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ABSTRACT
The partial differential equation that governs the in-plane

motion of a wind turbine blade subject to gravitational load-
ing and which accommodates for aerodynamic loading is devel-
oped using the extended Hamilton principle. This partial differ-
ential equation includes nonlinear terms due to nonlinear cur-
vature and nonlinear foreshortening, as well as parametric and
direct excitation at the frequency of rotation. The equation is re-
duced using an assumed cantilevered beam mode to produce a
single second-order ordinary differential equation (ODE) as an
approximation for the case of constant rotation rate. Embedded
in this ODE are terms of a nonlinear forced Mathieu equation.
The forced Mathieu equation is analyzed for resonances by us-
ing the method of multiple scales. Superharmonic and subhar-
monic resonances occur. The effect of various parameters on
the response of the system is demonstrated using the amplitude-
frequency curve. A superharmonic resonance persists for the lin-
ear system as well.

INTRODUCTION
This paper introduces a model of the lead-lag (in-plane) vi-

bration motion of an operating wind turbine subjected to grav-
itational loading and aerodynamic loading, and provides initial
analyses of resonances by using a simplification of the single-
mode reduced-order model.

∗Address all correspondence to this author.

The reliability of wind turbines is a major issue for the in-
dustry. Drivetrain and blade failures are common, costly and not
fully understood. Designers must thus examine and understand
the key parameters that influence reliability. As wind turbines
increase in size, the blades are designed to be more lightweight
and flexible, increasing the potential for large-displacement os-
cillations during operation. This necessitates the incorporation
of nonlinearity in the formulation of the model to completely
understand the dynamics and stability characteristics. Also, os-
cillations in the blade impart dynamic loading onto the gearbox.
Understanding these dynamic loads is essential for the design of
reliable gears and bearings, and hence economically viable wind
turbines. Traditional studies of wind turbines have focused on the
aerodynamic performance of the blades, the reliability of gear-
box components and grid failures and improvements in power
distribution. The aspect of blade vibration from a dynamics point
of view has garnered interest but not been fully developed and
understood.

There is a large body of work on modeling of rotating blades
under aerodynamic and gravitational loading. Wendell [1] devel-
oped the partial differential equations of motion for a rotating
wind turbine blade. Additional efforts have been made by to in-
clude gravity and pitch action by Kallosóe [2] . Caruntu [3] has
developed nonlinear equations that model the flexural potential in
non-uniform beam that can be extended to large flexible blades
of wind turbines. Chopra et al. [4] have modeled the blades as
a hinged structure and constructed equations of motion to study
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its dynamic behavior. Jonkman [5, 6] used the modal informa-
tion of blade vibration to calculate the tip displacement in blade,
the torques and moments experienced at the hub amongst other
things. These calculation have been used to develop the code
FAST that is used in research and industry as a basis for perfor-
mance evaluations.

Extensive literature also exists on the analysis the related
problem of the vibration of helicopter blades [7–10]. Hodges
and Dowell [11] also developed the nonlinear partial differen-
tial equations for a twisted helicopter rotor blade. These rotate
at much higher rotational velocities than wind turbine blades,
and in a horizontal plane, unlike the wind turbine blades. Hence
the gravitational influence on the vibration characteristics of the
wind turbine blade would be much different. However, many
features of helicopter blade dynamics, such as modeling of cen-
trifugal effects and deflected geometry, carry over to the wind
turbine blade models.

In this work we will focus on the role of cyclic gravitational
loading on the in-plane vibration of an isolated blade. We also
include nonlinearity associated with large deflections (nonlinear
curvature and nonlinear foreshortening). Accounting for non-
linearity and cyclic gravitational loading exposes the presence
of resonances other than one-to-one resonance of the structural
modes.

Modeling the in-plane blade motion in its full depth, i.e. in-
cluding all the nonlinearities and gravitational loading, leads to
a nonlinear parametrically excited equation. Our goal is to sim-
plify the system of equations and look for analytical descriptions
of representative phenomena. For this we apply reduced-order
modeling to obtain analytical expressions of response character-
istics as functions of parameters. We make assumed modal re-
ductions using the cantilevered beam modes to obtain a single
mode model of blade motion in the lead-lag direction. The re-
sulting second order differential equation is then simplified to
a parametrically and directly excited Mathieu/Duffing equation.
This simplified equation thus becomes the focus of our analy-
sis. The simplifications can be relaxed in future work where the
analysis will be more numerical.

There have been extensive studies on systems with paramet-
ric excitation that fit in into a minor variation of the Mathieu
equation. Most of the work involving both direct and parametric
excitation has the parametric excitation at twice the frequency
as the direct excitation. Rhoads and Shaw [12] have studied the
influence of parametric resonance in MEMS structures. They
have identified systems with direct and parametric excitation and
studied their behavior. Experimental results that demonstrate ex-
ploitation of parametric amplification [13]. Other work has been
on forced and unforced parametrically excited systems with van
der Pol, Rayleigh and Duffing nonlinearities. Rand [14–17] in
collaboration with others have analyzed the dynamics and bifu-
cations of a forced Mathieu equation and properties of super-
harmonic resonances at 2:1 and 4:1. Belhaq [18] has studied

quasi-periodicity in systems with parametric and external excita-
tion. Veerman [19] has done analysis on the dynamic response of
the van der Pol Mathieu equation. Arrowsmith, Marathe [20,21]
have studied at the stability region for the Mathieu equation. Ref-
erence [22] is an extensive compilation of the various fields of
study in which the characteristics of Mathieu equation are found
and employed.

Using the method of multiple scales (MMS) [23–26], we an-
alyze resonances of the forced nonlinear Mathieu equation, as an
approximate representative of blade motion. The analysis reveals
the existence of sub-harmonic and super-harmonic resonances.
We unfold the super- and sub-harmonic resonance cases present
in the system and identify the critical ones which a wind turbines
may be close to during normal operation.

1 Equation of Motion
We formulate the equations of motion of in-plane deflection

of a beam attached to a hub which rotates at a constant rate. The
equation of motion of the rotating beam is obtained by applying
the extended Hamilton’s principle [23]. The energy formulation
for an inextensible beam with large deflections, rotating about a
horizontal axis with flexure is discussed in this section.

The gravitational potential energy of the rotating beam is
integrated over the beam elements with the help of Figure 1.
The height h(x, t) of an element dx, located at a point x of
the beam, rotated by an angle φ , is given by the angular in-
clination x(1− cosφ) plus the inclined foreshortening s(y,x, t),
plus the inclined transverse beam displacement, y(x, t), such
that h(x, t) = x(1 − cosφ) + s(x, t)cosφ + y(x, t)sinφ , where
s(y,x, t) =

∫ x
0

(
y′2

2 + y′4

8

)
dx and the primes indicate partial

derivatives with respect to x. Then the gravitational potential
energy is

Vg =
∫ L

0 m(x)gh(x, t)dx

=
∫ L

0 m(x)g[x(1− cosφ)+ s(x, t)cosφ + y(x, t)sinφ ]dx
(1)

where L is the length and m(x) is the mass per unit length.
If the beam is rotating at a fixed angular speed Ω, then

φ = Ωt. In a wind turbine, the speed will naturally be a slowly
changing dynamic variable, effected by the aerodynamic forces
on the blades, and the moment on the hub including such effects
as generator dynamics, gear box dynamics, friction and control.
In our resonance analyses of this work, we will start with a fixed
angular speed.

The flexural potential energy will include geometric nonlin-
earity, for example following Caruntu [4]. The nonlinear cur-
vature is given as k = y′′

(1+y′2)3/2 . The square of the curvature is
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FIGURE 1. THE ARBITRARY CONFIGURATION OF THE PO-
SITION OF A POINT P ON THE ROTATED AND DEFLECTED
BEAM. THE POINT P CORRESPONDS TO LOCATION X ON THE
UNDEFLECTED BEAM.

expanded into the form k2 ≈ y′′2(1−3y′2), and inserted into the
bending potential energy as

Vb =
∫ L

0

1
2

EI(x)k2dx ≈
∫ L

0

1
2

EI(x)y′′2(1−3y′2)dx, (2)

where E is the Young’s modulus and I is the area moment of
inertia of a cross-section of the beam.

The kinetic energy of the beam is formulated from the ve-
locity of each element. The position of an element is r =
(x− s(x, t))er + y(x, t)eφ in terms of the unit vectors in the di-
rection of the undeformed, rotated beam (er) and transverse in
the φ direction (eφ ). Using ėr = φ̇eφ and ėφ =−φ̇er, and consid-
ering the case where φ̇ = Ω, the velocity is v = (−ṡ−Ωy)er +
[Ω(x−s)+ ẏ]eφ . The contribution to the integral of the rotational
energy density, 1

2 J(x)(y′+ φ̇)2, where J(x) is the mass moment
of inertia per unit length, can also be added. Then

T =
∫ L

0

1
2

m(x)v ·vdx+
∫ L

0

1
2

J(x)(y′+ φ̇)2dx (3)

is the total kinetic energy.

The extended Hamilton’s principle is now applied, such that

∫ t2

t1
(δT −δV +δW )dt = 0 (4)

under the constraint that the varied path coincides with the true
path at t = t1 and t = t2. Constructing δT , δV , and δW , and in-
tegrating by parts to obtain a common δy term in the integrands,
yields the partial differential equation and boundary conditions.

We assume the x = 0 boundary to be clamped, and thus im-
pose y(0, t) = y′(0, t) = 0 as geometric boundary conditions.

To this end, we obtain an integral-partial differential equa-
tion (IPDE) of motion and boundary conditions. For the case
when φ = Ωt,

−m(a(s̈,s, ẏ,x, t)+gcosΩt)(y′+ y′3/2)
+
∫ L

x m(a(s̈,s, ẏ,z, t)+gcosΩt)dz(y′+ y′3/2)′

+mb(ÿ,y, ṡ,x, t)+(J(x)ÿ′)′ − (EIy′′ −3EIy′′y′2)′′−
(3EIy′′2y′)′+ f (y, ẏ,x, t) = mgsinΩt,

(5)

where the dots are partial derivatives with respect to time. with
boundary conditions y(0, t) = y′(0, t) = 0 at x = 0 and

−J(L)ÿ′+(EIy′′ −3EIy′′y′2 +3EIy′′2y′) = 0 (6)

EIy′′ −3EIy′′y′2 = 0 (7)

at x = L, where a(s̈,s, ẏ,x, t) = s̈ + 2Ωẏ + Ω2(x − s),
b(ÿ,y, ṡ,x, t) = −ÿ+Ω2y+ 2Ωṡ, and f (y, ẏ,x, t) represents dis-
tributed aeroelastic loads.

Interpreting these equations of motion, the IPDE has
nonlinear inertial terms due to the geometric nonlinear term
m(a(s̈,s, ẏ,x, t)+ gcosΩt)(y′+ y′3/2), along with linear inertial
terms, including rectilinear, centripetal, and Coriolis effects. The
IPDE has parametric excitation, with the cosΩt terms, as well
as direct excitation mgsinΩt at the same frequency. These come
from the gravitational potential energy, with parametric excita-
tion involving large-deflection nonlinearity. The aerodynamic
force f has cyclic components and will contribute to direct, and
possibly parametric, excitation terms as well. The EI terms are
nonlinear curvature terms from large deflection. The aeroelas-
tic f (y, ẏ,x, t) terms may have further dependence on s and ṡ, and
may produce additional direct or parametric excitation terms. An
aeroelastic formulation may also be accompanied by the appro-
priate fluid mechanics equation, coupled through boundary con-
ditions.

2 Modal Reduction of the Equation of Motion
To make the partial differential equation amenable to the

first level of analysis, we perform a modal reduction to project
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the PDE onto a finite number of ordinary differential equations
(ODEs). We use cantilevered beam modes as assumed modes
and apply a Galerkin projection. To this end, we approximate
the transverse deflection as

y(x, t)≈
N

∑
i=1

qi(t)ψi(x), (8)

where N is the number of retained modes, ψi(x) are the assumed
modal functions, and qi(t) are the assumed modal coordinates.

We substitute this expression into equation (5), multiply by
ψ j(x), and integrate over the length of the blade to obtain the
jth second-order ODE. To simplify the analysis, we take N = 1
and neglect the effect of J(x). Neglecting the contributions of the
rotational inertia is a common approximation for the analysis of
thin beams [23]. Also, we expect the dominant failure mode to
be in the first resonant mode of the beam. Including higher order
modes will reveal additional details but our aim is to start simple
and analyze the representative system for dynamic instabilities.

Employing the aforementioned simplifications to the model,
the differential equation takes the form

q̈+bq̈q2 + cq̇q+dq̇2q+(e1 + e2 cosΩt)q+( f1 + f2 cosΩt)q3

= gsinΩt
∫ L

0 ψ(x)dx−
∫ L

0 ψ(x) f (y, ẏ,s, ṡ,x, t)dx
(9)

where b,c,d,e1,e2, f1, f2 are constant coefficients and can be
evaluated according to

b =
∫ L

0 ψ(x)
(

ψ ′′(x)
∫ L

x
∫ z

0 ψ ′2(u)dudz−ψ ′(x)
∫ x

0 ψ ′2(v)dv
)

dx

c =
∫ L

0 ψ(x)
(
−2Ωψ(x)ψ ′(x)+2ψ ′′(x)Ω

∫ L
x ψ(z)dz

)
dx

d =
∫ L

0 ψ(x)
(

ψ ′(x)
∫ x

0 ψ ′2(v)dv+ψ ′′(x)
∫ L

x
∫ L

z ψ ′2(u)dudz
)

dx

e1 =
∫ L

0 ψ(x)
(

Ω2xψ ′(x)+Ω2ψ ′′(x)(
L2 − x2

2
)ψ(x)− (EIψ ′′(x))′′

)
dx

e2 =
∫ L

0 ψ(x)(ψ ′(x)g+gψ ′′(x)(L− x)) dx

f1 =
∫ L

0 ψ(x)
(
(−ψ ′3(x)

2
)Ω2x+ψ ′(x)Ω2 ∫ x

0
ψ ′2(v)

2
dv+

Ω2

2
(L2 − x2)(

ψ ′3(x)
2

)′ − [
∫ L

x
∫ z

0
ψ ′2

2
dudz]ψ ′′(x)Ω2 +

EIψ ′′(x)(3ψ ′2(x))′ − (3EIψ ′′2(x)ψ ′(x))′
)

dx

f2 =
∫ L

0 ψ(x)

(
−ψ ′3(x)

2
g+

(L− x)g
2

(ψ ′3(x))′
)

dx

These coefficients are dependent on the assumed modal
function ψ(x) and the distributed parameters m(x) and EI(x).
The form of f (y, ẏ,s, ṡ,x, t) influences the last integral in equa-
tion (9), and the q terms born from it.

For example, if we approximate the system as a uniform
beam, such that m(x) and EI(x) are constants, and use the first
modal function of a uniform cantilevered Euler-Bernoulli beam
[27], given by

ψ = [(cosh(λx/L)− cos(λx/L))−δ (sinh(λx/L)+ sin(λx/L)],
(10)

where λ = 1.87510407 and δ = 0.7341, then we obtain parame-
ter values that produce

q̈−0.94q̈q2 −0.918q̇q+1.37q̇2q+(−2.66EIL−2 +0.363L2Ω2

+5.12LcosΩt)q+(5.352EIL−3 +13.05EIL−4 −0.226Ω2

−8.534L−1 cosΩt)q3 = 1.65LsinΩt −
∫ L

0 ψ(x) f (y, ẏ,s, ṡ,x, t)dx
(11)

Including a model for aeroelastic loading via f will con-
tribute some terms already present in (11) and also some new
terms. Wind shear and tower passing will introduce cyclic terms
in f which will contribute to the direct forcing term, and possibly
other parametrically excited terms. Aeroelastic forces will also
be significant on models of flap-wise (out-of-plane) deflection.
It is apparent, from inspection, that this resulting ODE in q has
linear and cubic stiffness effects, with parametric excitation on
both the linear and cubic terms, along with direct excitation.

In addition we include a damping term in our model to ac-
count for operational damping in the system due to resistance
in blade motion in the plane of motion. Also the cross coupled
terms in q̈, q̇,q give rise to lot more interplay between the terms in
a purely analytical case study. Since the mode shapes are fixed,
the coefficients are only dependent on the geometry of the blade
(beam), its material properties and the rotational frequency.

Our intent is to analyze this system, rebuild the approximate
y(x, t) under resonant cases, and determine the resulting loads ap-
plied to the low speed shaft and hub via y(x, t) and its derivatives.
However, equation (9) has elements of a fundamental vibration
equation, namely a forced nonlinear Mathieu equation, which is
of dynamical interest in itself and warrants its own study. There-
fore, we will analyze the forced nonlinear Mathieu equation, and
use it to reveal phenomena that we expect to be significant to
wind turbine blades. In this paper we will focus on the superhar-
monic resonances of the system.
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3 Resonances of the Forced Nonlinear Mathieu Equa-
tion
Embedded in the single mode ODE (11) are terms of a

Mathieu-Duffing equation: since this is a fundamental equation
of dynamic systems, equation (12) takes our attention and be-
comes the focus of this initial study.

q̈+ εµ q̇+(δ + εγ cosΩt)q+ εαq3 = F sinΩt (12)

The analysis of the full model is bound to yield a different
set of results due to the various cross coupled and higher order
terms. Also the analysis in this section is based on relative mag-
nitudes of parameters which in a strict sense may not hold true
for a wind turbine blade model. However, we expect the funda-
mental characteristics of the Mathieu-Duffing equation to exist
in the full-scale model and its analysis reveals some interesting
dynamical phenomenon.

When the forcing in equation (12) is of order ε , the analysis
will indicate a primary resonance. The forcing in the above ex-
pression is of order one—also known as hard forcing. This will
help us unfold secondary resonances. Using MMS, we allow our
system to have fast and slow time scales (T0,T1) and also varia-
tions in amplitude. This allows for a dominant solution q0 and a
variation of that solution q1, i.e.

q = q0(T0,T1)+ εq1(T0,T1),

where Ti = ε iT0. Then d
dt = D0 + εD1 and Di =

d
dTi

.

We substitute this formulation into equation (12) and then
simplify and extract coefficients of ε0,ε1. The expression for the
coefficient of ε0 is

D0
2q0 +ω2q0 = F sinΩT0,

where δ = ω2 is the linearized natural frequency. The solution
for this is

q0 = AeiωT0 +ΛeiΩT0 + c.c. (13)

where Λ =
F

2(Ω2 −ω2)
, ω =

√
δ and A =

1
2

aeiβ .

The expression for the coefficient of ε1 is

D0
2q1+δq1 =−µD0q0−2D0D1q0−γq0 cosΩT0−αq0

3 (14)

Substituting the solution for q0 from equation (13), we ex-
pand the terms on the right hand side of (14). We need to elim-
inate coefficients of eiωT0 that constitute the secular terms and

would make the solutions unbounded. The solvability condition
is thus set by equating the coefficients of eiωT0 terms to zero.

3.1 Non-Resonant Case
If there is no specific relation between Ω and the natural

frequency (ω) of the system then, the solvability condition is

−2A′iω −µAiω −α(3A2Ā+6Λ2A) = 0, (15)

where the bar indicates the complex conjugate. (Note Λ = Λ̄.)

Letting A =
1
2

aeiβ and A′ =
1
2
(a′+aiβ ′)eiβ we get

i(a′+aiβ ′)ω +
µ
2

aiω +α(3Λ2a+
3
8

a3) = 0.

Splitting the above equation into real and imaginary parts
we get

Re : −aβ ′ω +αa(3Λ2 +
3
8

a2)+ δa
2 = 0

Im : a′ω +
µaω

2
= 0.

From these we can conclude that a → 0 is the steady-state
solution and hence there is no effect of the nonlinear terms in the
non-resonant case, i.e. when Ω is some non-specific value.

3.2 Superharmonic Resonances
3.2.1 3Ω ≈ ω (Nonlinear Case)
If 3Ω ≈ ω , the cubic nonlinearity contributes to the sec-

ular terms. We detune the frequency of excitation such that
3Ω = ω + εσ . Then 3ΩT0 = (ω + εσ)T0 = ωT0 +σT1.

The solvability condition will have additional terms that
have 3ΩT0 as an exponential argument in equation (14). It takes
the form

−2A′iω −µAiω −α(3A2Ā+6Λ2A)−αΛ3eiσT1 = 0 (16)

Letting A = 1
2 aeiβ and φ = σT1 −β , the real and imaginary

parts of equation (16) lead to

Re : aφ ′ω −σωa+3αa(Λ2 +
a2

8
)+αΛ3 cos(φ) = 0

Im : a′ω +
µaω

2
+αΛ3 sin(φ) = 0

in φand a.
These expressions are similar to the ones we would get

in the synthesis of a standard Duffing equation with hard
excitation [25]. For the steady state solution a′ = φ ′ = 0, which
is satisfied if
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[
µ
2

2
+(σ −3αΛ2 − 3

8
αa2)

2]
a2 =

α2Λ6

ω2 .

This is a quadratic expression in the detuning parameter σ .
Solving for σ we get,

σ = 3αΛ2 +
3
8

αa2 ± (
α2Λ6

ω2a2 − µ2)

2

1/2

(17)

This suggests that a non-zero a(σ) can occur at steady-state.
If stable,the leading order homogenous term acos(t0 +θ) can be
sustained. Then with 3Ω = ω + εσ we get

x0 = acos(3ΩT0 −φ)+2Λcos(Ωt)

This shows that the response is periodic with harmonics at Ω and
3Ω.

The peak amplitude can be deduced from the equation (17)
as

ap =
αΛ3

µω

The corresponding value of σ (after substituting value for
ap and doing a few simplifications) is

σp =
3αΛ2

ω
(1+

α2Λ4

8ω2µ2 )

If Λ, i.e. F , is small, then ap is really small and there is little
non-linear effect. If on the other hand Λ is O(1), so is ap. Also
the peak frequency is dependent on both Λ,α .

3.2.2 2Ω ≈ ω (Linear + Nonlinear Case)
If 2Ω = ω + εσ2, then the γq0 cosΩt term from equation

(14) contributes to the secular terms. In this case the solvability
condition can be written as

−2A′i−µAi−α(3A2Ā+6Λ2A)− γΛ
2

exp iσ2T1 = 0 (18)

Following the analysis done in the previous section for the 3Ω
superharmonic resonance, we obtain slow flow equations. At
steady-state the relationship between the response amplitude and
the detuning parameter σ2

σ2 = 3αΛ2 +
3
8

αa2 ± (
γ2Λ2

4a2 −µ2)
1/2

The peak amplitude would be

ap =
γΛ
2µ

.
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FIGURE 2. RESPONSE OF A SYSTEM SIMILAR TO 9 SHOW-
ING SUPERHARMONIC RESONANCES AT 1/2 AND 1/3; µ =

0.01,ε = 0.1,α = 0.05,F = 0.1

The corresponding value of σ2 is

σ2 p = 3αΛ2(1+
γ2

32µ2 )

Hence we can conclude the following
• the peak value is independent of α
• α,F and Λ affect the peak location and as they increase, |σp|
increases.
• the sign of α determines the sign of σp

A sample response of equation (12) is numerically simu-
lated. The response curve shown in Figure 2 has the primary
resonance and two superharmonics shown at 1/3 and 1/2 the
natural frequency.

The wind turbine blades are generally designed such that
the natural frequency of the blade in lead-lag (in-plane) motion
is below the rotational frequency. This analysis implies potential
existence of superharmonic resonances which would also pro-
vide additional critical frequencies where the response of the
blade would be dominant. This would imply increased loading
on the gearbox and other components and increased bending of
the blades.
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FIGURE 3. RESPONSE OF A SYSTEM SIMILAR TO 9 SHOW-
ING SUPERHARMONIC RESONANCES AT 1/2 AND 1/3; µ =

0.01,ε = 0.1,α = 0,F = 0.1

4 Discussion
We have shown the details of a first-order analysis of super-

harmonic resonances for the system of interest. At first order, the
super harmonic resonance of order 1/3 is the same phenomenon
as in the Duffing equation. The nonlinear parameter, α , scales
the peak response, while both the nonlinear parameter and the
direct excitation level affect the frequency value of the peak re-
sponse.

The superharmonic response of order 1/2 involves interac-
tion between the parametric excitation and both the nonlinear
parameter and the direct excitation. In fact, if the nonlinearity
is not present, i.e. if α = 0, this resonance persists. As such, a
linear system excited both parametrically and directly at the same
frequency can exhibit a superharmonic resonance. This comple-
ments linear primary resonance phenomena and linear subhar-
monic resonances exploited in parametric amplification [12, 13].

There also exists a primary resonance which is the same
at first order as that of the Duffing equations. The parametric
excitation, when at the same frequency as the direct excitation,
does not affect primary resonance amplitude at first order. Sub-
harmonic resonances were not analyzed in detail here, although
they exist to first order at orders 2 and 3. Order-two subhar-
monics involve interactions with the parametric excitation term,
while order-three subharmonic resonance is the same as that of
the Duffing equation to first order. We did not pursue the details
of the subharmonic resonances since the wind turbines, which
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FIGURE 4. EFFECT OF PARAMETRIC FORCING TERM ON
SYSTEM RESPONSE

motivate the story, are design to operate below the natural fre-
quency of the rotating blade.

The variation in system responses for changes in some pa-
rameters are shown. Their behavior has been summarized below

1. Effect of parametric forcing term: The system responses in-
creases with increased parametric forcing. (see Figure 4.)
Beyond a certain value of γthe system goes unstable at pri-
mary resonance. This could be unfolded doing a higher or-
der perturbation analysis.

2. Effect of direct forcing term: As it would be expected, in-
crease in the direct forcing term F, increases the overall mag-
nitude of response evenly over the entire spectrum. (See
Figure 5.)

3. Effect of damping term: Here as well, an increase in the
damping, decreases the overall magnitude of response over
the entire spectrum. The spectrum resonance peaks scale as
1/µ .

4. Effect of nonlinear term: An increase in α causes the re-
sponse curve to bend over more significantly. This bending
can induce jump instabilities as the frequency slowly varies.
Our equations are similar to a Duffing equation with hard-
ening for α > 0. Also, in the presence of strong enough
nonlinearity, the relative magnitudes of the superharmonic
at half the frequency is comparable in magnitude to the pri-
mary frequency, as seen in Figure 6.

This work focuses on resonances and not stability. The
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FIGURE 6. EFFECT OF NONLINEAR TERM TERM ON SYSTEM
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Mathieu equation is well known to have instabilities in the space
of stiffness and parametric excitation parameters. We have ob-
served instabilities at primary resonance in simulations, and an
analysis of stability transitions is currently underway.

5 Conclusion
This work has provided an integral-partial differential equa-

tion of motion that model the in-plane dynamics of a wind tur-
bine blade. Nonlinear effects and cyclic loading have been con-
sidered. In the present work, the model accommodates aero-
dynamic force although these details are not yet incorporated.
Gravitational loading on these structures gives rise to the cyclic
parametric and direct excitation of the structure at the same fre-
quency as rotation. Cyclic aerodynamic loading will probably
contribute further to both direct forcing and parametric excita-
tion.

The single mode reduction led to the parametrically and di-
rectly forced nonlinear ODE of equation (9). This motivated
the investigation of a forced nonlinear Mathieu equation as a
paradigm in dynamical systems research. Furthermore, we found
that when typical wind turbine parameters are included, equation
(9) may not have the convenience of a small parameter. So as
a preliminary study, we examined the small parameter nonlinear
forced Mathieu equation, with the expectation that the phenom-
ena uncovered may carry over to wind turbines. To this end,
we performed a perturbation analysis of the nonlinear forced
Mathieu equation (12), which revealed multiple super- and sub-
harmonic resonances. With nonlinearity, as the frequency slowly
increases and decreases, there can be hysteresis and jump phe-
nomena in the occurrence of large responses. Jump phenomena
are dangerous, as a small change in frequency near a jump point
can induce a suddenly large steady state. (Transients may be even
larger.) Furthermore, presence of superharmonic resonance for a
linear Mathieu equation with direct forcing was unfolded.

Some of these resonance phenomena are expected to be rel-
evant to wind turbine blade dynamics. Further analytical study
is required to completely understand the dynamics of the system.
Resonances can be amplified beyond linear predictions if there
is simultaneous superharmonic and primary excitation as well.
More detailed modeling is underway to include out-of-plane mo-
tion, geometry and aerodynamic effects.
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