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Abstract 

A cantilevered beam excited by a periodically reciprocating friction contact surface 
exhibited extremely low frequency responses (with frequencies as low as 100 times lower 
than the driver).  Example responses near 1:1 and 1:2 resonances, between the excitation 
and the degree of freedom normal to the direction of sliding, show two-frequency 
quasiperiodicity, and in one case three-frequency quasiperiodicity.  Underlying circle 
maps were extracted, and winding numbers were matched to response frequencies 
quantified in the fast Fourier transforms of the responses.   A torus doubling bifurcation 
was documented. 
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1.  Introduction 

This paper documents extremely low-frequency responses of a beam, to a 
harmonically reciprocating contact surface, that had been casually observed in [1].  The 
mechanism of the low-frequency response in this experiment differs from that classified 
as subharmonic resonance [2], ultra-subharmonic responses [2-4], high-to-low-frequency 
modal energy transfer [5-11], frequency demultiplication [12], dither [13-17], and beating 
[18].   

In this case, the dynamics are quasiperiodic with a strong very low frequency.  
Quasiperiodicity itself is not unusual, and has been widely observed [19], both in forced 
systems (including those with or without a limit cycle, such as the van der Pol oscillator 
[2], the forced Rayleigh-Bénard experiment [20], and forced structures [21-23]), and 
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autonomous systems (e.g. Bénard convection [24], and flow through a tube [25]), and 
many other systems. In the present case, the very low frequency may be an instance of 
slow effects of high-frequency excitation, examples of which include vibration feeders, 
autofocusing lenses, conveying fluid in vibrating pipes, and loosening bolts on vibrating 
machinery (see [26] and references within).  The behavior observed here also 
supplements the possibilities for dynamic systems with friction, reviewed in [27, 28].   

The following includes a description of the experiment and examples of the low 
frequency behavior.  
 
2.  Description of the experiment 

The research presented here uses the same experimental setup as reference [1], 
wherein details can be found.  Fig. 1 shows a general diagram of the experimental setup 
and Fig. 2 shows a transverse view of the two sections.  The main beam (mild steel, 400 x 
12.8 x 0.86 mm3, E = 128 x 109 N/m2, and density ρ = 7488 kg/m3) was clamped in the 
B-B section.  The shaker is shown in the A-A section.  The rectangle in the A-A section 
represents a steel block, attached to the shaker, oscillating out of the page in Fig. 1, 
providing a reciprocating friction contact.   In the coordinate system XYZ, X is along the 
length of the main cantilever beam, Y is the flexural direction of the beam and Z is along 
the wide axis of the beam. The primary transverse beam deflection oscillation is in the Y 
direction.  Attached to the end of the main beam, and penetrating the A-A circle in Fig. 1, 
is the “loading beam,” which is flexible in the Z direction.  The connecting fixture has a 
mass of 0.0123 kg.  The end of the steel loading beam (64 x 13.4 x 0.56 mm3, E = 126 x 
109 N/m2, and density ρ = 7488 kg/m3) was in contact with the oscillating surface through 
a rubber tip, providing frictional excitation in the Y direction. The total length from 
clamp to tip is 464 mm.  The previously measured force-velocity behavior [1] implied a 
tangentially compliant contact with a contact stiffness of Ky= –20 kN/m and a coefficient 
of sliding friction of µ=0.55.  

The fixed end at B-B of the cantilever was slightly rotated in the Y-Z plane, such that 
the direction of flexure was slightly skewed with respect to the reciprocating steel 
surface, dominantly in the Y direction. This skewed alignment caused the normal load in 
A-A to vary with displacement, at a rate of about 0.035 N/cm.  The load at the midpoint 
of the surface was 0.63 N.  Over a 7 cm span of motion on the surface, the load ranged 
from 0.466 N to 0.655 N.  The varying normal force at the friction contact caused a 
varying friction force. 

The cantilever beam deflection was sensed by a strain gage bending pair close to the 
clamped end.  We sampled the signal x(t) from the strain gage pair as an observer (in 
contrast to using several strain gage pairs for modal studies [1]) for phase-space 
reconstructions.  Excitation and strain data were sampled at a rate of 5000 Hz, and the 
strain data were then linearly interpolated between up-crossings of the sinusoidal 
excitation through zero, thereby giving strain data that is sampled at each driving period, 
or in the Poincaré section.  The notation x(n) is used to indicate strain samples in the 
Poincaré section. 

The Poincaré section was very useful because the beam tip moved very slowly, with a 
small superposed higher mode oscillation at the forcing frequency.  The strain gage at the 
base of the beam magnified the higher-mode bending signal, emphasizing the forcing-
frequency fluctuation much more than that observed in the tip motion.  In the Poincaré 
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section, the forcing frequency fluctuation is omitted, thereby aiding visualization of the 
low frequency dynamics. 

 
Figure 1: Diagram of experimental setup. 

 
 
2.1 System characteristics  

We examined the linear behavior of both the clamped-free and the clamped-pinned 
beam, to represent sticking and slipping motions.  The first five modal frequencies for the 
free beam were 2.5, 19.5, 57.5, 112 and 180 Hz.  Loading the tip with a large normal 
force, such that sliding was not likely to occur, approximated the linear pinned beam 
case. The lowest frequencies of the loaded modes were 13.5, 43.5, 93.0 and 171.5 Hz. 
During sliding, variation in the normal load with deflection in Y could excite the main 
beam in its stiff (Z) direction.  The first Z-direction modal frequency of the loaded beam 
was 47 Hz.  During frequency sweeps, the DC component of the response varied 
considerably [29].   
 
 
3.  Low-frequency response 

Low frequency behavior was observed when the excitation frequency was at a 1:1 or 
1:2 resonance of the normal degree of freedom (47 Hz).  We first show results for 
excitation in the range of 1:1 resonance, and then for the 1:2 resonance. 

 
3.1  Results at 1:1 resonance 

Movie 1 (in the online publication) displays, in a true time scale, the motion of the 
entire beam under an excitation of 45.7 Hz.  Movie 2 (online publication) shows the 
motion of the tip of the beam from above.  In the movies, the input surface motion, and 
the higher modal component of the beam, both seem to beat.  In fact, they do not really 
beat; this is due to the sampling distortion arising from the proximity of the 60 Hz video 
frequency and the 45.7 Hz driving frequency.  The side view in Movie 3 reveals the 
motion of the normal degree of freedom.  This motion does beat; it is active on the 
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forward phase (into the image) of the tip, and ceases on the return phase.  There is an 
audible, but not visible, tip chatter in the forward phase. 

Fig. 3 shows the sequence of strains sampled in the Poincaré section for excitations of 
45.2 Hz and 45.6 Hz.  The plotted samples are line-connected, as the responses are slow 
compared to the Poincaré-section sampling rate.  The Poincaré section effectively strobed 
the strain signal at a fixed phase of excitation. The strobe removed the component of 
beam oscillation at the forcing frequency from the plot.  The strobed tip motion of the 
beam was qualitatively similar to the strobed oscillation in Fig. 3, and spanned 2-5 cm 
peak to peak in this frequency range.  The continuous time tip motion had an additional 
oscillation on the order of 1 mm in amplitude, at the driving frequency.  The DC drift is a 
nonlinear (quadratic) effect.   

Fig. 4 shows delay maps of the strain in the Poincaré section at 45.2 Hz and 45.6 Hz, 
with delays of 5 and 3 samples.  The former shows the cross-section of a torus whose 
corrugated and fuzzy portions might indicate torus wrinkling.  The latter shows a doubled 
torus with mild corrugation.  

 
Figure 3. Time histories of strain signals x(n) sampled in the Poincaré section, at 
excitations of (a) 45.2 Hz, and (b) 45.6 Hz. 

 
Figure 4.  Return maps on strain signals x(n) in the Poincaré section for (a) 45.2 Hz 
excitation and a delay of 5 Poincaré-section samples, and (b) 45.6 Hz excitation and a 
delay of 3 Poincaré-section samples. 
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Torus angles were defined in delay spaces with delays of 15 and 8 Poincaré-section 

samples for 45.2 Hz and 45.6 Hz cases, whence the torus angle return plots were 
constructed (Fig. 5).  Winding numbers of 0.00982 cyc/cyc at 45.2 Hz, and 0.0139 
cyc/cyc at 45.6 Hz, were computed.  The low winding numbers indicate that the iterates 
in Fig. 4 creep slowly around the closed loop, as opposed to dancing around the closed 
loops and filling in spaces.  Reciprocals suggest that the torus windings were 
approximately 102 and 72 times slower than the driver, implying the “order” of the low-
frequency component of each response (and giving a sense for the number of Poincaré-
section samples per oscillation in Fig. 3).  The circle maps for 45.2 Hz and 45.6 Hz lie 
close to the diagonal, corresponding to the slow winding (small winding numbers).  Since 
intermittency occurs with near tangencies of the circle map to the diagonal, the dynamics 
might be called “entirely intermittent” (an oxymoron).  Overall, the dynamics are 
dominantly quasi-periodic.  The doubled torus at 45.6 Hz is evident in the doubled circle 
map.  A single-valued circle map could be obtained by redefining the angle modulus to 
cover two loops (4π radians) around the torus.   

A 50 second segment of the strain measurement when the system was excited at 45.2 
Hz was windowed with a Hanning window and a discrete (fast) Fourier transform of the 
result was taken to yield Xk.  The magnitude, plotted in decibles, is shown in Fig. 6(a).  A 
similar transformation of a 10000 period segment of Hanning-windowed strain-gage data, 
x(n), the Poincaré section, produced 

€ 

Xn
P , and the magnitude in decibels is plotted in Fig. 

6(b).  Similar spectra resulting from an excitation at 45.6 Hz are shown in Fig. 7.  The 
spectrum in the Poincaré section magnifies the resolution at low frequencies, and 
removes the driving frequency.  

 
Figure 5.  Poincaré section torus angle return maps for (a) 45.2 Hz excitation, and (b) 
45.6 Hz excitation. 
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Figure 6: Fourier spectra of the signals from (a) 50 seconds of strain data, x(t), sampled at 
200 Hz, after using a Hanning window, and (b) 10,000 periods (221 seconds) of 
Poincaré-section data, x(n), after using a Hanning window, for the excitation at 45.2 Hz.  
In the figures, dB refers to (a) 20 log10 |Xk|, and (b) 20 log10 |

€ 

Xn
P |. 

 
 
The spectrum of the 45.2 Hz case shows the lowest spike at 0.44 Hz.  The behavior 

includes interactions of two dominant frequencies with the “subharmonic” occurring on 
the order of about 103, in agreement with the order obtained from the winding number. 
Here, the word “subharmonic” refers to a strong component of the response at a 
frequency lower than the driving frequency, and the word “order” represents the ratio of 
the driving frequency to the “subharmonic” frequency.  The 45.2 Hz driver and 0.44 Hz 
component suggest 2-frequency quasi-periodicity.  While the strain signal showed two 
dominant frequencies, in the tip displacement the low frequency was strongest, similar to 
the response shown in the movies.  Technically, the “subharmonic” may not be a 
harmonic, rather an “undertone”, as the driving frequency and the “subharmonic” 
frequency are not commensurate.   

The spectrum of 45.6 Hz case, displayed in Fig. 7, has a similar behavior to the 45.2 
Hz case, except the second “subharmonic” is dominant.  The winding number of 0.0139 
cyc/cyc, when multiplied by 45.6 Hz, confirms the “subharmonic” frequency of 0.6 Hz 
and is associated with the main (undoubled) torus, at a “subharmonic order” of 
approximately 76.  The 0.3 Hz is then a subharmonic resonance of the 0.6 Hz component, 
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associated with torus doubling.  This subharmonic is at an order of 152 with respect to 
the excitation!  The dynamics are classified as 2-frequency quasi-periodic with torus 
doubling.   

The torus doubling bifurcation (e.g. [19, 30-33]) is witnessed in Fig. 8.  Starting at 46 
Hz we swept down slowly to 45.84 Hz, where the torus-doubling phenomenon began.  
There are two cases at 45.84 Hz.  In the first one case there is no indication of a torus 
doubling, while a little while later data was taken at that same frequency and the torus 
doubling had become active.  As the frequency was increased again, the doubled torus 
disappeared.  (These data were obtained several days after that of Figs. 3-5, with slightly 
different ambient conditions, and so the driving frequencies are not exactly the same.)  
Other systems have shown finite torus doublings to chaos [34] and torus-doubling 
cascades to chaos (e.g. [21-23, 35, 36], or see [19]). 

During all of these responses (Figs. 1-8), the normal degree of freedom was visibly 
active, and was likely excited by the variation in the normal load due to the slight 
skewness in the surface/bending alignment, or possibly by microscale dynamics in the 
normal degree of freedom, the existence of which has been suggested by some friction 
experimenters and modelers [37-39].   The beam’s normal vibration had beats that 
synchronized with the phase of the tip.  The normal degree of freedom, at least one 
transverse mode, and the excitation provide at least five state-space dimensions, 
sufficient to allow torus doubling.   

The excitation frequencies were near the frequency of the normal degree of freedom 
(44.7 Hz).  The 0.44 Hz nearly matched the difference 45.2-44.7 Hz, and likewise, the 0.6 
Hz is close to 2/3 the difference. (The doubled torus frequency is 1/3, but the “primary” 
torus would be the object of interest in these interactions.)  In both cases, it is possible 
that a nonlinear combination of the excitation and the normal and transverse degrees of 
freedom organizes itself as a slow tip motion of the low frequency difference.  In both 
cases, the low frequency term is the dominant peak, even in the strain gage signals (i.e. 
more so in the beam tip signals, as mentioned, and as would be guessed from viewing the 
movies.) 

The low frequencies of the beam tip motion matched the 0.44 Hz and 0.6 Hz 
frequencies as seen in the Fourier spectra, which are well below (5.7 and 4.16 times), and 
likely incommensurate to, the first clamped-free modal frequency.  To an observer, the 
creeping beam tip, well below its dynamic range, actually seemed devoid of inertial 
effects.  Indeed, comparing  and  terms of a single-degree-of-freedom first-mode 
model, the amplitude of the inertial force for the low harmonic was 32 and 17 times 
smaller than the associated linearized stiffness force in the oscillator, suggesting nearly 
quasi-static motion.  This contrasts the typical case in which the inertia is an essential 
component of a mechanical oscillator. 

Quasiperiodicity itself is not unique. The quasiperiodicity here was likely due to 
nonlinear coupling between the excitation, modal, and normal-degree-of-freedom 
frequencies.  It is possible that quasi-static or kinematic relationships play a role here.  It 
is curious that the lower-frequency component was significantly below the natural and 
applied frequencies of the forced vibration system, yet was not primarily a beating effect, 
in the sense that the tip motion did not consist of a slowly varying amplitude of higher 
frequency oscillation, typical of beating.   
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Figure 7: Spectra of the signals from (a) 50 seconds of strain data, x(t), sampled at 200 
Hz, after using a Hanning window, and (b) 10,000 periods (219 seconds) of Poincaré-
section data, x(n), after using a Hanning window, for the excitation at 45.6 Hz.  In the 
figures, dB refers to (a) 20 log10 |Xk|, and (b)  20 log10 |

€ 

Xn
P |. 
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Figure 8: Example of torus doubling with varying excitation frequency, in the Poincaré 
section delay space with a delay of three samples.  The original torus destabilizes and 
doubles at a driving frequency of 45.84 Hz.  In plots (a)-(c), the excitation frequency is 
very slowly decreased, and in plots (e)-(g) the excitation frequency is very slowly 
increased.  The excitation frequencies are (a) 46 Hz, (b) 45.88 Hz, (c) 45.84 Hz, (d) 45.84 
Hz, (e) 45.85 Hz, (f) 45.857 Hz, and (g) 45.859 Hz.   
 

 
3.2  Results near 1:2 resonance 

Very low frequency responses were also observed at excitation frequencies in the 
range of about half of the normal-degree-of-freedom natural frequency (also about half of 
the second modal frequency of the “pinned” beam), and results are shown for a driving 
frequency of 21.9 Hz.  Fig. 9 (a) shows the strain sampled in the Poincaré section and 
plotted against the sample time.  The dynamics show a phase of considerable oscillation, 
and then a phase of slow motion, in the Poincaré section.  The strain in the Poincaré 
section is plotted against its next delay in Fig. 9 (b).  The dark band in the delay plot 
corresponds to the slower phase of motion, while the cloud of points corresponds to the 
oscillation seen in the Poincaré-sectioned response.  As in the 1:1 case above, the 
Poincaré sectioning conceals the contribution, to the strain signal, of a superposed forced 
beam vibration at the driving frequency of 21.9 Hz, and is more representative of the 
wandering beam tip. 
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Figure 9:  (a) Time histories of strain signals x(n) sampled in the Poincaré section, at an 
excitation of 21.9 Hz.  (b) Return map on strains x(n) in the Poincaré-section for 21.9 Hz 
excitation with a delay of 1 Poincaré-section sample. 

 
Figure 10: Spectra of the signals from (a) 100 seconds of strain data x(t), sampled at 100 
Hz, after Hanning windowing, and (b) 10,000 periods (457 seconds) of Poincaré-section 
data x(n) after windowing, for the excitation at 21.9 Hz. In the figures, dB refers to (a) 20 
log10 |Xk|, and (b) 20 log10 |
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Xn
P |. 
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The spectrum of the Hanning-windowed sampled strain x(t) is shown in Figure 10 (a).  
There is a dominant peak at 21.9 Hz corresponding to the oscillatory strain of superposed 
forced beam vibration at the driving frequency.  The spectrum also indicates a peak at 
about 0.4 Hz, which corresponds to the main frequency of the wandering tip.  This 0.4 Hz 
is also the frequency difference between the driving frequency and the frequencies of the 
small peaks right next to it.  There is a suppressed peak at 4.27 Hz, which also marks the 
difference between the 21.9 Hz peak and the subtle humps on either side.  The spectrum 
of the strain signal x(n) in the Poincaré-section is shown in Fig. 10 (b), which again 
removes the driving frequency information and emphasizes the low frequency content.  
The presence of three seemingly independent frequencies suggests three-frequency 
quasiperiodicity, or narrowband chaos with the slightly raised spectrum near the peaks.  
The ratio of the driving frequency and the low frequency peak suggests a “subharmonic 
order” of about 55.  Since the Poincaré section delay map produced a cloud of data, rather 
than a closed curve of data, we were unable to construct an underlying circle map with an 
estimated winding number.   

Fig. 11 shows the time history and delay map of the strain signal in the Poincaré 
section for responses to a 22.3 Hz driving frequency.  In the delay map of Fig. 11(b), 
iterated points proceed clockwise around the light cloud, and then get trapped on the 
much slower dark band, before resuming travel on the light cloud.  A circle map was 
recovered in this case (Fig. 12).  The dark band of Fig. 11 (b) coincides with that part of 
the circle map that is tangential to the diagonal.  This might either be indicative of 
dynamics that are more complicated than a true one-dimensional circle map (for example 
with wrinkling), or a feature that is caused by the projection, of the iterates on a closed 
curve, to the two-dimensional plot.  Nonetheless, from the circle map construct, the 
winding number was estimated to be 0.0306 cyc/cyc.  The spectrum (not shown) 
indicates peaks at the driving frequency and at 0.68 Hz, suggesting a “subharmonic 
order” of 32.8, which is consistent with the winding number reciprocal (32.7).  The 
alternation between the quicker cloud of points and the slow, dark band, is similar to the 
features of the 21.9 Hz case.  However, in this case, the spectra suggest the dynamics 
were born from two-frequency quasiperiodicity. 

The above examples occurred at excitation frequencies slightly below one half of the 
normal degree of freedom frequency.  Although not shown (see references [29, 40]), we 
have also observed two frequency toroidal dynamics at frequencies slightly higher than 
one half of this frequency.  In these cases, circle maps indicated intermittency.  Fourier 
spectra and circle maps showed “subharmonic orders” of the range of about 11-12. 

 
 

3.3  Comments 
A mechanism for generating at least some of the very low frequency responses is 

conjectured.  The normal degree of freedom is resonated such that it cyclically increases 
and decreases the contact load.  With sufficiently increased contact load, a short-time 
stick allows the tip to creep on the reciprocating surface.  The quasi-statically creeping tip 
either slips on the return, or reverses itself with the varying phase between the surface 
and the normal degree of freedom, consistent with the match in the low frequency tip and 
the difference between the driver and the normal degree of freedom suggested in the first 
example.  Our next step will be to explain the behavior with the derivation of a low-order 
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model, and its analysis, perhaps using perspective of Thomsen and colleagues [16, 26], 
geared for describing the slow effects of fast excitations and later used for dither [17].  In 
this perspective, the response is expanded as a slow component plus a fast oscillation (in 
contrast to the usual fast oscillation with a slowly varying amplitude). 

 
Figure 11: (a) Time histories of strain signals x(n) sampled in the Poincaré section, at an 
excitation of 22.3 Hz.  (b) Return map on strains x(n) in the Poincaré-section for 22.3 Hz 
excitation with a delay of 1 Poincaré-section sample. 

 
Figure 12:  Poincaré section torus angle return map for the case of 22.3 Hz excitation. 

 
 
4.  Conclusions 

A cantilevered beam excited by a periodically reciprocating friction contact exhibited 
very low frequency responses, much below the fundamental frequency of the system.  
These very low-frequency responses often were seen to involve beam oscillations normal 
to the contact surface, at the frequency of the normal degree of freedom.  We documented 
example responses near 1:1 and 1:2 resonances with this normal degree of freedom.  For 
the observed 1:1 resonance case, from the underlying circle maps and spectra, the 
dynamics is two-frequency quasiperiodic with imminent torus wrinkling.  An example of 
torus doubling was also exhibited.  For the 1:2 resonance range, it is concluded from 
examination of the spectra that dynamic responses could involve two or three 
incommensurate frequencies.    
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The low-frequency behavior here is a different phenomenon from true subharmonic 
resonance, frequency demultiplication, and the high-to-low modal energy transfer.  
Although the normal degree of freedom exhibits beats (synchronized with the tip 
motion), the slowly moving beam tip did not beat.  The unusual aspect of the response 
was that it occurs at frequencies well below those of the dynamics of the system.  It may 
fit best with the phenomena suggested in [26].  This work presented the observation of a 
phenomenon without an analysis on how the behavior arose, and so an explanation with 
modeling and analysis would be the next step. 
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Multi-Media Captions 
 
Movie 1.  (See online publication, or http://www.egr.msu.edu/~feeny/Movie1.mpg)  Top 
view of the motion of the entire beam under a periodic excitation of 45.7 Hz.  The 
relative degree of tip motion and higher modal flexure is visible. 
 
Movie 2.  (See online publication) Top view of the motion of the tip of the beam under a 
periodic excitation of 45.7 Hz.  A false impression of beating, in both the input surface 
motion, and the higher modal component of the beam, is due to the sampling distortion 
arising from the proximity of the 60 Hz video frequency and the 45.7 Hz driving 
frequency. 
 
Movie 3.  (See online publication) The side view of the beam tip reveals the motion of 
the normal degree of freedom.  This motion does beat; it is active on the forward phase 
(into the image), and ceases on the return phase.  There is an audible, but not visible, tip 
chatter in the forward phase. 
 
 
 


