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We investigate analytically and experimentally the effects
of Coulomb friction on the performance of centrifugal pen-
dulum vibration absorbers (CPVAs), which are used to re-
duce torsional vibrations in rotating machinery. The analysis
is based on perturbation methods applied to the non-linear
equations of motion for a rotor subjected to an engine order
applied torque and equipped with a circular path CPVA with
viscous and Coulomb damping. The experimental work is
based on quantifying parameters for the damping model us-
ing free vibration measurements with a viscous and Coulomb
damping identication scheme that is enhanced to better han-
dle measurement noise, and running tests for steady-state
operation under a range of loading conditions. The level of
Coulomb damping is varied by adjusting the friction of the
absorber connection bearing. Good agreement is found be-
tween the analytical predictions and the experimental data.
It is shown that the absorber sticks up to a level of excitation
that allows it to release, after which the Coulomb damping
acts in the expected manner, resulting in lowered response
amplitudes. The results obtained are of general use in as-
sessing absorber performance when dry friction is present in
absorber suspensions.

1 Introduction
Centrifugal pendulum vibration absorbers (CPVAs)

have been shown to significantly reduce torsional vibrations
in rotating machinery that arise from engine order excitation
[1–5]. Applications include internal combustion engines, he-
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licopter rotors, turbines, and rotary aircraft engines. CPVAs
have been used for several decades, having been proposed
by E. S. Taylor in 1934 [6] to prevent propeller shaft failures
in the Wright R-1820 engine, further developed for Curtis-
Wright and Pratt & Whitney military aircraft engines [7],
and since used in light aircraft engines and helicopter ro-
tors [8]. Previous use of CPVAs in aerospace applications
has been to reduce torsional vibrations of a rotor operating at
a nearly constant angular velocity, denoted as Ω. Recent re-
search has been conducted into the response and correspond-
ing effectiveness of CPVAs for use in automotive applica-
tions, wherein Ω varies over a range of operation, and often
induces transient responses [9, 10].

CPVAs are masses suspended from a rotor in such a way
that they are free to move along a desired path, similar to that
of a simple pendulum, for which the path is a circle. CP-
VAs have several inherent properties which make them ideal
for use in rotating machinery. First, they have a natural fre-
quency that scales with the rate of rotation, say ñΩ, which
corresponds to a specific order of oscillation ñ, thereby al-
lowing them to be tuned over a continuous range of rotor
speeds. In automotive applications, the excitation order is a
function of the number of cylinders being used. In a four
stroke internal combustion engine, each cylinder has a cy-
cle of two rotations, or a period of 4π radians. Thus, an N
cylinder engine will have a leading order harmonic at order
N
2 , and the resulting rotor torque can be modeled by its dom-
inant harmonic, T sin(nθ), with n = N/2.

When tuned with ñ ≈ n, the absorber will oscillate in
a manner that passively counteracts the fluctuating applied
torque acting on the rotor at the corresponding order. This



works similar to the tuned translational absorber, and has the
advantage that it remains tuned for all operating conditions.
Lastly, these devices dissipate very little energy, and are thus
very energy efficient. However, the small energy dissipated
by the pendulums does have a significant effect the perfor-
mance of the CPVA. In all past investigations this dissipa-
tion has been modeled as equivalent viscous damping, but in
many configurations, such as the common bifilar suspension,
rubbing between surfaces can occur, and thus dry friction ef-
fects may be important. In fact, sticking of absorbers has
been observed in experiments, as described in this work.

Den Hartog [5] first considered non-linear effects asso-
ciated with circular path CPVAs and investigated the unde-
sired off tuning experienced by pendulum absorbers at mod-
erate amplitudes, and the possibility of a jump instability that
is disastrous for the absorber’s performance. Newland [11]
expanded on Hartog’s idea of overtuning the pendulums in
order to avoid this instability and developed a set of guide-
lines for choosing the tuning order. Nester [4] theoreti-
cally and experimentally investigated the steady-state circu-
lar path absorber response with an equivalent viscous damp-
ing model. Madden’s patent on cycloidal paths [12] started
research into alternative paths that help deal with these non-
linear effects. Denman [3] explored other paths in the con-
text of automotive applications; he proposed a convenient
two-parameter family of epicycloidal paths that includes the
limiting cases of circles and Madden’s cycloid, as well as a
particular path, the tautochronic path, that avoids nonlinear
detuning for a large, but finite, range of absorber amplitudes.

The present work extends earlier investigations by in-
vestigating the effects of dry friction. A simple Coulomb
friction term is included in the equations of motion, which
are treated using the method of averaging to predict the per-
formance of the absorber in terms of the system and exci-
tation parameters. Experiments are carried out using a ro-
tor rig with a compound pendulum absorber, as described
in [4] and below. A simultaneous viscous/Coulomb decre-
ment method is used to accurately quantify the viscous and
Coulomb damping parameters, and the method is recast to
account for noise and low resolution in the experimental
data. The measured system parameters are used to com-
pare steady-state system response data with analytical pre-
dictions, and the results are found to be in good agreement.

2 Mathematical Formulations
2.1 Equations of Motion

Figure 1, depicts a schematic of a rotor/ CPVA system,
where relevant parameters are defined in Table 1. The kinetic
energy of this system is given by,

Tt =
1
2

Jrθ̇2 +
1
2

m
[
R2θ̇2 +2RLθ̇(θ̇+ φ̇)cos(φ)

]

+
1
2

m
[
L2(θ̇+ φ̇)2 +ρ2(θ̇+ φ̇)2]

(1)

where Jr is the rotational inertia of the rotor, ρ is the ab-
sorber’s radius of gyration about its center of mass, m is the

absorber mass, and the other variables and parameters are
shown in Figure 1 and listed in Table 1. Note that if the ro-
tor lies in a horizontal plane there are no conservative forces
acting on the system, and hence the potential is zero (in fact,
this is a good approximation for vertical rotors as well, at
least for most rotational speeds experienced in practice, for
which g << RΩ2). The generalized forces associated with
the damping and applied torque acting on the rotor are,

Qθ =−coθ̇+To +T sin(nθ)

where co is the viscous damping coefficient for the ro-
tor bearings, To is the DC component of the torque, and
T sin(nθ) is the fluctuating part of the applied torque. For
the absorber,

Qφ =−caφ̇−Fssgn(φ̇)

where ca is the absorber viscous damping coefficient and Fs
is the magnitude of the moment acting on the absorber de-
scribed by Coulomb friction. Using these results, the equa-
tions of motion are obtained using Lagrange’s method. The
coupled rotor and absorber equations of motion are thus
given by, respectively,

[
Jr +mR2 +m(L2 +ρ2)+2mRLcos(φ)

]
θ̈

+m(L2 +ρ2 +RLcos(φ))φ̈−mRLφ̇sin(φ)
[
2θ̇+ φ̇

]

+ coθ̇ = To +T sin(nθ)

(2)

m(L2 +ρ2 +RLcos(φ))θ̈+m(L2 +ρ2)φ̈
+mRLθ̇2 sin(φ)+ caφ̇+Fssgn(φ̇) = 0.

(3)

From the vibration absorption point of view, the important
quantity in Eqns.(2) and (3) is the rotor angular acceleration,
θ̈, which is desired to be as small as possible, implying that
the rotor runs at (nearly) constant speed. This is achieved
when the absorber motion imposes a torque on the rotor that
(nearly) cancels the fluctuating applied torque. Due to damp-
ing, detuning, and nonlinear effects, perfect absorption is not
feasible, but significant reductions in torsional vibrations can
be achieved.

In order to determine the linear tuning order of the ab-
sorber, we consider the case in which the rotor is spinning at
a constant speed (θ̇ = Ω) and absorber angles are small, in
which case Eqn. (3) reduces to

m(L2 +ρ2)φ̈+mRLΩ2φ+ caφ̇+Fssgn(φ̇) = 0. (4)

This system has an undamped natural frequency of the form
ωn = ñΩ where we define the linear tuning order as,

ñ =

√
RL

L2 +ρ2 .



Fig. 1. Schematic of rotor and CPVA used for deriving the equations
of motion.

Table 1. Definition of symbols in Fig. 1

Symbol Physical Meaning

θ Rotor angle

φ Absorber’s swing angle with respect to the rotor

R Distance from the rotor center to the absorber’s

center of rotation

L Distance from the absorber’s center of rotation

to its center of mass

0 Center of rotor

c Location of the absorber’s center of mass

A Point about which the absorber swings

Note that this tuning is easily adjusted by design, but cannot
be varied once realized in hardware.

2.2 Nondimensionalization and Scaling
The equations of motion (2) and (3) developed above

comprise an autonomous set of differential equations due to
the fact that the cyclic applied torque, T sin(nθ), is expressed

as function of the rotor angle. To perform further analysis on
these equations, using the scheme described in Alsuwaiyan
[1] and Nester [4], the independent variable is switched from
time to θ. In order to accomplish this, a new non-dimensional
variable for the rotor angular speed is defined as

ν =
θ̇
Ω

(5)

which will be assumed to depend on θ, instead of time, as
the independent variable. Note that in terms of this variable,
the rotor angular acceleration is given by

θ̈ = Ω2νν′

and thus νν′ is a nondimensional measure of the rotor tor-
sional vibration. Similarly, the absorber angle, φ, is con-
verted to a non-dimensional arc length variable

s =
Lφ
β

(6)

that also depends on θ, where β is a length parameter which
will be used to make the equations readily comparable to
those derived by Alsuwaiyan [1] for general path, point mass
CPVA’s. Making these substitutions in Equations (2) and (3),
expanding the sines and cosines to third order in s, and rear-
ranging terms yields the non-dimensional rotor and absorber
equations (Eqns. (27) and (28)), which are given in the Ap-
pendix. Derivatives are now in terms of θ, i.e., ( )′ = d( )/dθ,
and some important quantities are defined as follows, and de-
scribed below:

ε =
mβ
JrL

(LR+L2 +ρ2)

µa =
ca

mΩ(L2 +ρ2)
ϕ(s′) = fs sgn

(
s′
)

fs =
FsL

mβΩ2(L2 +ρ2)

µo =
co

JrΩ

Γo =
To

JrΩ2

Γ(θ) =
T

JrΩ2 sin(nθ).

(7)

The ε term is physically the ratio of the pendulum’s inertia
to that of the rotor, and will be used as the small bookkeep-
ing parameter in the perturbation analysis. A comparison
between the above equations and those in Alsuwaiyan [1]
reveals that by taking β = L(1 + ñ2), these equations are
identical to those with a point mass moving along a circular
path, by accounting for the moment of inertia of the absorber



pendulum about its center of mass. Parameters µa and fs
represent the non-dimensional viscous and Coulomb friction
quantities, respectively, µo captures the rotor bearing viscous
damping, Γo represents the mean applied torque, and Γ(θ)
describes the fluctuating torque.

It has been shown by Alsuwaiyan [1] that by scaling
terms in a particular way the rotor dynamics can be uncou-
pled, to leading order, from the absorber, allowing one to
reduce the problem to essentially that of a Duffing oscillator.
The required scaling is given by,

s = ε1/2z
µa = εµ̃a

ϕ(s′) = ε3/2ϕ̃(s′)
µo = εµ̃o

Γo = εΓ̃o

Γ(θ) = ε3/2Γ̃(θ)

ν = 1+ ε3/2w
ñ = n(1+ εσ)

(8)

where we have taken the following terms to be small, con-
sistent with realistic system parameters: the absorber ampli-
tude, the absorber viscous and Coulomb dampings, the ro-
tor damping, the mean torque, the amplitude of rotor oscil-
lations, the applied fluctuating torque, and the detuning εσ
between the absorber order ñ and the excitation order n.

Employing these scaling assumptions in Eqn. (27), ex-
panding, and keeping terms to order ε3/2, yields the follow-
ing equation for the non-dimensional rotor angular accelera-
tion

νν′ = ε3/2 (
ñ2z+ Γ̃(θ)sin(nθ)

)
+O(ε2), (9)

which is desired to be made small by the absorber.
Using the above expression for the rotor acceleration,

along with the scaling, allows for the rotor dynamics to be
eliminated from the absorber dynamics given in Eqn. (28),
resulting in the following uncoupled absorber equation of
motion,

z′′+n2z =

ε(2γoz3−2n2σz− fs sgn(z′)− µ̃az′ − Γ̃(θ)−n2z)+O(ε3/2),
(10)

where

γo =
n2

12
(n2 +1)2 (11)

is the softening nonlinear stiffness coefficient associated with
a circular path absorber. By varying γo one can study a pa-
rameterized family of paths [1].

2.3 Perturbation Analysis
To obtain approximate solutions to the absorber equa-

tions of motion (10), the method of averaging is applied. To
begin, we express the absorber motion in polar coordinates
of the form

z(θ) = a(θ)sin(nθ+α(θ)) (12)
z′(θ) = na(θ)cos(nθ+α(θ)) (13)

where a and α are the amplitude and phase of the absorber
response which, under our assumptions, will be slowly vary-
ing functions of θ. Applying the method of averaging yields
the following equations that govern the averaged values of
(a,φ) to leading order in ε,

ā′ = ε
(
− µ̃a

2
ā− 2 fs

π
+

Γ̃(θ)
2n

sin ᾱ
)

(14)

āᾱ′ = ε
(
−3γo

4n
ā3 +nā(σ+

1
2
)+

Γ̃(θ)
2n

cos ᾱ
)

. (15)

The constant steady state amplitude and phase, ā = ass
and ᾱ = αss, are determined by solving for the zeros of these
equations, which satisfy,

Γ̃
2n

sinαss =
µ̃a

2
ass +

2 fs

π
(16)

Γ̃
2n

cosαss =
3γo

4n
a3

ss−nass(σ+
1
2
). (17)

Using (Γ̃cosαss)2 +(Γ̃sinαss)2 = Γ̃2 the steady state phase
can be eliminated from Eqns. (16) and (17), resulting in the
following relationship between the amplitude of the fluctuat-
ing torque Γ̃ and the steady-state absorber amplitude,

Γ̃2 =
(

µ̃a

2
ass +

2 fs

π

)2
+

(
3γo

4n
a3

ss−nass(σ+
1
2
)
)2

. (18)

Once ass is obtained from this expresssion, Eqns. (16) and
(17) can be used to recover the corresponding phase αss.

A useful result immediately available from Eqn.(18) is
the torque level needed for the absorbers to overcome the
dry friction and begin to move. This is obtained by letting
ass = 0, from which we find the following torque amplitudes,
expressed in terms of non-dimensional and physical parame-
ters, respectively, that are required for the absorbers to begin
to oscillate:

Γ̃ > Γ̃∗ =
2 fs

π
T > T ∗ =

FsJr

m(L2 +R2 +RL)
. (19)



2.4 Analytical Steady-State Results
Equations (9) and (18) allow for investigations of the

effects of Coulomb friction on the steady-state system re-
sponse. In order to demonstrate the general effects of
Coulomb friction, we first show sample response plots for
a system with and without Coulomb friction. Figure 2 dis-
plays the non-dimensional absorber amplitude |s| and non-
dimensional rotor angular acceleration |νν′| as functions of
the non-dimensional fluctuating torque amplitude Γ̃ for mod-
els with and without Coulomb damping, with parameter
values taken from the experimental study described subse-
quently. It should be noted that in all of the subsequent plots
exhibiting the rotor angular acceleration, the active absorber
does not achieve the level of vibration reduction which is
commonly required in applications. This is due to a very
small ratio of absorber inertia to that of the rotor (≈ 1.5%)
in the experimental rig, which could easily be increased
through the use of additional absorbers. As the intention of
this paper is to analyze the effects of Coulomb friction on the
absorber this practicality will be of minor importance here.

Referring back to Figure 2, it is seen that with Coulomb
friction present, the absorber sticks up to the threshold Γ̃∗ ≈
0.002, after which point the absorber is released. During the
sticking phase the rotor angular acceleration follows the ref-
erence line that corresponds to the case with the absorber
locked at its zero position. Once the absorber is released,
its motion initially causes the torsional vibrations to flatten
out as Γ̃ is increased, until nonlinear effects take over and
the vibration levels begin to increase slightly, after which an
instability occurs, as described next. From Figure 2 (a) it is
evident that as Γ̃ increases, the absorbers go unstable (indi-
cated by the dotted lines) and a jump occurs. This jump is
accompanied by a π radian shift in the phase between the ab-
sorber and the rotor. This phase shift of the absorber results
in an increase in the torsional vibrations on the rotor. This is
the undesired instability first investigated by Newland [11],
and its effects on torsional vibrations can be observed by
plotting the rotor angular acceleration amplitude against Γ̃,
as shown in Figure 2 (b). For reference, the linear viscously
damped as well as the linear undamped rotor angular acceler-
ation response are shown. As evident, the rotor acceleration
is exactly zero for the linear, conservative, perfectly tuned
absorber. The linear rotor response with absorber damping
is a straight line tangent to the non-linear, viscously damped
response at the origin. In fact, in the linear case, only damp-
ing and detuning cause the rotor response to be nonzero. The
non-linear conservative rotor response is tangent to the zero
rotor angular acceleration axis, until the nonlinearities are
prominent, and the absorber begins to amplify at a critical
torque level which is less than the damped version. One can
identify the damping effects on the absorber by looking at
Eqn. (19). In summary, Figure 2 (b) shows that the linear
rotor response is zero for the undamped case, and increases
with the addition of viscous damping. The pendulum non-
linearity causes an onset of instability when the amplitude of
fluctuating torque exceeds a critical level. Coulomb damping
in the nonlinear system degrades the absorber performance
relative to the viscously damped system, but increases the

torque range below the amplifying instability. These trends
carry over for small amounts of detuning. The linear equa-
tions of motion are presented for reference in Appendix B.

In practice, the absorbers are commonly overtuned (ñ >
n) in order to allow for a wider range of torques. Shown
in Figure 3 are the absorber amplitude and rotor angular ac-
celeration, in terms of analytical predictions and simulations
of the nonlinear equations of motion, plotted against Γ̃ for
different values of σ, the absorber detuning. One can see
that choosing the level of detuning is a design problem, since
larger levels of detuning allow for the absorber to operate in
the stable region for a wider range of torque, but they also
slightly reduce the effectiveness of the absorbers, in terms of
reducing torsional vibrations.

(a)

(b)

Fig. 2. (a) Non-dimensional absorber amplitude vs. non-
dimensional fluctuating torque amplitude for the different damping
models and σ = 0. (ass vs. Γ), (b) Non-dimensional rotor accel-
eration amplitude vs. non-dimensional fluctuating torque amplitude
for the different damping models and σ = 0. (νν′ vs. Γ).



(a)

(b)

Fig. 3. (a) Non-dimensional absorber amplitude vs. non-
dimensional fluctuating torque amplitude for different levels of detun-
ing. (ass vs. Γ), (b) Non-dimensional rotor acceleration amplitude
vs. non-dimensional fluctuating torque amplitude for different levels
of detuning. (νν′ vs. Γ)

Figure 4 depicts the effects of varying Coulomb friction
on the system response in terms of analytical predictions and
simulations. Figures 4 (a,b) display the steady-state ampli-
tudes of the absorber and the rotor angular acceleration ver-
sus Γ̃ for three different damping conditions, with 4% (σ = 3)
absorber overtuning. Here cases A, B, and C represent dif-
ferent levels of viscous and Coulomb damping, given in Ta-
ble 2, which are selected to match experimental results. It
is seen that increased levels of Coulomb friction allows for
a larger torque to be applied to the rotor before the absorber
goes unstable. As noted above, the absorber “sticks” for a
range of torques and the rotor angular acceleration is that of
the system with the absorber locked at zero. As the level
of Coulomb friction is increased, it takes a greater level of
fluctuating torque to achieve absorber oscillation. This is

confirmed in Figure 4(a), which shows that as the level of
Coulomb friction is increased, the absorber sticks for a larger
level of fluctuating torque, and the response becomes unsta-
ble at a larger torque levels. However, from Figure 4 (b) it
is also seen that as the absorber sticks for larger values of
torque, it is not effective as an absorber in terms of reducing
rotor torsional vibrations.

(a)

(b)

Fig. 4. (a) Non-dimensional absorber amplitude vs. fluctuating
torque amplitude for different levels of Coulomb friction and 4% de-
tuning. (ass vs. Γ), (b) Non-dimensional rotor acceleration amplitude
vs. non-dimensional fluctuating torque amplitude for different levels
of Coulomb friction and 4% detuning. (νν′ vs. Γ)

2.5 Experimental Investigation
The experimental rig consists of a shaft (the rotor) with

a mounting section for up to four absorbers, driven by a
controlled electric motor. For the present study the setup is
equipped with one free absorber, as well as balance masses



Table 2. Damping Values Associated with Letters A, B, and C in
Figures 4, 7 and 8.

Letter β xk

A 0.000268 0.0354

B 0.0025 0.1077

C 0.0051 0.218

that can be used to vary the inertia of the rotor (and hence ε).
A photo of the experimental rig, a schematic diagram of the
experimental setup, and photo of the experimental circular
path CPVA, consisting of a “T”-shaped compound pendu-
lum, are shown in Figure 5. The instantaneous angle of the
absorber φ is measured via an optical encoder. The instanta-
neous rotor speed θ̇ is also measured by an optical encoder,
from which the mean and harmonic components, as well as
the angular acceleration, can be distilled. The torque T (θ)
applied to the rotor is supplied by an input voltage to the ar-
mature, and is quantified by measuring the current produced
by the spinning of the rotor; a current to voltage conversion is
set in the control box which allows the corresponding torque
voltage to be displayed in Labview. Using the inertial prop-
erties of the motor given by the manufacturer, the torque (in
Newton-meters) can then be obtained from the voltage mea-
surement. All three of these signals (absorber angle, rotor
speed, and torque) are fed into a PC running data acquisition
and control software (coded in LabVIEW), which allows for
real-time viewing and post-processing of data in the time or
order (frequency divided by the mean speed) domains. The
custom written LabVIEW code also allows for PID feedback
control of the mean rotor speed to maintain a nearly constant
mean speed, upon which the fluctuating torque is applied.
Further details of this rig are described in [13].

The first set of experiments described are from free vi-
brations of the absorber, which are initiated by shutting off
a resonant fluctuating torque and letting the absorbers ring
down, while maintaining nearly constant rotor speed. These
results are used to measure the absorber damping parame-
ters. A set of steady-state runs are then carried out under
different loading and tuning conditions, for different levels
of absorber bearing friction, and the measured response re-
sults are compared with the predictions obtained from the
perturbation analysis.

2.6 Experimental Identification of Damping Parame-
ters

In order to compare theoretical and experimental results,
the effective viscous and Coulomb friction damping values
associated with the experimental absorber must be deter-
mined. The primary source of this damping is resistance in
a roller bearing that supports the pivot of the absorber pen-
dulum. To estimate these parameters, a scheme by Liang
and Feeny [14] is adopted, in which the parameters are deter-

(a)

(b)

(c)

Fig. 5. (a) Photo of experimental rig (b) Schematic of experimental
rig (c) Photo of experimental circular path absorber

mined from free vibration information. This is accomplished
by solving the piecewise linear, single degree of freedom os-
cillator equation, Eqn. (4), in a piecewise manner with vis-
cous and Coulomb damping, for consecutive extrema of the
free vibration response, denoted here as Xi. From this solu-
tion one can derive the following recursive relationship:

Xi =−e−βπXi−1 +(−1)i−1(e−βπ +1)xk, i = 1,2, .....,n
(20)

where β contains the viscous component (β = ζ/
√

1−ζ2)
where ζ = ca/2me f f ωn, with me f f = m(L2 + ρ2) and ωn =



ñΩ, and the Coulomb friction is contained in xk = Fs/ke f f ,
where ke f f = mRLΩ2 is the effective stiffness due to cen-
trifugal effects. To isolate the viscous damping coefficient,
we sum successive expressions for Xi’s; computing Xi +Xi+1
and canceling and rearranging terms yields,

Xi +Xi+1

Xi−1 +Xi
=−e−βπ (21)

from which one can determine β. Once β is found, xk can
be obtained using Eqn. (20), from which one determines the
magnitude of the dry friction torque acting on the absorber,
Fs = mRLΩ2xk.

The expressions for computing β (Eqn. (21)) and xk
(Eqn. (20)) make use of 3 consecutive measurements of local
peaks in the free vibration response. If there is noise in the
system and/or uncertainty in the measurements, the precision
degrades. To deal with this, we can generalize Eqn. (20) to
allow a range of i + m half cycles to i half cycles (achieved
by expanding Eqn. (20) and substituting in the expression
for Xi−1), such that

Xi+m =(−1)me−mβπXi +(−1)i+m−1(e−βπ +1)xk

m

∑
j=1

e−(m− j)βπ.

(22)
This allows for a measurement over a range of m half cycles,
resulting in,

Xm +Xi+m

Xi−1 +Xi
=−e−mβπ. (23)

Which allows for the full range of decay to be used. This
can be further improved if we let i→ i+n, in which case the
measurement of consecutive half-cycles can be avoided all
together. Doing this we obtain the cases,

Xi+m−Xm+n+i

Xi−Xi+n
= (−1)me−mβπ n even (24)

for the case when both measurements are maxima (or both
minima), and

Xi+m +Xm+n+i

Xi +Xi+n
= (−1)me−mβπ n odd (25)

when the measurements are one each of maxima and minima.
In these expressions the numerators and denominators mark
the differences in extrema over n half cycles, and the ratios
express how these differences are changing over a decay of
m half cycles. Similarly to the single cycle case, β can be
estimated from either Eqn. (24) or (25), and then then xk (Fs)
can be found from Eqn. (22). If m = n then we need only
3 measurements, which can be taken to cover a wide span
of decaying oscillations. These generalizations help improve

the accuracy of the decrement scheme by allowing one to
capture data from the entire range of free vibration (m), as
well as by spreading consecutive measurements to a wider
range (n), which helps deal with low resolution in the mea-
surements.

To perform the free vibration analysis on the test rig, the
rotor was spun up to a speed of 350 RPM, and an oscillat-
ing torque was applied on top of the mean torque to initiate
an absorber response. Once the absorber was oscillating at
a desired amplitude, the oscillating torque was immediately
turned off, leaving only the mean torque on the rotor. The
absorber was then in a free vibration mode, decaying in am-
plitude due only to the damping components. In order to
determine β and xk values from the data, an m + n was cho-
sen that covered the entire range of the response with m and n
values directly in the middle of the response (m,n = 25 half
cycles). This yielded β = 0.0025 and xk = 0.1077, which
were then used in the simulated free vibration response for
comparison with the experimental data, as shown in Fig. 6.
It should be noted that the viscous and Coulomb parame-
ters are estimated assuming a linear stiffness, which is true
of the absorber for small angles, and assuming single degree
of freedom dynamics. The experimental free vibration was
conducted from a maximum absorber swing angle of ±16◦,
and the rotor-speed controller is assumed to isolate the ro-
tor from the absorber, thereby letting it behave as essentially
a single degree of freedom system. The simulations used
to compare the identified damping parameters against the
experimental results are from the fully non-linear, coupled
equations, Eqns. (2) and (3), which confirms the validity of
the assumptions.

Fig. 6. Theoretical vs. experimental free vibration peak values for
small amplitudes

It is evident from Figure 6 that the parameters extracted
from the simultaneous viscous/Coulomb method track the
experimental transient decay data very closely, verifying that
the absorber damping is accurately described by the pro-
posed model. The relatively small value of the equivalent
viscous damping model predicts much more damping than



seems to be present. To quantify how well this data fits the
model we consider residuals. To define the residual for this
case, we denote X̃i as the amplitude of the response predicted
by the estimated damping coefficients to be, and Xi as the
measured amplidute. The residual is then defined by the nor-
malized quantity,

r =
X̃i−Xi

|Xi|
. (26)

To minimize resolution effects, we computed this residual
for every 4 half periods. For the identified Coulomb plus
viscous model, it was found that r was randomly scattered
and bounded in the range−0.01 < r < 0.03 over 14 response
half-cycles, indicating the validity of the model [15].

3 Experimental Steady-State Results
Steady-state absorber tests were conducted to assess

the predictive capabilities of the perturbation results. The
levels of friction acting on the absorber were changed via
tightening and loosening the support bolt at the pivot about
which the absorber rotates, resulting in changes in both the
Coulomb and viscous friction coefficients. For each level
of friction, the previously explained damping estimation
method was utilized to quantify the amounts of Coulomb
friction and viscous damping.

Figures 7 and 8 summarize the results for the steady
state absorber and rotor responses, respectively, both plot-
ted versus the torque amplitude Γ for 4% detuning (σ = 3).
Response curves are provided for three different levels of
Coulomb damping, indicated on the graphs by letters A, B,
and C, where the respective damping values are given in Ta-
ble 2. Figure 7 compares experimental data versus the aver-
aged equation solution. The hysteresis/jump phenomenon is
clearly exhibited in the experimental data: sweeping up the
torque causes the absorber amplitude to jump to the upper
solution branch; similarly, while sweeping back down, the
absorber amplitude stays on the upper branch until jumping
to the lower branch, with a range of bistability between the
jump conditions. Examination of Figure 7 reveals that the
experimental data follows the theoretical curves in a qualita-
tive sense, and offer reasonable quantitative agreement. The
absorber is observed to stick for different ranges of the ap-
plied torque, corresponding to the different friction levels, as
predicted. Some error between the data and the theory is ob-
served, especially on the upper solution branch, but this can
be attributed to the perturbation theory, which assumes small
pendulum angles.

Figure 8 displays the angular acceleration of the rotor
versus the applied fluctuating torque, comparing experimen-
tal measurements with theoretical predictions. A reference
line is also plotted which conveys the predicted rotor angu-
lar acceleration if the absorbers are locked. It is obvious that
increasing the friction causes the absorber to oscillate less,
thus decreasing its performance in the stable regime. The
increase in friction does, however, enable the absorber to re-
main stable over a larger range of fluctuating torque. It is

seen in Figure 8 that as the absorber becomes unstable and
jumps to the upper solution branch, it begins to increase the
torsional vibrations of the rotor, as predicted.

Fig. 7. Experimental and theoretical non-dimensional absorber arc
length vs. non-dimensional amplitude of fluctuating torque for 4%
detuning and different levels of Coulomb friction. (ass vs. Γ)

Fig. 8. Experimental and theoretical non-dimensional amplitude of
rotor angular acceleration vs. non-dimensional amplitude of fluctuat-
ing torque for 4% detuning and different levels of Coulomb friction.
(νν′ vs. Γ)

4 Conclusions
In this work, we examined the effects of Coulomb (dry)

friction on the response of a rotor/absorber system. The in-
vestigation considered and compared results from the full



equations of motion, a perturbation analysis, and experimen-
tal measurements. The validity of the perturbation results
was confirmed via simulations of the fully non-linear equa-
tions of motion, and they were also shown to be an adequate
predictor for experimental results. The amount of Coulomb
friction was varied in the experimental study and quantified
through a modified simultaneous viscous/Coulomb decre-
ment scheme; this method was found to accurately iden-
tify the viscous and Coulomb damping parameters, and it
verified that the viscous/Coulomb model correctly describes
the damping mechanisms of the absorber. Steady-state tests
were conducted at the different friction levels, and it was con-
firmed that the mathematical model accurately describes the
effects of friction. Specifically, the Coulomb friction was
shown to cause the absorbers to stick for a range of applied
torque, as well as to increase the level of fluctuating torque
at which jumps in the response occurred (as expected, due
to the increased dissipation). The sudden jump in absorber
amplitude was captured experimentally and the detrimental
effect that this has on the absorber’s performance was also
observed. It was predicted and observed that Coulomb fric-
tion has a greater effect at small absorber amplitudes, and at
smaller detuning levels, as expected, since Coulomb friction
dominates over viscous damping at small amplitudes of os-
cillation. The present study provides a quantitative model for
predicting such results, which are of use when considering
absorber systems with suspensions that involve dry friction.
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6 Appendix A
The non-dimensional rotor and absorber equations of

motion, as developed in Section 2.2, are given by the fol-
lowing, in which the independent variable is θ:

[
1+

m
J

(L2 +R2 +ρ2)+
2mLR

J
− mRβ

JL
s2

]
νν′

+
[

ε− mRβ3

2JL2 s2
][

νν′s′+ν2s′′
]
− mRβ3

JL2 (νs′)2
[

s− β2

6L2 s3
]

− mRβ2

JL
ν2s′

[
2s− β2

3L2 s3
]
+µoν = Γo +Γ(θ)+HOT

(27)

s′ν′ν+ν2s′′+
LR

L2 +ρ2

[
s− β2

6L2 s3
]

ν2

L2R
β(L2 +ρ2)

[
−1

2

(
βs
L

)2
+

L2 +LR+ρ2

L

]
νν′

+µas′ν+ϕ(s′)+HOT = 0

(28)

where HOT refer to higher order terms in s.

7 Appendix B
For small absorber amplitudes, ‖φ‖( 1, and small fluc-

tuations of the rotor about a constant speed,

θ = Ωt +ϑ

and retaining linear terms, Eqns.2 and 3 reduce to:

[
J +m((R+L)2 +ρ2)

]
ϑ̈+m(RL+L2 +ρ2)φ̈ = T sin(nΩt)

(29)

m(LR+r2 +ρ2)ϑ̈+m(L2 +ρ2)φ̈+mLRΩ2φ+caφ̇ = 0 (30)



References
[1] Alsuwaiyan, A. S., 1999. “Performance, stability, and

localization of systems of vibration absorbers”. PhD
thesis, Michigan State University.

[2] Chao, C. P., and Shaw, S. W., 2000. “The dynamic
response of multiple pairs of subharmonic torsional vi-
bration absorbers”. Journal of Sound and Vibration,
231, pp. 411–431.

[3] Denman, H. H., 1992. “Tautochronic bifilar pendulum
torsion absorbers for reciprocating engines”. Journal
of Sound and Vibration, 159, pp. 251–277.

[4] Nester, T. M., 2002. “Experimental investigation of cir-
cular path centrifugal pendulum vibration absorbers”.
Master’s thesis, Michigan State University.

[5] Den Hartog, J. P., 1985. Mechanical Vibrations. Dover
Publications, Inc. New York.

[6] Den Hartog, J. P., 1937. “Vibration in industry”. Jour-
nal of Applied Physics, 8, pp. 76–83.

[7] McCutchen, K. D., 2001. “No short days. the struggle
to develop the r-2800 “double wasp” crankshaft”. Jour-
nal of the American Aviation Historical Society, Sum-
mer, pp. 124–146.

[8] KerWilson, 1968. Practical Solutions of Torsional Vi-
bration Problems. Chapman and Hall, Ltd., London.

[9] S.W. Shaw, M.B. Orlowski, A. H., and Geist, B., 2008.
“Transient dynamics of centrifugal pendulum vibration
absorbers”. In Proceedings of the 12th International
Symposium on Transport Phenomena and Dynamics of
Rotating Machinery, no. 2008-20119.

[10] Nester, T., Haddow, A., Shaw, S., Brevick, J., and
Borowski, V., 2003. “Vibration reduction in variable
displacement engines using pendulum absorbers”. In
Proceedings of the SAE Noise and Vibration Confer-
ence and Exhibition.

[11] Newland, D. E., 1964. “Nonlinear aspects of the
performance of centrifugal pendulum vibration ab-
sorbers”. ASME Journal of Engineering for Industry,
86, pp. 257–263.

[12] Madden, J., 1980. Constant frequency bifilar vibration
absorber. Tech. rep., United States Patent No. 4218187.

[13] Shaw, S. W., Schmitz, P. M., and Haddow, A. G.,
2006. “Dynamics of tautochronic pendulum vibration
absorbers: Theory and experiment.”. Journal of Com-
putational and Nonlinear Dynamics, 1, pp. 283–293.

[14] Liang, J. W., and Feeny, B. F., 1998. “Identify-
ing Coulomb and viscous friction from free-vibration
decrements”. Nonlinear Dynamics, 16, pp. 337–347.

[15] Beck, J., and Arnold, K., 1977. Parameter Estimation.
Wiley.


