sorting problems
throughout the computation.
A comparison of log Z(q,r)/(qg — 1) vs. logr for ¢ = —5 at two different output

resolutions is shown in Figures 4 and 5. Figure 4 displays the plot for box sizes of 2%, and
Figure 5 shows the scattering seen at ten times the resolution of Figure 4.

It turns out that, for box sizes of 27¢, the structure of the box-counting algorithm
perfectly matches that of the binomial multiplicative process, which is also defined in terms
of powers 27%. For this reason, the results are especially clean. Generally, sets do not
have the same internal structure as the box-counting algorithm. This invariably leads to
scattering problems in the log-log plots for ¢ < 0. Since the Legendre transformation from
D(q) to f(«) involves differentiation, errors from scattering are magnified. Thus the present
example allows us to witness the performance of the summing algorithm independent of
box-counting scattering issues.

5.1 On scattering

An oft-cited cause of scattering is the occurrence of partially “filled” boxes in the
partition function [e.g. Yagamuti and Prado, 1997; Chhabra and Jensen, 1989; Borgani
et al., 1993]. If there are uncharacteristically thinly filled boxes, the associated u; will be
uncharacteristic to the fractal. For example, suppose we have 1000 points covered by 10
boxes. If each box contains 100 points, then the partition function will have a value of
N(q,7) = 10 ¥ 0.19. For ¢ = —5, this gives N(—5,7) = 108. Instead, suppose there are
1001 points covered by 11 boxes, 10 of which contain 100 points, and one which contains
one point. Then N(g,r) =10 % (100/1001)? 4 (1/1001)4. For ¢ = —5, the term (1/1001)?
dominates, leading to N(gq,r) ~ 10'°. Thus, an outlying point or an edge point can lead
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to large variations in N (g, ).

To test this hypothesis, we have calculated the box-counting measures for a uniform
unit interval I. The covering geometry in this example is as follows. Boxes (or measuring
sticks) of length r are stacked, starting at the origin (the left endpoint of I'), along the
interval so as to cover I. The log, r resolution is chosen to be ten samples per decade
(where a decade is an interval of log, 2 = 1). We can calculate the partition function for
the covering of the interval. For ten uniform increments in log, r, the starting box has
length 29/1% — |, where j = 1,2,...,10, and [ is the level I of magnification. The cover
will consist of boxes which are completely filled, and a partially filled box near the right
endpoint of I. The measure in this partially filled box is 1, = 1modr. The measure in
the full boxes is 4 = r. The number of full boxes in the cover of I is M = (1 — p,)/r.
Thus, the resulting partition function is Zy(q,r) = Mr? + pd. Figure 6 shows plot of
logy Z1(—5,7) vs. logyr for this uniform interval as compared to Z(—5,7) computed by
the box-counting code for n = 16K random data on the unit interval. Here, the box-
counting code uses the same covering geometry as used in the “theoretical” calculation of
Z1(q,r). The theoretical calculation, given by + symbols, represents the limiting case as
n — 00. The plot for n = 16K points is given by the o symbols. The similarity indicates
that partial coverings on the boundaries of sets causes scattering. Since the geometry of
this set is “clean”, the scattering has a well-defined pattern for negative q. More arbitrary
sets would probably produce less-discernable scattering patterns.

For the sake of illustration, we omit the contributions of boxes near the edges of
the set by using a priori information, and thereby reduce scattering. In the f(a) curve,
Umin = D(00) and ez = D(—0), and apmin < @ < Qmag, With p; = r*. If the
data represents a well-ordered multifractal, there should primarily be contributions to
probability measures in the range r¢mes < y < r@min Knowing tunqez, we know the lower
bound on the range of values for u, and thus omit the contribution of any box with u
below this range. While this is an “engineering” remedy that needs a prior:i information,
it provides an illustration of the computation with respect to scattering and resolution.
Indeed, in some cases, such insight might come from a scattered, unmodified calculation,
for example from a plot such as that shown in Figure 5. If scattering is due to partially
filled boxes, as discussed above, then the scattered computations would contribute data in
the plot below the “true” log-log curve.

Figure 7 shows partition functions Z(—5,7), for the binomial process, calculated by
omitting any p < r%mer with 4, = 2. This figure can be compared to Figure 5,
which was computed with no modifications. Figure 8 shows the resulting D(q) and f(«)
curves, plotted with the symbol o, as compared to the theoretical solid curves. Without
modifications, the f(«) curve estimated from computed outputs with high resolution in r
suggests an aupq, ~ 1.8, compared to a theoretical auyq, = 2.

More rigorous approaches to scattering can be found [e.g. Borgani et al., 1993, Pastor-
Satorras and Riedi, 1996; Yamaguti and Prado, 1997].

Typically, however, box counting provides good estimates of D(q) for positive g. Thus,
it is acceptable for the commonly computed quantities D(0), D(1), and D(2).

Noting that this code rigidly adheres to a binary subdividing structure, it might be
fruitful to consider other possiblities. Barnsley [1988] suggested that many fractal images
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can be easily approximated by iterated function systems (IFS). The iterated functions
could be identified by taking advantage of the “collage theorem”. It seems reasonable
that, if the resulting collage consists of non-overlapping pieces, then the IFS could be
exploited in the box-counting code. The trick would be make sure that each point does
not get counted into more than one box (in case the collage overlaps), and that the box
sizes used in the cover are uniform. If this works for some examples, it seems that the
structure of the code might agree with the structure of the fractal, and scattering might
be reduced.

6. Higher Dimensions

It is often desireable to calculate dimensions for sets with an arbitrarily large em-
bedding dimension E. This is especially the case when analyzing an experimental time
series, in which one tries to reconstruct the strange attractor from time-series data [Tak-
ens, 1981; Broomhead and King, 1986; Gershenfeld, 1988]. Either E is unknown, and the
dimensionality study is conducted through many values of E, or E is predetermined via a
“nearest-neighbor” [Kennel et al., 1992] or singular-systems [Broomhead and King, 1986]
study.

The above box-counting algorithm zooms into subregions one by one. For squares in
the plane, it does this by two nested loops. In E dimensions, this requires F nested loops.
Since there are E nested loops of binary subdivision, the speed of the algorithm will be
O(2%). Indeed such a trend is observed in numerical examples. Thus, the algorithm may
not be efficient for high-dimensional data.

7. Conclusion

We have discussed an algorithm for box counting that is O(n) in both speed and
memory requirement. The algorithm, similar to Molteno’s [1993], is based on recursive
subdivisions of the covering grid. The speed is similar to the algorithms previously pre-
sented by Chachere [1992] and Grassberger [1993], reinforcing that box counting can be
efficient.

This algorithm has been applied to multifractal analysis of data generated by the
binomial multiplicative process. Computed results were compared to theoretical results.
The algorithm does not perform sorting. We looked at the dominant terms in the partition
sum, and found that when ¢ is large in magnitude, the dominant terms are among the
largest magnitude terms in the sum, and hence unsorted sums should not lose the dominant
terms. For ¢ that are low in magnitude, the span of terms in the partition sum, p9, are
less likely to span the limits of machine epsilon. In any case, there is no concern about
sorting when computing D(0), and little concern with the other common quantities D(1)
and D(2).

Inherent to box-counting algorithms, there is a problem of scattering in the partition
functions Z(q,r) for negative values of q. One cause of scattering is the low-probability
associated with points in boxes near the edge of a fractal set. For illustration, we used a
coarse modification in which, essentially, the contributions of these boxes are omitted. The

10



A priori information needed for this modification may not be available in all applications,
but in some cases such information may be ascertained from a preliminary scattered,
unmodified computation.

While the algorithm was described in two-dimensional embedding space, it can be
extended to higher dimensions. In terms of the embedding dimension, the speed is O(2%).
Thus, for large E, such as in the reconstructed phase space of a dynamical system, the
algorithm may lose its advantage.
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Figure Captions

Figure 1. This schematic diagram shows the self similarity of the algorithm. There
are four boxes in the first level, together covering the entire data set. Suppose there are
data in the box labeled (0,0). Then, the algorithm zooms into this box, and divides it into
the four boxes in the second level. In the case pictured, there are data in box (0,1), so we
zoom in and divide it into four boxes at the third level. At this level, we see the resolution
of the image.

Figure 2. A plot of cpu time vs. n (in thousands) shows that the algorithm is O(n).
These computations went through ten levels of zooming, with an output resolution of one
box count per binary decade in r. Plus marks joined by a solid line are for tests of a
one-dimensional line in a two-dimensional embedding space, and circles joined by a dashed
line represent tests on uniformly filled two-dimensional space.

Figure 3. Dimensional calculations for the binomial multiplicative process with a
probability of 0.25 associated with the left, and 0.75 with the right. (a) Rényi dimensions
D(q). (b) Dimension spectrum f(«). The calculations from box counting (circles) are
compared to the theoretical (solid) curve (Feder, 1988). Resolution in r was one output
per binary decade.

Figure 4. Scattering in the partition function Z(gq,r) for the case of ¢ = —5 for
low-resolution data (one r sample per binary decade).

Figure 5. High-resolution data (logr spaced at ten samples per binary decade) shows
a scattering pattern.

Figure 6. Scattering in partition functions (¢ = —5) calculated for uniform one-
dimensional sets indicates that the cause is in the partially covered edges of the set. These
lead to partially filled boxes with low probabilities, not characteristic to the distribution
in the set. Circles (o) represent the box-covering computations on 16K points, and plus
signs (+) depict theoretical values for a solid line.

Figure 7. Partition functions (¢ = —5) for the binomial multiplicative process, calcu-
lated with a modified box count which omits uncharacteristic low-probability boxes.

Figure 8. For the modified box count which omits the uncharacteristic low-probability
boxes, (a) the corresponding D(q) curve (0), and (b) the corresponding f(«) curve (o), are
compared to the corresponding theoretical (solid) curves.
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