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ABSTRACT

Traveling waves in one-dimensional nonlinear periodic struc-
tures are investigated for low-amplitude oscillations using
perturbation analysis. We use second-order multiple scales
analysis to capture the effect of quadratic nonlinearity. Compar-
isons with the linear and cubical nonlinear cases are presented
in the dispersion relationship, group velocity and phase velocity
and their dependence on wave number and amplitude of oscilla-
tion. Quadratic nonlinearity is shown to have a significant effect
on the behavior.

Keywords: Traveling waves, nonlinear periodic structures, second-
order perturbation, method of multiple scales, amplitude-dependent dis-
persion, nonlinear waveguides, metamaterials, acoustic filters

1 Introduction
Metamaterials have been of growing interest for achieving cer-
tain desirable properties such as band gaps, negative refractive
indices, phonon tunneling, and phonon focusing [1]. Engineer-
ing applications of these properties are in waveguides, acoustic
filters, acoustic mirrors, transducers, etc. [2–8]. Various types
of periodic media have been studied, including one-dimensional
undamped mass-spring chains [9–12], strongly nonlinear contact
in beaded systems [13], kink dynamics [14], and weakly coupled
layered systems [15, 16].

∗Address all correspondence to this author.

Due to the presence of band gaps in periodic media, many re-
searchers have been focusing on wave propagation in nonlinear
periodic structures and its application to the design of novel
metamaterials [3, 9–11, 17–20]. Structures exhibiting bandgaps
prevent the propagation of waves at certain frequencies. These
structures may be phononic (sonic) or photonic, depending on
their band-gap frequency range. Phononic or sonic band-gap
structures can be used as sensing devices based on resonators,
acoustic logic ports and wave guides, and frequency filters
based on surface acoustic waves, while photonic band-gap
structures have applications in optics and microwaves. Synthesis
of phononic materials with desired band-gap and wave-guiding
characteristics has been achieved through the application of
topology and material optimization procedures [7, 21, 22].
The application of periodic plane grid structures as phononic
materials and its design optimization process has been presented
in [23], where a limited number of continuously varying pa-
rameters define the geometry of a predefined cellular topology
that deals with periodic structures of infinite size as well as
demonstrate the validity of the results to finite systems.

Amplitude-dependent dispersion and band-gap behavior have
been explored in several discrete periodic systems characterized
by cubic nonlinearities by Narisetti et al. [10], where it was
shown that the boundary of the dispersion curve may shift with
amplitude in the presence of a single plane wave. Manktelow et
al. [24] have recently extended the analysis in [10] to include
the propagation of multiple harmonic plane waves that show the
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dispersion properties of discrete, periodic, cubically nonlinear
systems. They presented a comparison between the multiple
scales and Lindstedt-Poincare method for harmonic wave-wave
interactions due to commensurate frequency ratios. Narisetti
et al. [11] have recently studied a plane wave propagation in
strongly nonlinear periodic media. At higher frequencies and
low amplitudes, it is shown that a hexagonally-packed and
prestressed lattice exhibits acoustic wave beaming phenomena
and may have applications in tunable spatial filters and tunable
stress-redirecting materials.

While these studies address cubic nonlinear periodic media for
applications as metamaterials, there has been no research on
wave propagations in periodic media with strong quadratic non-
linearities. We look at small amplitude waves propagating about
an equilibrium configuration of a snap-through periodic chain,
and retain quadratic and cubic nonlinearity local to the equilib-
rium. A second-order multiple scales perturbation analysis is
applied for low-amplitude oscillations that capture the quadratic
effects. We obtain a nonlinear dispersion relationship from the
theoretical analysis and compare it to linear and cubically non-
linear cases. The amplitude dependence of the dispersion rela-
tions shows that the mass-spring chains can be used as tunable
acoustic filters. The group and phase velocity dependence on
wave number and amplitude shows the relevance of quadratic ef-
fects for applications in band gaps, event detection and nonlinear
waveguides.

2 Periodic Chain of Snap-Through Oscillators

We study the wave behaviors in an infinite uniform nonlinear
mass-spring chain (Figure 1). Due to the snap-through behavior
of the individual elements (Figure 2), it is suspected that there
will be a nonlinear wave phenomenon for an infinite element sys-
tem.
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FIGURE 1: Infinite mass chain. The unstretched position and
displacement of mass m j are denoted by x j and u j respectively.
The springs are cubic nonlinear as in Figure 2 with unstretched
length h.

The mass-spring chain is arranged in a fashion such that each
mass is separated by a distance h from its nearest neighbor. h
is also the un-stretched length of each spring before any snap-
through occurs. We use the assumption that all the masses are
equal (m j = m) and only the nearest neighbors have direct ef-
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FIGURE 2: The characteristic spring force fi(si) of the nonlinear
spring as a function of the spring deformation si.

fects on each other. The equations of motion (EOM) can then be
written as

mü j = α̃
[
(u j+1−u j)− (u j−u j−1)

]
+ β̃

[
(u j+1−u j)

2− (u j−u j−1)
2]

+ γ̃
[
(u j+1−u j)

3− (u j−u j−1)
3] (1)

for j = · · · ,−2,−1,0,1,2, · · · . To simplify the equation we apply
the following coordinate transformation:

ε z j =
(
u j+1−u j

)
(2)

Letting α = α̃

m , β = β̃

m , γ = γ̃

m , the equations become

ü j+1 = ε α
(
z j+1− z j

)
+ε

2
β
(
z2

j+1− z2
j
)
+ε

3
γ
(
z3

j+1− z3
j
)

(3)

ü j = ε α
(
z j− z j−1

)
+ ε

2
β
(
z2

j − z2
j−1
)
+ ε

3
γ
(
z3

j − z3
j−1
)

(4)

Now subtracting equation (4) from equation (3), we obtain the
equation of motion in the z coordinates

z̈ j =−α
(
2 z j− z j+1− z j−1

)
− ε β

(
2 z2

j − z2
j+1− z2

j−1
)

− ε
2

γ
(
2 z3

j − z3
j+1− z3

j−1
) (5)

When ε is small, we are considering the spring deformation near
one of the stable equilibria, i.e. it does not snap through. With
ε as a bookkeeping parameter, the quadratic effect is more dom-
inant than the cubic in equation (5). With the small parameter
ε , we will analyze these ordinary differential equations by using
the method of multiple scales next.

3 Second-Order Multiple Scales Analysis

3.1 Analysis in Strain Coordinates

We analyze the wave equation using the method of multiple
scales (MMS). We assume,
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z j(t) = z j0 (T0,T1,T2)+ ε z j1 (T0,T1,T2)+ ε
2 z j2 (T0,T1,T2)+ · · ·

d
dt

= D0 + εD1 + ε
2 D2 + · · ·

d2

dt
= D2

0 + ε (2D0D1)+ ε
2 (D2

1 +2D0D2
)
+ · · ·

(6)
where Di =

∂

∂Ti
. Plugging into equation (5) yields

D2
0z j0 + ε

[
D2

0z j1 +2D0D1z j0

]
+ ε

2
[
D2

0z j2 +2D0D1z j1

+
(
D2

1 +2D0D2
)

z j0

]
=−α

[
2 z j0 − z j+10 − z j−10

]
− ε

[
α
(
2 z j1 − z j+11 − z j−11

)
+β

(
2 z2

j0 − z2
j+10
− z2

j−10

)]
− ε

2
[
α
(
2 z j2 − z j+12 − z j−12

)
+ γ
(
2 z3

j0 − z3
j+10
− z3

j−10

)
+2 β

(
2 z j0z j1 − z j+10z j+11 − z j−10z j−11

)]
(7)

Equating like powers of ε ,

ε
0 : D2

0z j0 +α
(
2 z j0 − z j+10 − z j−10

)
= 0 (8)

ε
1 : D2

0z j1 +α
(
2 z j1 − z j+11 − z j−11

)
=

−2D0D1z j0 −β
(
2 z2

j0 − z2
j+10
− z2

j−10

) (9)

ε
2 : D2

0z j2 +α
(
2 z j2 − z j+12 − z j−12

)
=

−2D0D1z j1 −
(
D2

1 +2D0D2
)

z j0

−β
(
2 z j0z j1 − z j+10z j+11 − z j−10z j−11

)
− γ
(
2 z3

j0 − z3
j+10
− z3

j−10

) (10)

We assume a traveling wave solution to solve the ε0 equation (8).
Let

z j0 = y j0 + ȳ j0 = Aei(kx j−ω0T0)+ Āe−i(kx j−ω0T0) (11)

where y j0 = Aei(kx j−ω0T0). Then y j±10 = Aei(kx j±1−ω0T0). We also
assume x j±1 = x j± h. Plugging in y j±10 = e±ikhAei(kx j−ω0T0) =
e±ikhy j0 , into equation (8) we get

ω
2
0 = 2α(1− coskh) (12)

Hence, letting A = 1
2 ae−ib,

z j0 = y j0 + ȳ j0 =
1
2

aei(kx j−ω0T0−b)+ c.c. (13)

The solution to ε0 equation can be used in equation (9) to find
the secular terms. The solvability condition is −2D0D1z j0 =

2(iω0)A′ei(kx j−ω0T0)+ c.c., resulting in A′ = 0, where ()′ = ∂

∂T1
.

Hence a′ = 0 and b′ = 0, such that

a = a(T2)

b = b(T2)
(14)

Removing the secular term, we write the ε1 equation as

D2
0z j1 +α

(
2 z j1 − z j+11 − z j−11

)
=−β

(
2 z2

j0 − z2
j+10
− z2

j−10

)
=−β (2− e2ikh− e−2ikh)

(
1
2

ae−ib
)2

e2i(kx j−ω0T0)+ c.c.

=−βa2

2
(1− cos2kh)e2i(kx j−ω0T0−b)+ c.c.

(15)

Assuming the particular solution to the above equation to be of
the form,

z j1 = A1e2i(kx j−ω0T0−b)+ c.c. (16)

Plugging this into the ε1 equation and balancing the coefficients
of e2i(kx j−ω0T0−b) leads to

A1 =
βa2 sin2 2kh

4
(
ω2

0 −α sin2 kh
) (17)

The solution to ε1 equation is therefore

z j1 =
βa2 sin2 kh

4
(
ω2

0 −α sin2 kh
)e2i(kx j−ω0T0−b)+ c.c. (18)

We will now examine the ε2 equation in order to solve for a
and b. We note that z j0 and z j1 are independent of T1. There-
fore −2D0D1z j1 and D2

1z j0 vanish. Plugging z j0 and z j1 into the
equation (10), we obtain

D2
0z j2 +α

(
2 z j2 − z j+12 − z j−12

)
=−

[
(a′−aib′)(−iω0)ei(kx j−ω0T0−b)+ c.c.

]
−β

βa3 sin2 kh
8
(
ω2

0 −α sin2 kh
)[(2− e3ikh− e−3ikh)e3i(kx j−ω0T0−b)

+(2− eikh− e−ikh)ei(kx j−ω0T0−b)+ c.c.
]

− γ
a3

8

[
(2− e3ikh− e−3ikh)e3i(kx j−ω0T0−b)

+3(2− eikh− e−ikh)ei(kx j−ω0T0−b)+ c.c.
]

(19)

where, a′ = ∂a
∂T2

, and b′ = ∂b
∂T2

. The secular terms from the above

equation are the coefficients of ei(kx j−ω0T0). Eliminating the sec-
ular term results in
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(iω0a′+ω0ab′) =

[
3γ

4
+

β 2 sin2 kh
2
(
ω2

0 −α sin2 kh
)](1− coskh)a3

(20)
Equating the real and imaginary parts, the solvability condition
can be written as

Im: a′ = 0

Re: ω0ab′ =

[
3γ

4
+

β 2 sin2 kh
2
(
ω2

0 −α sin2 kh
)](1− coskh)a3 (21)

Using ω0 from equation (12), in equation (21), we get

Im: a′ = 0

Re: b′ =
[

3γ

4
+

β 2(1+ coskh)
2α(1− coskh)

]
ω0

2α
a2 (22)

Solving the equation (22), we get

a = a0

b =

[
3γ

4
+

β 2(1+ coskh)
2α(1− coskh)

]
ω0

2α
a2

0T2 +bc
(23)

We can neglect integration constant bc without loss of generality.
Also we note that T2 = ε2T0. Hence the slowly varying amplitude
(a) and phase (b) becomes,

a = a0

b =

[
3γ

4
+

β 2(1+ coskh)
2α(1− coskh)

]
ω0

2α
a2

0ε
2T0

(24)

Therefore combining equation (11) with A = 1
2 ae−ib, the fre-

quency ω can be written as

ω = ω0 +
b
T0

= ω0

[
1+

ε2a2
0

2α

(
3γ

4
+

β 2(1+ coskh)
2α(1− coskh)

)] (25)

3.2 Frequency Expression in Displacement Coordi-
nates

The above solution in equation (25) is obtained by solving the
EOM in strain coordinates z j = u j+1 − u j, where u j is in the
displacement coordinates. We now interprete the solution in
displacement coordinates. Let the solution in u coordinates

be u j = Dei(kx j−ωt) + c.c. and u j+1 = Dei(kx j+1−ωt) + c.c. =
Deikhei(kx j−ωt)+ c.c.. Therefore

z j = D(eikh−1)ei(kx j−ωt)+ c.c.= Aei(kx j−ωt)+ c.c. (26)

Letting D = 1
2 d0e−iθ , we get the relationship between the ampli-

tudes in displacement and strain coordinates as

A =
1
2

d0e−iθ (eikh−1) =
1
2

d0e−iθ (ρeiφ )

or
1
2

a0e−ib =
1
2

ρd0e−i(θ−φ)
(27)

where, with help from equation (12),

ρ =

√
(coskh−1)2 + sin2 kh =

√
2(1− coskh) =

√
ω2

0
α

tanφ =
sinkh

coskh−1
=−cot

kh
2

= tan
(

π

2
+

kh
2

)
a0 = ρd0

(28)

Hence the amplitude and phase in strain coordinates are re-
lated to the amplitude and phase in displacement coordinates
by

a2
0 =

ω2
0

ω2
n

d2
0

tanφ = tan
(

π

2
+

kh
2

) (29)

where ω2
n = α . Therefore the frequency in the displacement co-

ordinate system can be written as

ω(k,d0) = ω0

[
1+ ε

2

{
3γ

4
+

β 2

2α

(
1+ coskh
1− coskh

)}
ω2

0 d2
0

2α2

]
(30)

Also note that, in the above dispersion relationship, ω0 is a
function of the wave number k.

3.3 Comparison in Continuum Limit

To check the correlation between the coordinates, we consider a
continuum. The displacement at any location x in the continuum
is assumed to be of the following form

u(x j) = Dei(kx j−ωt) (31)

The strain can then be found by taking the partial derivative of
the displacement with respect to position x to get

z(x j, t) =
∂u(x j)

∂x j
= D(ik)ei(kx j−ωt) = Dkei π

2 ei(kx j−ωt) (32)
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To obtain the continuum limit in our MMS solution, we first rep-
resent the amplitude and phase of our solution (strain) in dis-
placement coordinate system and then take the limit as h→ 0.
Making use of

lim
h→0

sin(kh)
h

= k (33)

and the equations (26) - (28) the strain can be found as

z(x j, t) = lim
h→0

z j(x j, t)
h

= lim
h→0

A
1
h

ei(kx j−ωt)

= lim
h→0

D
1
h
(eikh−1)ei(kx j−ωt) = lim

h→0
Dρ

1
h

eiφ ei(kx j−ωt)

= lim
h→0

D
2sin

( kh
2

)
h

ei( π
2 +

kh
2 )ei(kx j−ωt) = Dkei π

2 ei(kx j−ωt)

(34)
Hence the strain from both the equations (32) and (34) are iden-
tical and confirms the validity of the coordinate transformations
between the strain and displacement coordinates.

4 Interpretations of Results

From the amplitude and phase we have obtained from second
order MMS analysis of traveling wave solutions, we find
interesting results in the dispersion diagram as well as in the
relationship between the group and phase velocities with respect
to wave number (k).

For α = 3, d0 = 1, h = 1, we plot the dispersion diagram from
equation (30) for β = 0, and β = −4. As we vary γ as −1,
0 and 1, we see that due to the quadratic effect (for β = −4)
the frequency is higher in the lower wave number region as
compared to the β = 0 case as seen in the Figure 3.
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FIGURE 3: The dispersion diagram. x-axis represents the wave
number (k) and y-axis represents the frequency (ω(d0,k)). Solid
and dashed curves correspond to (α > 0, β < 0), and (α > 0,
β = 0) respectively. γ =−1 (blue), 0 (black), 1 (red).
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FIGURE 4: (a) Group velocity (c(d0,k)) and (b) phase velocity
(vg(d0,k)) w.r.t. the wave number (k). Solid and dashed curves
correspond to (α > 0, β 6= 0), and (α > 0, β = 0) respectively.

The phase velocity (c(d0,k)) and group velocity (vg(d0,k)) can
be found from the following relation between the frequency and
wave number:

c (k,d0) =
ω(k,d0)

k

vg (k,d0) =
dω(k,d0)

dk

(35)

based on equation (30).

We see from the Figure 4, that due to the quadratic effect the
group and phase velocities, plotted by applying equations (35) to
equation (30) are much higher for smaller wave numbers as com-
pared to the β = 0 case. For fixed wave number k = 0.4π , as we
change amplitude from 0 to 1, we observe that the phase velocity
is much higher with quadratic terms, whereas the group velocity
does not change significantly as shown in Figure 5. Consider-
ing the scales of the plots, the amplitude effect (Figure 5(a)) on
group velocity is small.
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FIGURE 5: (a) Group velocity (c(d0,k)) and (b) phase velocity
(vg(d0,k)) w.r.t. the amplitude (d0) for a particular wave number
k = 0.4π . Solid and dashed curves correspond to (α > 0, β 6= 0),
and (α > 0, β = 0) respectively.

5 Conclusions and Outlook
In this paper we have presented a detailed study of traveling
wave behavior in an infinite periodic chain of snap-through el-
ements for low-amplitude oscillations. We adapted a second-
order multiple-scales analysis to accommodate traveling waves.
This analysis uncovered dispersion relationships, and the effects
of quadratic and cubic nonlinearities, as well as wave ampli-
tude. The quadratic nonlinearities have a significant effect on
the dispersion characteristics because we have considered small
amplitude oscillations where the system does not exhibit twin-
kling. A comparison between the quadratic (with nonzero cu-
bic terms) and cubic (no quadratic terms) cases shows that the
quadratic terms lead to much higher phase and group velocities
for lower wave numbers. At higher wave numbers, however, the
group velocities for the quadratic case are much lower as com-
pared to the cubic case. The second-order perturbation analysis
for the traveling wave study showed interesting behavior of the
system in presence of quadratic nonlinearity. Future work will
include a wave-wave interactions, and possible large amplitude
waves.
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