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ABSTRACT
The present study deals with the response of a forced nonlin-

ear Mathieu equation. The equation considered has parametric
excitation at the same frequency as direct forcing and also has
cubic nonlinearity and damping. A second-order perturbation
analysis using the method of multiple scales unfolds numerous
resonance cases and system behavior that were not uncovered
using first-order expansions. All resonance cases are analyzed.
We numerically plot the frequency response of the system. The
existence of a superharmonic resonance at one third the natural
frequency was uncovered analytically for linear system. (This
had been seen previously in numerical simulations but was not
captured in the first-order expansion.) The effect of different pa-
rameters on the response of the system previously investigated
are revisited.

INTRODUCTION
This work was originally motivated by our interest in study-

ing the in-plane dynamics of wind turbine blades. The equation
of motion developed include terms of a forced Mathieu equa-
tion, which caught our interest as a fundamental equation in dy-
namics. The detailed development of the governing equations
of motion is dealt in [1]. The incorporation of nonlinearity due
to large deflections in the formulation of the model gives rise to

⇤Address all correspondence to this author.

cross-coupled displacement, velocity, and acceleration terms in
the equation of motion. The single-mode nonlinear equation has
elements of a forced Mathieu equation,

q̈+2eµ q̇+(w2 + eg cosWt)q+ eaq3 = F sinWt, (1)

which itself warrants study as a fundamental equation in dy-
namics.

Reference [2] dealt with the super- and sub-harmonic reso-
nances for the forced Mathieu equation. A first-order multiple
scales analysis of equation (1) reveals the existence of super-
harmonics at a third and half the natural frequency and subhar-
monics at twice and thrice the natural frequency of the system.
The superharmonic at order one half persists for the linear sys-
tem, while that of order one third requires nonlinearity in the
first-order expansion. Numerical simulations of equation (1) val-
idated the occurrence of these harmonics. However, numerical
simulations indicated that the superharmonic resonance at order
1/3 can indeed occur in the linear system (see figure 1), as re-
ported in [2]. In this work, we seek to explain this with a second-
order perturbation expansion.

There have been extensive studies on systems with para-
metric excitation that fit in into a minor variation of the Math-
ieu equation. Shaw et al. [3, 4] have studied MEMS structures
with parametric amplification and have demonstrated it using
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experiments as well. Other work has examined nonlinear vari-
ations of the Mathieu equation, which have included van der Pol,
Rayleigh, and Duffing nonlinear terms. [5–10] have analyzed the
dynamics, stability control and bifurcations of a parametrically
excited systems.

Furthermore, the Mathieu equation is well known to have
stability wedges in the parametric forcing amplitude-frequency
space, such that the fixed point at the origin can be stable or un-
stable depending on these parameters. We expect that the intro-
duction of small direct excitation will remove the existence of a
fixed point at the origin, replacing it with a periodic orbit, and
also perturb the stability characteristics now in reference to the
periodic orbit.

The stability wedges of the Mathieu equation can be stud-
ied by applying Floquet theory with harmonic balance solutions
[11], and also by a higher-order perturbation expansion [12]. The
introduction of direct forcing to the Mathieu equation turns it
into a system that does not directly align it with Floquet theory.
Therefore, to study the perturbations of the stability characteris-
tics, we turn to a higher-order multiple scales expansion.

In the current work, we first analyze equation (1) with two
orders of expansion in order to capture superharmonic resonance
at one-third for the linear system with hard forcing. Researchers
have successfully employed higher order expansions to study in-
herent dynamic in systems [13–15] and have otherwise employed
different scaling techniques to study dynamical systems [16].
We extend our second-order perturbation analysis for a weakly
forced system to two orders of expansion in order to aid us to
capture information regarding stability transition curves (Arnold
tongue, see figure 4 [11]). Inoue et al. [17, 18] have studied the
vibrations of wind turbine out-of-plane blade motion and have
reported the occurrence of superharmonic resonance both in sim-
ulations and experiments.

SECOND-ORDER PERTURBATION ANALYSIS

We consider two excitation “levels” for our second order
analysis. Hard excitation i.e. direct forcing F is of order 1 and
soft excitation when direct forcing is of order e . Figure 1 shows
the response of the system in equation (1) without nonlinearity
for a system with O(1) excitation. Based on 1st order analy-
sis, the existence of super harmonic resonance at order one-half
is expected for a system with direct and parametric excitation at
the same frequency. Numerical simulations confirm this, but also
show a peak at a third of the natural frequency. This is not un-
covered in the first order analysis. When we set a = 0 in the
first-order analysis, the resonance condition is non existent. We
thus proceed to conduct the second order perturbation analysis of
the linear form of equation (1)
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FIGURE 1. Simulated response of the linear case of equation (1)
showing superharmonic resonances at orders 1/2 and 1/3; µ = 0.05,e =

0.1,a = 0,F = 0.1,g = 3

Linear Forced Mathieu Equation with Hard Excitation
Consider the system, given by equation (1) with no nonlin-

earity. The equation is of the form:

q̈+2eµ q̇+(w2 + eg cosWt)q = F sinWt. (2)

Employing MMS, we incorporate three time scales
(T0,T1,T2), and allow for a dominant solution q0 and slow varia-
tions of that solution q1,q2, such that

q = q0(T0,T1,T2)+ eq1(T0,T1,T2)+ e2q2(T0,T1,T2)+ ... (3)

where Ti = e iT0. Then
d
dt

= D0 + eD1 + e2D2 and Di =
∂

∂Ti
.

We substitute this into our ODE and then simplify and ex-
tract the expressions for coefficients of e0,e1,e2:

O(1) : D0
2q0 +w2q0 = F sinWT0

O(e) : D0
2q1 +w2q1 = �2µD0q0 �2D0D1q0 � gq0 cosWT0

O(e2) : D0
2q2 +w2q2 = �2D0D1q1 � (D1

2 +2D0D2)q0
�2µ(D0q1 +D1q0)� gq1 cosWT0

(4)
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Solving O(1) equation, we arrive at the solution of q0 as

q0 = AeiwT0 � iLeiWT0 + c.c. (5)

where L =
F

2(w2 �W2)
, and A =

1
2

aeib .

The coefficient A, and hence a and b are functions of T1 and T2.
Substituting this in O(e), we arrive at the expression

D0
2q1 +w2q1 = �2µ(AiweiwT0 +LWeiWT0)�2D1AiweiwT0

�g
2
(Aei(w+W)T0 + Āei(W�w)T0 � iLe2iWT0)+ c.c

Here, W ⇡ w/3 is not a combination that would lead to secular
terms. As we are seeking that specific resonance condition, we
find the solution of q1 for a general case.

The solvability condition at O(e) is �2µAiw �2iwD1A = 0
and hence, the particular solution for q1 is

q1 = � 2µLW
(w2 �W2)

eiWT0 +
gA

2(W2 +2wW)
ei(W+w)T0

+
gĀ

2(W2 �2wW)
ei(W�w)T0 +

igL
2(w2 �4W2)

e2iWT0 + c.c

(6)
We substitute the solutions for q0,q1 into the O(e2) expres-

sion in equation (4). We recognize that the terms in the ODE for
q2 have either q0 or q1 differentiated over different time scales.
Only the gq1 cosWT0 term i.e. the last term in the expression has
cross coupled terms.

Expanding that term we notice that by multiplying the
igL

2(w2 �4W2)
e2iWT0 from the q1 solution by the

eiWT0

2
term from

the cosWT0 component that appears in the O(e2) terms in equa-
tion (4) produces the exponential term e3iWT0 .

This would give rise to the 1/3 superharmonic. To capture
this we needed to go one level deeper in our analysis and corre-
spondingly the numerical simulation of the system shows that the
peak at this frequency is an order smaller than the superharmonic
obtained at half the frequency.

The solvability conditions up to O(e2) for 3W ⇡ w are

O(e) : �2µwAi�2D1Aiw = 0

O(e2) : �D1
2A�2iwD2A�2µD1A� g2A

4(W2 +2wW)

� g2A
4(W2 �2wW)

� ig2L
4(w2 �4W2)

eisT1 = 0

(7)

where s is the detuning parameter defined as 3W = w + es .

From this it is clear that the forced linear Mathieu equation
has a one-third superharmonic. Furthermore, as evidenced from
figure 1 the response is e order lower than the peak at one-half.
In order to get an expression for A we need to solve the solv-
ability conditions at O(e) and O(e2) together. Eliminating D1A
and D2

1A from the O(e2) equation we can show that the resulting
solvability conditions come from a multiple scale expansion of

�2iw dA
dt

�2eiwµA+ e2
✓

µ2A� g2A
4(W2 +2wW)

� g2A
4(W2 �2wW)

� ig2L
4(w2 �4W2)

eiset
◆

= 0
(8)

Also substituing, L =
F

2(w2 �W2)
and W =

w + es
3

and us-

ing expansion rules and retaining only up to two powers of e we
get

�2iw dA
dt

�2eiwµA+ e2
✓

µ2A+
9g2A
70w2 � 81ig2F

320w4 eiset
◆

= 0

(9)
We seek a solution in the form A = (Br + iBi)eiset , with real

Br and Bi. We enforce this solution in equation (9), separate real
and imaginary parts and cancel the common exponential term to
obtain,

2w dBi

dt
+2eswBr �2eµwBi + e2µ2Br + e2 9g2Br

70w2 = 0 (10)

2w dBr

dt
�2eswBi �2eµwBr �e2µ2Bi �e2 9g2Bi

70w2 +e2 81g2F
320w4 = 0

(11)
We have to solve for Br and Bi to get relations between

g,F,µ,e,s and w . In a standard Mathieu analysis, we would not
encounter the direct forcing term as in our present study; which
prevents us from admitting a solution of the form (Br,Bi) =
(br,bi)ekt , as the origin is not a solution for the above equation.
The analysis will proceed to seek solutions for the set of equa-
tions given by (10) and (11). Naturally the solutions will be time
varying and we can capture the trend to comment on the varia-
tions in amplitude A of the system with time and as a function of
system parameters.

Alternatively, we can transform A in equation (9) to polar

coordinates i.e. we substitute A =
1
2

aeib , separate real and imag-
inary parts to get,
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awḃ + e2 µ2a
2

+ e2 9g2a
140w2 + e2 81g2F

320w4 sin(set �b ) = 0 (12)

�w ȧ� ewµa� e2 81g2F
320w4 cos(set �b ) = 0 (13)

We make the system of equation (12) and (13) autonomous
by substituting set �b = f and correspondingly se � ḃ = ḟ to
get to expressions for ȧ and ḟ .

For steady state solutions we substitute ȧ = ḟ = 0, combine
the two equations by squaring and adding to get,

✓
ase +

e2µ2a
2w

+
e29g2a
140w3

◆2

+(eµa)2 =

✓
e281g2F
320w5

◆2
(14)

We solve equation (14) as a quadratic a. The equation is of
the form pa2 � q = 0. The solution of which (after canceling a
common e term )is

a =
r

q
p

where

p =

✓
s +

eµ2

2w
+

e9g2

140w3

◆2

+ µ2

q =

✓
e81g2F
320w5

◆2
(15)

Hence, we have an expression for the amplitude of the sys-
tem as a function of all its parameters. Since, p and q are positive
solution exist over the entire parameter space. To find amax we
differentiate the expression for a2 with respect to s i.e. compute
d(14)
ds

and find the value of smax where
da2

ds
= 0. This yields,

2
✓

smax +
eµ2

2w
+

e9g2

140w3

◆
a2 = 0

From this we get the value of smax and the corresponding
value of amax as

smax = �
✓

eµ2

2w
+

e9g2

140w3

◆

amax =

✓
e81g2F
320µw5

◆ (16)

Figure 2 shows a numerical plot of the variation of amplitude
with respect to the detuning parameter. The maximum value for
the parameter used in the plot give amax = 0.2278 at s = �0.07
which is the same values as obtained by using equation (16).
Alternatively, we can compute the total amplitude of oscillation
by summing up the amplitudes of the free and forced oscillation
components i.e. compute |q| by summing |a| and |2L| and com-
pare the response to the numerical simulations shown in figure 1.
The value of amax for the parameters shown in figure 1 is calcu-
lated from equation (16) and is found to be amax = 0.455, which
is the corresponds to the rise above the primary resonance curve.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

Detuning Parameter �

A
m

p
li
tu

d
e

o
f
fr

ee
re

sp
o
n
se

|a
|

FIGURE 2. Numerical simulation to generate amplitude vs detuning
curve from equation(14). Graph shown in generated using µ = 0.5,e =

0.1,a = 0,F = 0.5,g = 3,w = 1. amax = 0.2278 occurs at s = �0.07

From these equations we can also plot the parameter space
in which solutions exist. However, one of the primary objectives
to perform second-order expansions was to uncover hidden reso-
nances in the system. Preliminary numerical simulation with nu-
merous sets of parameters showed the presence of the one-third
superharmonic for the linear system as addressed in this section.
We thus revert our attention back to the forced nonlinear Mathieu
to study its dynamics which is our primary focus.

Further numerical simulation were carried out varying the
system parameters that would make the system go unstable at
primary resonance. However, if a system could operate below
W ⇡ w excitation, such as with wind turbines, this instability
would not be encountered. Figure 3 shows one such scenario.
We notice the existence of multiple peaks. These can be corre-
lated to either a harmonic frequency or the seeds of instability
wedges of the unforced Mathieu equation, which occur at fre-
quency ratios of

p
4/n2 in the frequency response curve.
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FIGURE 3. Simulated response of the linear case of equation (1)
showing multiple superharmonic resonances µ = 0.05,e = 0.1,a =

0,F = 0.5,w = 0.5,g = 7. amax = 2.477 by (16)

As we know, the instability wedges become slender and
weaker as we go to the right in a typical Mathieu plot especially
in the presence of damping (see figure 4). The stable and un-
stable characteristics of the system become local to the origin
in the case of a nonlinear Mathieu equation. Global stability is
determined by the other fixed points that arise in the system.

Higher d in figure 4 translates to lower frequency ratios in
our analysis. As we can see from figure 3, the response near a
ratio of 2/3 is distinct in the sense that the amplitude increases
abruptly. This increase could be attributed to the presence of an
instability wedge. The responses at other ratios are due to reso-
nance phenomena. In some cases, there exists both a resonance
curve and an instability wedge. Future work will explore to pa-
rameters that will make the system operate in such critical zones.

Figure 5 shows the response of the system when excited at
higher frequencies than the natural frequency. We can clearly
see the subharmonic occurring at twice the frequency. We also
suspect that the system goes unstable if the parametric pump is
sufficiently high as there is also an instability wedge at W = 2w .
The presence of instability wedges and harmonics of excitation
need to be distinguished analytically. to do this we carry out a
second order perturbation analysis of a weakly forced nonlinear
Mathieu equation. Strong forcing would dominate the system
response and we may lose information regarding the effect of
nonlinearity, damping and parametric excitation. We could also
extend the response curve higher frequency ratios and numeri-
cally plot the other subharmonics in the system.

FIGURE 4. Transition curves in Mathieu equation (Figure taken from
[11]). S - Stable region; U - Unstable region
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FIGURE 5. Simulated response of the linear case of equation (1)
showing superharmonic resonances at orders 1/2 and 1/3 and subhar-
monic resonance at 2; µ = 0.05,e = 0.1,a = 1,F = 0.5,w = 0.5,g = 3

Second-Order Perturbation Analysis: Weak Forcing
As discussed in the prvious section, typically while an-

alyzing the Mathieu equation we look for stability transition
curve in the e � d (i.e. magnitude of parametric forcing -
square of frequency) space. The transition curves are the Arnold
tongues/Mathieu wedges. In our analysis of the weakly forced
Mathieu, we seek to reconstruct the Arnold tongue in a similar
space and study the effect of direct forcing and nonlinearity
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on the system. To do this we perform second order analysis to
uncover resonance conditions and instability wedges. In order to
do this we need to consider a system with soft excitation (O(e)
forcing). We focus our attention back to the original equation
(1) restated below.

q̈+ eµ q̇+(w2 + eg cosWt)q+ eaq3 = eF sinWt

We follow the second-order expansion analysis done in the
previous section for the case of a linear forced Mathieu equation
to arrive at expressions for coefficients of e0,e1,e2 as

O(1) : D0
2q0 +w2q0 = 0

O(e) : D0
2q1 +w2q1 = �2µD0q0 �2D0D1q0 � gq0 cosWT0

�aq0
3 +F sinWT0

O(e2) : D0
2q2 +w2q2 = �2D0D1q1 � (D1

2 +2D0D2)q0 �2µ
(D0q1 +D1q0)� gq1 cosWT0 �3aq0

2q1
(17)

The solution of O(1) equation is

q0 = A(T1,T2)eiwT0 + c.c (18)

We substitute this into the O(e) equation and identify other
resonance conditions to eliminate secular terms and seek solution
of q1.

The equation for q1 obtained by substituting the solution for
q0 into O(e) equation is

D0
2q1 +w2q1 = �2iwD1AeiwT0 �2µiwAeiwT0

�a(A3e3iwT0 +3A2ĀeiwT0)

�g(
A
2

ei(w+W)T0 +
Ā
2

ei(W�w)T0)� iF
2

eiWT0 + c.c
(19)

We have three cases for equation (19) which can contribute
towards resonance condition.

1. No specific relation between W and w
2. W ⇡ w
3. W ⇡ 2w

Case 1: When there is no specific relationship between the forc-
ing frequency W and the natural frequency w we equate the sec-
ular terms to zero, such that

�2iwD1A�2µiwA�3aA2Ā = 0

and solve the remaining ODE in equation (19) to get the partic-
ular solution, by treating A as constant with respect to the inde-
pendent variable T0, as

q1 =
aA3

8w2 e3iwT0 +
gA

2(W2 +2wW)
ei(W+w)T0

+
gĀ

2(W2 �2wW)
ei(W�w)T0 +

iF
2(W2 �w2)

eiWT0 + c.c
(20)

Case 2: For the second condition of when W ⇡ w i.e. W =
w + es1 (s1 being the detuning parameter for this case) from
equation (19),

�2iwD1A�2µiwA�3aA2Ā� iF
2

eis1T1 = 0

forms the solvability condition. The particular solution for q1
then becomes

q1 =
aA3

8w2 e3iwT0 +
gA

2(W2 +2wW)
ei(W+w)T0

+
gĀ

2(W2 �2wW)
ei(W�w)T0 + c.c

(21)

Case 3: And finally, when W ⇡ 2w i.e. W = 2w + es2 (s2 being
the detuning parameter for this case)

�2iwD1A�2µiwA�3aA2Ā� gĀ
2

eis2T1 = 0

forms the solvability condition. The particular solution for q1
then becomes

q1 =
aA3

8w2 e3iwT0 +
gA

2(W2 +2wW)
ei(W+w)T0

+
iF

2(W2 �w2)
eiWT0 + c.c

(22)

We now substitute the solutions for q0 and q1 from equations
(5) and (6) into the expression (17) at O(e2). After expanding the
terms in the expression for the q2 ODE, we seek to identify terms
that can contribute to a resonance condition.

For Case 1 when there is not relation between W and w , the
expression for q2 is:
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D0
2q2 +w2q2 = �2

✓
i(W+w)D1Kei(W+w)T0 + i(W�w)D1L

ei(W�w)T0 +3iwD1Me3iwT0 + iWD1NeiWT0

◆
�
✓

D1
2AeiwT0+

2iwD2AeiwT0

◆
�2µ

✓
i(W+w)Kei(W+w)T0 + i(W�w)Lei(W�w)T0

+3iwMe3iwT0 + iWNeiWT0 +D1AeiwT0

◆
� g

2

✓
Kei(2W+w)T0 +KeiwT0

+Lei(2W�w)T0 +Le�iwT0 +Mei(W+3w)T0 +Mei(�W+3w)T0 +Nei2WT0

+N
◆

�3a
✓

A2Kei(W+3w)T0 + Ā2Kei(W�w)T0 +2AĀKei(W+w)T0

+A2Lei(W+w)T0 + Ā2Lei(W�3w)T0 +2AĀLei(W�w)T0 +A2Me5iwT0

+Ā2MeiwT0 +2AĀMe3iwT0 +A2Nei(W+2w)T0 + Ā2Nei(W�2w)T0

+2AĀNeiWT0

◆
+ c.c.

(23)

where K =
gA

2(W2 +2wW)
, L =

gĀ
2(W2 �2wW)

, M =
aA3

8w2 ,

N =
iF

2(W2 �w2)
.

Following the analysis done in [12] for the unforced, linear
case, we write the solvability conditions together for various res-
onance cases. Once we enlist the solvability conditions for each
of the resonance case identified, we look for the fixed points and
stability for each case separately.

For the case of no specific relationship between w and W

O(e) : �2iwD1A�2µiwA�3aA2Ā = 0

O(e2) : �D1
2A�2D2Aiw �2µD1A� 3a2A3Ā2

8w2

� g2A
4(W2 +2wW)

� g2A
4(W2 �2wW)

= 0

(24)

There are various other combinations of W and w appearing
at second-order that could lead to resonance conditions in the
system. Examining the O(e2) equation given by equation (23)
for the general case we arrive at the following combinations:

1. W ⇡ 3w
2. W ⇡ w/2
3. W ⇡ 4w

The other resonance combinations identified at O(e) i.e.

4. W ⇡ w
5. W ⇡ 2w

lead to slightly different expressions for an ODE in q2
based on the expression of q1 computed for each case and given
in equations (21) and (22). We examine the resulting expression
for solvability conditions at O(e).

For each of these conditions, the corresponding equations at
O(e) and O(e2) are given below.

W ⇡ 3w

O(e) : �2iwD1A�2µiwA�3aA2Ā = 0

O(e2) : �D1
2A�2D2Aiw �2µD1A� 3a2A3Ā2

8w2 � g2A
4(W2 +2wW)

� g2A
4(W2 �2wW)

� i3aFĀ2

2(W2 �w2)
eisT1 = 0

(25)
W ⇡ w/2

O(e) : �2iwD1A�2µiwA�3aA2Ā = 0

O(e2) : �D1
2A�2D2Aiw �2µD1A� 3a2A3Ā2

8w2 � g2A
4(W2 +2wW)

� g2A
4(W2 �2wW)

� gFi
4(W2 �w2)

eisT1 = 0

(26)
W ⇡ 4w

O(e) : �2iwD1A�2µiwA�3aA2Ā = 0

O(e2) : �D1
2A�2D2Aiw �2µD1A� 3a2A3Ā2

8w2 � g2A
4(W2 +2wW)

� g2A
4(W2 �2wW)

� 3agĀ3

2(W2 �2wW)
eisT1 � gaĀ3

16w2 eisT1 = 0

(27)
W ⇡ w

O(e) : �2iwD1A�2µiwA�3aA2Ā� iF
2

eisT1 = 0

O(e2) : �D1
2A�2D2Aiw �2µD1A� 3a2A3Ā2

8w2 � g2A
4(W2 +2wW)

� g2A
4(W2 �2wW)

� g2Ā
4(W2 �2wW)

e2isT1 = 0

(28)
W ⇡ 2w
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O(e) : �2iwD1A�2µiwA�3aA2Ā� gĀ
2

eisT1 = 0

O(e2) : �D1
2A�2D2Aiw �2µD1A� 3a2A3Ā2

8w2

� g2A
4(W2 +2wW)

� 3agAĀ2

2(W2 +2wW)
eisT1 = 0

(29)

The s ’s above are the detuning parameter in each case respec-
tively.

In this analysis, using weak forcing, we do not capture the
linear superharmonic at order 3. This happens because of the way
the terms and the bookkeeping parameter e appear in the equa-
tions. The terms are multiplied at varying orders, thus burying
the effect of that superharmonic ”one-order lower”. If we were
to continue our analysis further we will encounter that resonance
term.

The solutions for the set of equations given for each reso-
nance case above would give us the slow time scale variations
of the amplitude A of our fast time scale solution q. In order to
arrive at a solution we re-combine the terms at O(e),O(e2) into
a single ODE and seek solutions. To arrive at this juncture would
require elimination of D1A terms from O(e2) equation.

We sketch the treatment of one of the resonant cases listed.
We consider the terms for the primary resonance case W ⇡ w
given in equation (28). From the O(e) equation we get,

D1A = �µA+
3aiA2Ā

2w
� FeisT1

4w

and

D1Ā = �µĀ� 3aiĀ2A
2w

� Fe�isT1

4w
.

We compute D1
2A from the above expressions as

D1
2A = µ2A� 6aiµA2Ā

w
� 9a2A3Ā2

4w2 +
Fµ
4w

eisT1 � Fis
4w

eisT1 �
3aFiAĀ

4w2 eisT1 � 3aFiA2

8w2 e�isT1 .

We substitute these in the O(e2) expressions in equation (28)
to arrive at

�2D2Aiw +

✓
� µ2A+

6aiµA2Ā
w

+
9a2A3Ā2

4w2 � Fµ
4w

eisT1

+
Fis
4w

eisT1 +
3aFiAĀ

4w2 eisT1 +
3aFiA2

8w2 e�isT1

◆
�2µ

✓
� µA

+
3aiA2Ā

2w
� FeisT1

4w

◆
� 3a2A3Ā2

8w2 � g2A
4(W2 +2wW)

� g2A
4(W2 �2wW)

� g2Ā
4(W2 �2wW)

e2isT1 = 0

(30)
It can easily be shown that the O(e) solvability condition

from equation (28) and the O(e2) solvability condition from
equation (30) result from a multiple-scales expansion of

�2iw dA
dt

+ e
✓

�2µiwA�3aA2Ā� iF
2

eiset
◆

+ e2
✓

µ2A

+
3aFiA2

8w2 e�iset +
g2Ā
4w2 e2iset � 9aiµA2Ā

w
+

g2A
6w2

+
15a2A3Ā2

32w2 +
3aFiAĀ

4w2 eiset +
Fis
4w

eiset +
Fµ
4w

eiset
◆

= 0

(31)
Transforming the system to polar coordinates as we did in

the previous section, leads to steady state equations in a and
f = sT1 � b . The steady state equations include sin(f),cos(f)
and sin(2f),cos(2f) terms, which make it more difficult to solve
than other familiar examples.

We follow the solution procedure given in [12]. We seek a
solution in the form A = (Br + iBi)eiset , with real Br and Bi. We
enforce this solution in equation (31), separate real and imagi-
nary parts and cancel the common exponential term to obtain,

2w dBi

dt
+ e(2µwBi +2wsBr �3a(Br

3 +BrBi
2))

+e2
✓

µ2Br � 3aF
4w2 BrBi +

g2

4w2 Br +
g2

6w2 Br +
9aµ

w
(Bi

3+

Br
2Bi)+

15a2

32w2 (Br
5 +Bi

4Br +2Bi
2Br

3)+
Fµ
4w

◆
= 0,

(32)

�2w dBr

dt
+ e(�2µwBr +2wsBi �3a(Bi

3 +BiBr
2))+

eF
2✓

1+ e
� 3a

4w2 (Br
2 �Bi

2)+
s

2w
�◆

+ e2
✓

� g2Bi

4w2 + µ2Bi +
g

6w2 Bi

�9aµ
w

(Br
3 +Bi

2Br)+
15a2

32w2 (Bi
5 +Br

4Bi +2Br
2Bi

3)

◆
= 0.

(33)
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As stated in the previous section, we have to solve for Br and
Bi to get relations between g,F,µ,e,s and w . The fifth degree
terms still pose a challenge. If we proceed with enforcing polar
coordinate forms to the Bi,Br terms in the equation then we are
faced with sin(f),cos(f) and sin(2f),cos(2f) terms.

Similar analysis has been done for all the resonant condi-
tions that exist in the system. Here, as was in the case with the
linear system, we are left differential equation with higher order
polynomial coefficients. Origin is not a solution for this set of
equation as we have direct forcing.

Having obtained these equations, we look for stability char-
acteristics based on system parameters to may a boundary. This
will require a lot more analysis before we can draw conclusions
on stabilities and the parameters that dictate behavior.
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FIGURE 6. Amplitudes of simulated responses of equation (1) show-
ing the effect of the parametric forcing amplitude; e = 0.1,µ = 0.1,a =

0,F = 0.5. Different curves depict g = 0.5, 1 and 3.

Figure 6 shows the influence of the parametric term g on the
response of the system. At primary resonance we can clearly see
that beyond a certain value the curve stretches out. The first order
analysis for this system once again does not capture this behav-
ior. The expressions for the primary resonance case presented
before in equation (28) are taken. For first order expansions of a
linear system (the case shown in figure 6) we consider only the
O(e) equation and arrive at an expression for maximum ampli-
tude (amax) as a function of system parameters.

amax =
F2

4w2µ2

This is consistent with linear theory. To study the influence
of parametric excitation we solve a linear version of equations
(32) and (33). This leads us to amplitude expressions that are

TABLE 1. Stability Wedge and Resonance Chart. R1: Resonance
identified at 1st order of MMS expansion. R2: Resonance identified
at 2nd order of MMS expansion. W2: Instability wedge (Arnold tongue)
expression can be found at second order of MMS expansion. �: Known
resonance case/ Instability not uncovered up to two orders of expansion

Forcing (W) O(1) Forcing O(e) Forcing No Forcing

2w R1,W2 R2 R1,W2

w R1,W2 R1,W2 R2,W2

2w/3 - - -

w/2 R1,W2 R1,W2 -

2w/5 - - -

w/3 R2,W2 - -

dependent on g,F,µ,w,s and e . The completed form of the
expressions will show the explicit dependence of the amplitude
on parametric excitation, and conclusions will be drawn in future
work. The second order analysis will also provide expressions
for the stability of the system.

The boundaries that separate the solution based on stabili-
ties are the Arnold tongues for our system. Since our system
is nonlinear we expect multiple fixed points for some parame-
ter ranges. Reference [11] has transition curves for a nonlin-
ear Mathieu equation where the stable and unstable region have
multiple fixed points. Harmonic balance was used to arrive at
the power series expansions for the transition curves. Our aim
is to construct the stability transition curves and analyze param-
eter zone where in the solution would either destabilize or be
resonant. Both would lead to sustained oscillation in the system
thereby causing increased loading in our wind turbine system
which have been modeled using these equations. Table 1 lists
the frequency ratios at which resonances or wedges have been
identified.

CONCLUSION
The Mathieu equation we are dealing with is nonlinear and

also has direct forcing. The analysis of the linear case with hard
forcing revealed superharmonics that was previously identified
using numerical simulations. The technique was extended for
the nonlinear system in an effort to determine stability transition
curves. We introduced forcing at two orders to identify different
resonance conditions. Since this is primarily a parameter study
to uncover underlying dynamics, we liberally choose the relative
magnitude of parameters. Mathieu stability wedges are typically
constructed for a unforced system and the forcing component
poses some considerable challenge for analysis of these equa-
tions. We listed the resonance conditions. Future work will focus
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on the solutions of the equations obtained at various harmonics
and instability boundaries and aim to get a complete picture of
the inherent dynamics of a nonlinear forced Mathieu equation.
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