Proceedings of the ASME 2012 International Design Engineering Technical Conferences &

Conference on Mechanical Vibration and Noise
IDETC/VIB 2012
August 12-15, 2012, Chicago, IL, USA

DETC2012-70943

BIFURCATIONS IN TWINKLING OSCILLATORS

Smruti R. Panigrahi*
Dynamics and Vibrations
Research Laboratory
Department of Mechanical Engineering
Michigan State University
E. Lansing, Michigan, 48824
Email: smruti@msu.edu
Phone: 517-515-1620

ABSTRACT

We present the underlying dynamics of snap-through structures
that exhibit twinkling. Twinkling occurs when the nonlinear
structure is loaded slowly and the masses snap-through, con-
verting the low frequency input to high frequency oscillations.
We have studied a nonlinear spring-mass chain loaded by a qua-
sistatic pull. The spring forces are assumed to be cubic with
intervals of negative stiffness. Depending on the parameters, the
system has equilibria at multiple energy levels. The normal form
and the bifurcation behaviors for the single and two degree of
freedom systems are studied in detail. A new type of bifurcation,
which we refer to as a star bifurcation, has been observed for the
symmetric two degree of freedom system, which is of codimen-
sion four for the undamped case, and codimension three or two
for the damped case, depending on the form of the damping.

Keywords: Energy Harvesting, Negative Stiffness, Bifurcation,
Codimension, Twinkling Oscillator, Star Bifurcation

1 Introduction

This work is motivated by the idea of using snap-through struc-
tures to induce high frequency oscillations from low frequency
ambient vibrations to harvest energy. Several authors have
studied the dynamics of various snap-through negative stiffness
and bistable systems [1-5]. Nonlinear massless static electric-
springs [6], and magneto static-springs [7] have been studied nu-
merically. Vibration based energy harvesting from linear sys-
tems [8, 9] has been optimized experimentally [10-12] by tun-
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ing the forcing frequency to the natural frequency of the oscilla-
tor. Piezoelectric materials have been used for successful exper-
imental energy harvesting from vibrating sources [8, 9, 13—15]
and fluctuating pressure load [16, 17]. Nonlinear spring-mass
systems have the potential to harvest energy from a variety of
sources such as ambient vibrations, earthquake, low frequency
seismic phenomenon and tsunami. In this work, we look at the
behavior of snap-through spring-mass oscillations.

Nonlinearity has been studied by several authors for energy man-
agement. For example, essential nonlinearity has been used as a
nonlinear energy sink (NES) for energy harvesting [18-20], non-
linear energy pumping [21-23], and nonlinear targeted energy
transfer (TET) [24-28]. Novel ways of experimental energy har-
vesting have been achieved from low frequency ambient excita-
tions [14,15,29,30] and nonlinear oscillations of magnetic levita-
tions [31]. Wireless Energy Transfer (WET) has recently become
the subject of renewed research in the scientific community since
past few years [32-37], after the concept was first introduced al-
most one century ago by Nikola Tesla [38]. Both of these con-
cepts of TET in NES system and WET can be used to harvest
energy using pizoelectric materials, and transfer energy across
devices and mediums respectively. The snap-through structures,
possibly in the scale of a MEMS device, can be installed in the
WET device that can be triggered by magnetic excitation from
the WET source, to induce a high frequency oscillation in the
snap through system, thereby allowing the power harvesting in
the device while the energy transfer is performed by the WET
source.
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FIGURE 1. n-degree-of-freedom spring-mass chain connected by n masses, (n+ 1) nonlinear springs, and n dash-pots. As shown in this figure the
left spring is fixed to a base and the right most spring is pulled quasistatically to a distance y.

In this article we explore the dynamics of a nonlinear mass chain
with cubic springs, that have three distinct roots in the charac-
terisitc. The chain is connected to a fixed base at one end and
to a pulled point at the other end, as shown in Figure 1. The
end spring is then pulled quasistatically to a certain distance to
observe the “twinkling phenomenon” in the chain. As this pull
parameter is changed we see high frequency oscillations about
different equilibrium states. While the system goes through all
the bifurcations, it exhibits complicated behaviors in the phase
space. As the system exhibits twinkling phenomenon and comes
to an equilibrium state due to small applied damping, it contains
a total energy that was not present in the system before the ap-
plied quasistatic pull. This residual energy will be of importance
to energy harvesting and WET. Final equilibria of this type of
twinkler have differing energy states. Predicting the final en-
ergy of the system requires analysis of transients, which are in-
fluenced by the structure of both stable and unstable equilibria.
In this article we first study the local bifurcation behavior. We
will be presenting the stability analysis and the related degree of
degeneracy using the concept of codimension, and show how the
codimension of the system changes with damping.

In section 2, we construct the nonlinear ODE from the equation
of motion (EOM), and discuss the conditions for the stability.
In section 3, we will perform a coordinate transformation and
obtain a normal form for the initial bifurcation in a single and a
two DOF system. Finally in section 4, we will present our final
remarks by ending the article with the targeted application areas
and future research works in the area.

2 Snap-Through Structures: Twinkler

The equations of motion (EOM) of an n-degree-of-freedom (n-
DOF) snap-through system as shown in the Figure 1, written us-
ing the Newton’s second law of motion, as

mix) +c1xp —ca (X2 —x1) = fo (2 —x1) — f1 (x1)
mii+ ¢ (X — Xi—1) — Cip1 (Xip1 —Xi) =
ﬁ+1 (xi+1 _xi) _fl'(xi_xifl); VZZZ,?),,I’!—I

s o (xn _xn—l) = fut1 (y_xn) —fu (xn _xn—l)

(1

where m; is the i’ mass, ¢; is the damping of the i spring and
y is the quasistatic pull as shown in the Figure 2, applied to the
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FIGURE 2. The characteristic spring force fj(x;) of the nonlinear
spring as a function of the spring deformation x;, and the quasistatic
pull as a function of time.

end spring. Dividing by the masses, the undamped system can
be written in the form
% =f(x) @)

A cubic spring with the spring force f;(x;) is considered to be of
the form

filxi) = yxi(xi—ai) (i —b;); Vi=12,...,n+1 (3)

Referring to the Figure 1, as the end spring is pulled quasistati-
cally until y =y, we examine the equilibria. Atequilibrium both
the accelerations and the velocities of all the masses go to zero,
hence we get the following array of equations for the n-DOF
structure:

f2 (2 —x1) = fi1(x1)
Sfir1 (i1 —xi) = filei—xiz1); Vi=2,3,...,n—1 (4)
Jnr1 (y()_xn) =Jn (xn _xnfl)

As we solve the equation (4) we find the bifurcation behavior
with respect to yg. The stabilities of the equilibria of the second
order ordinary differential equation (2) can be found by com-
puting the eigenvalues of the Jacobian of f. For a second order
undamped equation the stabilities are determined as shown in the
following equations:

% = [Dfjx = —Kx, where K= —[Df] = ¥+ Kx=0 (5)

Assuming a response of the form x = e*® ¢, the eigenvalue
problem becomes
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where @ are the eigenfrequencies, A are the eigenvalues and ¢
are the eigenvectors. If A < O there is an exponential solution
that blows up as time ¢ increases, a stable oscillatory solution
exists for A > 0, and neutrally stable solutions for A = 0:

x= AV M 4 Age VM YA<O0

VA>0

7
X:Aleiﬁt+A2€_iﬂt ( )

Thus, in the second order undamped form, a bifurcation is indi-
cated as a single eigenvalue passes through zero, corresponding
to a transition of a second-order oscillation to a second-order
saddle (in a two-dimensional phase space). Equivalently, it
corresponds to a stiffness going from positive to negative.

Now we need to formulate the problem for a n-DOF system in
order to be able to solve it numerically in the first order form. The
second order nonlinear ODE for a n-DOF system in the vector
form is:

Mx + Cx + Kx = f,; 8)

where X is an n x 1 array of mass displacements, M, C, and K,
are the n x n mass, damping, and stiffness matrices, f,; is the
nonlinear part of the spring force. Specifically,

ki+ky —ky 0 --- 0 0
—ky ko+ks —k3--- 0 0
K=| 1 i ©)
0 0 0 - ky_1+k, —k,
0 0 0 -+ —k, ky,
where k; = via;b;, Vi=1,2,...,n+1
ol —x1) = fi(xr)
£ = fir1 (it —x31) = filxi —xi—1) (10)

fn+1 (y_xn) _fn(xn _xn71)+ Olp+1 (y_xn)

where fi(x;) = Bu? + %x}, o = Yiaib; and i = —vi(a; + by),
Vi=1,2,...,n+ 1. For our analysis, the second order ordinary
differential equations for the n-DOF system are converted into
first order differential equations by defining a 2n x 1 state vector

) e

where z; = X, Zp = X, and 7, = 71, yielding unforced equations
of motion of the form

Az=Jz+f (12)

MO _|-C-K = [ty
where A—[OI}, J—{I 0}7 f_{O} (13)

A and J are 2n x 2n matrices and f is 2n x 1 vector. We use
the above equation (12) for the twinkler to obtain the numerical
solution in a SDOF and 2DOF system and study the bifurcation
behaviors with respect to the parameter yy.

3 Bifurcation Behaviors of the Twinkler

The cubic nonlinearity in the twinkler gives rise to multiple equi-
libria for the parameter region where the twinkler passes through
the negative stiffness region. We used a coordinate transfor-
mation to simplify the form for the analysis of the bifurcation
events. This provides something like a normal form for the sys-
tem of second order equations. For n-DOF twinkler we obtain
the equilibrium solutions from the equation (4). For symmetric
case, all the spring forces are identical, hence y; = 7, a; = a and
b; = b. For all computations, we have used y =2, a = 0.5, and
b =3.0. The values of a and b are chosen to represent a stiffness
function of a spring that is preloaded to be somewhat near snap
through.

3.1 Bifurcations in SDOF Twinkler

For the SDOF system, equilibrium is attained when f;(x) =
f2(yo — x). Therefore, the equilibrium equation is:

Yix(x—ay)(x—by)

— o0 (o —x) —a) (o —x)—by) D

In this SDOF system, we observe two pitchfork bifurcations at
By and B; as shown in the Figure 3, when the symmetric sys-
tem snaps through, providing a parameter interval in which two
stable and one unstable equilibria exist. Breaking the symme-
try typically breaks the pitchforks into saddle-node bifurcations,
preserving the interval of two coexisting stable equilibria. For
the lightly damped symmetric system, one zero eigenvalue at the
bifurcation point can be referred to as a codimension [39,40] one
bifurcation, which however is a codimension two bifurcation in
the undamped system as both the eigenvalues go to zero. The
global symmetry breaking bifurcation behavior reveals the pres-
ence of multiple energy levels, in the negative stiffness region.
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FIGURE 3. The first figure represents the global bifurcation behavior of a SDOF system with respect to the pull parameter yq. The next two figures
represent the total spring potential energy of the system at the final equilibrium state. The middle figure shows two overlapping energy levels in the
negative stiffness region that are revealed with an applied perturbation in the right figure, where ay =a+¢€ and by = b+ ¢, for € =0.1.

3.2 Bifurcations in 2DOF Twinkler

We we will study the dynamics of the 2DOF system to under-
stand the system behavior as the oscillations settle down to an
equilibrium configuration. At equilibrium the velocities and ac-
celerations of both the masses dies down to zero, resulting in

filx1) = falxr —x1) and fo(xa —x1) = f3(yo — x2). Therefore
the equilibrium equation is written as

nx1(x) —ar)(x; —by)
=Po(x2 —x1)((x2 —x1) —a2)((x2 —x1) — b2)
V(%2 —x1)((r2 —x1) —a2)((x2 —x1) — b2)
=1(yo —x2)((yo —x2) —a3)((vo — x2) — b3)

15)

For the symmetric case, ¥; = ¥, a; = a, and b; = b, fori = 1,2, 3.
For all computations we have used Y = 2. The numerical solution
of the equilibrium for this 2DOF spring mass system results in
the bifurcation curves as figure 4. We transform the coordinates
to simplify the EOM. The change of coordinates is done by first
moving the origin to the bifurcation point, and then rotating
the lines x; = %0 and x; = Z)TO to coincide with the horizon-

o 4, 2(p+
tal axis, using yo = p+yp, x1 = uj + 252, and x; = up + (ﬂ}yb)_

Now (p,u;,u;) are the new coordinates of the transformed sys-
tem and the expression for y, is obtained later in this section.
Plugging the above transformations into equation (1), and letting
c1 = ¢y = ¢, for the symmetric system, we get the transformed
damped EOM,

i1+ 2cuy —ciip = 2 (uy — 2uy) (A — upy1 + pua) 16)
lip —cuy +cupy = 2(141 - 21/!2) (A—|—u1y1 —pu])

where A = (u} —ujuz +uj — 2”%4—”3—2), and y; = (a+b—yp).

At equilibrium iy = iip = 0, u; = up = 0. Therefore the trans-

formed equilibrium condition for the 2DOF twinkler,

g1(ur,uz,p) =2 (uz —2u1) (A —uzy1 + pup) =0 (17)
g2(ur,uz2,p) =2 (1 —2uz) (A+uryr — puy) =0

The solutions to the above equilibrium equations are
(l/l],Ltz) = {(Oa0)7 (_2P1a_P1)7 (_21727_172)’ (18)

(p1,=p1), (P2,—p2), (p2,2p2), (p1,2p1)}

where p; = %(P*yl + y%+6y1p73p2> and p, = %(1,,
yi— )’% +6y1p— 3p2>, which have elliptical solution curves

as shown in Figure 5. The stabilities of the equilibria curves are
determined from the eigenvalues as discussed in equations (5)
- (7). Combining the EOMs in equation (17), we get

(ur +u2) ((p— 1) (31 — u2) +2p) — p* — 3uyuo

(19)
+3ut +3u3 — (y; —2(a+b)y,+3ab)) =0

We note that the condition (u; + up) = 0, on the equilibria
curves (u1,uz) = {(0,0), (p1,—p1),(p2,—p2)} satisfy the equa-
tion (19), whereas the other four solution branches do not satisfy
this condition for all values of p. Hence for the equation (19)
to be satisfied by the other four solution branches, specifically at
p=0i.e. for (ur,ur) = {(0,0),(Z, %), (%, —%1),(0,0)}, we
must apply the following constraint,

Yo —2(a+b)yy+3ab=0

Syp=a+b—+/a*>—ab+b?

(20)

Since we are moving our coordinate system to the bifurcation
point By, here we consider the smaller value of y,. The other
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FIGURE 4. The bifurcation diagram for the equilibrium solutions of the lightly damped symmetric 2DOF system with respect to the pull parameter
yo, where B1,B;,...,Bjg are the bifurcation points. The dashed red lines represent unstable solutions, and the solid blue lines represent the stable

equilibrium solutions (neutrally stable for the undamped system). The vertical dotted green lines show infinitely many solutions at yg = a + b, where

at the bifurcation points B7 — B, two of the four eigenvalues are complex conjugates with zero real parts and the other two are zeros for undamped

system, whereas with light damping there is one zero, one purely real negative, and the other two are complex conjugate eigenvalues with negative real

parts. The bifurcation points Bz — Bg, are saddle-nodes with two zero and two complex conjugate eigenvalues with zero real parts for undamped system,

and with light damping there are two complex conjugate eigenvalues with negative real parts, one zero, and one purely real negative eigenvalues.
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FIGURE 5. The bifurcation diagram for the equilibrium solutions (u1,u,) in terms of the pull parameter p are qualitatively similar to the Figure 4,

hence the stabilities of the solution curves and the degree of degeneracy of the bifurcation points are inferred.

solution for y, corresponds to the bifurcation point B;. Since
both B and B, are qualitatively similar we only consider to study
the behavior at B;.

As p increases, the baseline solution (the horizontal line in Fig-
ure 5, and the diagonal straight line in Figure 4) destabilizes in
a bifurcation that features a collision of four branches of equi-
librium on either side of the bifurcation point. Three branches
are visible on either side of the bifurcation point in each fig-
ure because the vertical axes of these figures are a projection
of a higher dimensional phase space, and some curves overlap in
each projection. In both plots in Figure 5, the narrow elliptical
curve of equilibria is actually two overlapping elliptical curves.

For convenience, we refer to this bifurcation as a ”star bifurca-
tion”, as six curves (really eight) emanate from the bifurcation
point, in which a neutrally stable (becomes stable when applied
a light damping) curve collides simultaneously with three unsta-
ble curves to produce four unstable curves. We will study the
eigenvalues and the degree of degeneracy of the star bifurcation
in the normal form discussed later in this section. Also, as yg
continues to increase, at p = y; = 2.7838..., the equilibria on the
elliptical curves undergo an exchange of stability without inter-
section. This is also a degenerate type of bifurcation, which we
analyze in detail in the follow-up work.
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The perturbation is applied such that the spring force of the end spring is perturbed by making a3 = a+ € and b3 = b+ €, for small epsilon. We have
taken € = 0.1, to show the symmetry breaking more clearly. The star bifurcation and the bifurcations at p = y;, are unfolded revealing one of the
configurations of the global perturbations. Here the solid blue curves represent the stable and the dotted red ones represent the unstable equilibrium

solutions. The black dots are the bifurcation points in the perturbed system.
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FIGURE 7. Total final potential energies of the 2DOF system. Left figure represents the symmetric case corresponding to the Figure 5 and the
right figure correspond to the symmetry braking in the Figure 6, that reveals the overlapping energy levels. This global symmetry breaking bifurcation
diagram reveals the different levels of energies present in the global negative stiffness region of the system w.r.t. the pull parameter p. The energy
levels in the solid blue curves correspond to stable and the dotted red ones correspond to the unstable equilibrium solutions.

3.2.1 Stability and Codimension of the Star Bifurca-
tion. In order to study the bifurcation behavior and degree of
degeneracy of the star bifurcation, we find a normal form near
Bj. Local to the origin near p = 0, neglecting the cubic terms
from equation (17), we get undamped EOM

2
iy = hy(u1,uz, p) = 2y1(2u1 — u2) (Mz + *P)
> @1

lip = hz(ul,uz,p) = 2y1(u1 —21/!2) (ul — gp

; — 3 — _ i ion i
Letting p = Iy W= g0 and up, = TR the above equation is

simplified to obtain a normal form as:

iy = ha (i, g, p) = (2001 — ) (2 + )
iy = ha (i1, 2, p) = (A — 2d2) (i1 — )
and the equilibrium solutions to the above normal form

(22)

(i1,2) = {(0,0), (5.26), (~2p.=P). (p.—P)} ~ (23)

Now, for the stability analysis, the Jacobian of the second order
form is computed from J = —Dh, where h = [, ] r

_ <( —2(12 + p)

(26 — 201 + p)
= R L 24
20, — 24, + p) 24

2(i; — p)
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FIGURE 8. The equilibrium solutions projected onto the u; — u plane and noted as U = (u;,up). The solid and dashed ellipses and straight lines
satisfy g1 (u1,u2, p) =0 and g2 (u1,un, p) = O respectively. As p approaches zero from both directions the equilibrium solutions Uy, U, and U3 converge
into Uy. For p < 0 the points Uy, U, and Us are unstable and become stable when p > 0. Uy changes from stable to unstable as p goes from negative

to positive. The stabilities of the points Uy, Us and Ug remain stable on both sides local to p = 0.
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FIGURE 9. The vertical axis represents the eigenvalues at the equilib-
ria in the normal form at the star bifurcation local to p = 0. The points
Uy, Up and U3 remain unstable whereas the stability of Uy changes from
stable to unstable as p goes from negative to positive.

The eigenvalues of the normal form are computed from the above
Jacobian, at the equilibria obtained in the equation (23) and
are illustrated in the Fig. 9. The behavior of these equilibria is
illustrated in Figure 8. The dashed and solid ellipses and straight
lines in Figure 8 satisfy g1 (u1,u2,p) = 0 and gz (u1,uz,p) =0
of equation (17) respectively. Points of intersection between
a dashed and solid curve satisfy both equations, and hence
are equilibrium points (u;,u;), that are denoted by Uy, Uy,...,
U;. The solutions of Ay (i, i, p) = 0 and ho(iy,ia, p) = 0
correspond to the equilibria Uy, U;, U, and Uz in Figure 8. As
p passes through zero, these four equilibria are seen to collide
at the origin, and then separate again. This is part of the star
bifurcation. The stabilities are determined by the eigenvalues of
the Jacobian, J; evaluated at the fixed points.
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-0.10-0.05 0.00 0.05 0.10 -0.10-0.05 0.00 0.05 0.10

FIGURE 10. Symmetric case of the star bifurcation is shown on the
top, and the bottom figures show the symmetry breaking of the star bi-
furcation, where {/; + & = 0,/ = 0}. With reference to the symmetric
case, overlapping projected branches are revealed.

The eigenvalues of the second order system near the origin are as
shown in Figure 9. Since it is a 2DOF system, we have obtained
two eigenvalues in the second order form that results in four
eigenvalues in the first order form. Therefore four eigenvalues
going to zero as p goes from negative to positive passing through
p = 0. The system with four eigenvalues simultaneously going
to zero is referred to as a codimension four bifurcation [39, 40].
The bifurcation point B; is qualitatively similar to B; but from
the opposite direction. Hence for the undamped symmetric
2DOF system there exist two codimension four star bifurca-
tions” By and B,. However, for damped system, when we apply
only one of the dampers i.e. making the damping coefficient
from on of the dashpots to be zero, we get three zero eigenvalues
and one negative purely real aigenvalue. From the definition of
codimension this is a codimension three bifurcation. In presence
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FIGURE 12. In thE top figures {le +e=0,h— £p: 0}, the star
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breaking on p —ii; plane is qualitatively similar to the perturbation case
{le —e=0,n+e= 0} shown in Figure 11. However this presents a
different symmetry breaking configuration on p — ii, plane

of both the dashpots two of the four eigenvalues are zero and the
other two are negative and purely real, hence a codimension two
bifurcation. Therefore depending on the nature of damping we
get either codimension two or three star bifurcation at p = 0.

At steady state equilibrium Uy the four eigenvalues split from

real to imaginary going through zero as the parameter p passes
through zero. At Uy, U, and Us a set of two real and imaginary
eigenvalues split into a set of imaginary and real eigenvalues
respectively as the eigenvalues pass through p = 0. For all of
these four equilibrium curves, at p = 0, the four eigenvalues for
each equilibrium curve goes to zero, implying that each of these
curves go through a codimension four bifurcation.

A global bifurcation behavior has been presented in Figure 6,
for a particular symmetry braking that reveals the overlapped
branches in p —ii; plane. Now to reveal the degeneracy at
the star bifurcation point, we apply a small perturbation to the
normal form, that results in the breaking and unfolding of the
star bifurcation. The local normal form is studied for various
types of perturbations on both p —i; and p — i, plane as
shown in Figures 10, 11 and 12. We observed from the various
perturbations that the star bifurcation changes to saddle-node
and pitchfork bifurcations depending on the perturbation type,
where the pitchforks can be further reduced to saddle-nodes
with additional perturbation.

The global bifurcation digram for the energy, provides insight
into the optimum harvestable energy in the pull parameter re-
gion. Multiple energy levels exist in the negative stiffness re-
gion for the symmetry breaking case as seen in Figure 7. At a
particular value of the pull parameter p in the negative stiffness
region, depending on different initial conditions or different pa-
rameter values such as the mass and damping coefficients, the
final energy lands on one of those levels. Therefore predicting
the highest levels of harvestable energies in this region is diffi-
cult.

4 Conclusions and Outlook

In this paper we have presented a detailed bifurcation study of
a twinkling oscillator. The spring mass twinkler consist of non-
linear springs with cubic spring forces, and a quasistatic pull at
the end spring. We show the SDOF and 2DOF system as exam-
ples of the twinklers. For SDOF we observed two local pitchfork
bifurcations that are classified as codimension two bifurcations
in undamped symmetric case. The symmetry breaking of the
SDOF twinkler breaks the pitchfork into saddle-node. In 2DOF
example however, we observe a complicated global bifurcation.
A codimension four star bifurcation has been identified in the un-
damped 2DOF system that changes to codimension three or two
for the damped system, depending on the nature of damping. We
have shown different symmetry breaking cases for the star bifur-
cation that unfolds into saddle-node bifurcations.

This article gives insight into the dynamics of the SDOF and
2DOF twinkling oscillators, which is a building block for further
analysis. The unstable branches of the star bifurcation will not
be observable, but understanding them will help in understanding
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FIGURE 13. A possible arrangement of masses with magnets and linear spring to produce a chain of bistable systems. The masses consist of magnets
shown in red which are arranged in a way that they repel each other. Each mass consist of 3 magnets, two on the right (sleeve) and one on the left
(tongue) except for the first and the last mass. Here y is the quasistatic pull distance of the end spring. The right figure shows the repelling forces

between the magnets on the tongue and the sleeves.
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FIGURE 14. Total Magnetic spring force (solid blue curve) that can
be achieved from combining the force due to magnets only (dashed red

curve) and the linear spring force (dotted black line).

how transient vibrations settle to either of the equilibrium energy
levels in symmetry breaking case.

Future work will include a more detailed study of the other bifur-
cations at points B7 — Bjq (Figure 4), and a study of the existence
of chaos through fractal basin boundaries and Lyapunov expo-
nents. We also have plans for an experimental study. Mann and
Sims [31] have developed a theoretical and experimental single-
DOF model using permanent magnets to obtain a Duffing-like
oscillator capable of harvesting energy by inducing current in
the coils wrapped around the moving magnet. The same princi-
ple can be applied to harvest energy from the negative stiffness
twinkling oscillator. We envision using permanent magnets ar-
ranged on the masses such that they create a negative stiffness
or bistable system as shown in Figure 13, and connecting the
masses through linear springs. Repulsive forces (f;,,) between
cylindrical permanent magnets [41] as between magnets on the
the tongue and sleeve seen in the figure 13 have an x-component
(fmyx) similar to the dashed red curve in Figure 14. Forces due
to the magnets and the linear spring add up to form a nonlinear
spring force shown as the solid blue curve in Figure 14. Alone,
it has two stable equilibria and has a negative stiffness region.
Later, energy harvesting in this system can be studied, for ex-
ample, by converting the motion of the magnets into electric
currents in coils wrapped around the magnets. (We may find
more efficient ways to harvest the energy.) The system can be

preloaded to achieve the spring force qualitatively similar to Fig-
ure 2 and EOM as described in equation (1), including viscous
damping and an equation for electrical damping.
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