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Abstract

Fractional derivatives are applied in the reconstruction, from a single observable,
of the dynamics of a Duffing oscillator and a two-well experiment. The fractional
derivatives of time series data are obtained in the frequency domain. The derivative
fraction is evaluated using the average mutual information between the observable and
its fractional derivative. The ability of this reconstruction method to unfold the data
is assessed by the method of global false nearest neighbors. The reconstructed data is
used to compute recurrences and fractal dimensions. The reconstruction is compared to
the true phase space and the delay reconstruction in order to assess the reconstruction
parameters and the quality of results.

Keywords: phase-space reconstructions; fractional derivatives; fractional calculus; chaos;
embeddings

1. Introduction

In this paper, we use fractional derivatives for the purpose of phase-space reconstructions
of data from forced nonlinear oscillators.

The most common method of phase-space reconstruction is the method of delays [1,
2]. Another reconstruction idea has been to use derivatives of the sampled quantity [1, 2].
Takens has proven that both methods will produce embeddings, provided that the system
is sufficiently smooth and noise free (see also Noakes [3]). However, real systems are not
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noise-free. The successive derivatives of the observed state are prone to increasing noise
amplification as the order of the derivative increases.

In the method of delays, for a single observable xj , d-dimensional pseudo vectors yj are
built with elements being the sampled observable separated by a constant delay time, such
that yj = [xj , xj+h, · · · , xj+h(d−1)], where h is the delay index, and d is embedding dimension,
both of which are to be determined. The delay h is chosen to make the components of yj as
independent as possible (h not too small), yet still deterministically related (h not too large).
An accepted way to get the optimal value of h is to choose the first minimum (if it exists)
of the average mutual information Ī between xj and xj+h [4] for various values of h. (The
independence between xj and xj+nh, with 2 < n < d−1, which represents other pairs of axes
in the delay reconstruction, is not addressed in the determination of the optimal choice of h.)
Also, while there is an optimal h with respect to the average mutual information computation,
non optimal values of h can still lead to phase-space reconstructions that represent the
dynamics rather well, as long as the value of h does not get into the aforementioned “too
large” and “too small” categories. If the average mutual information does not achieve a
minimum, some other criterion must be involved in the h decision.

For an embedding, d = dE can be chosen, for example, by the method of false nearest
neighbors (FNNs)[5], by which erroneous foldings of the sampled trajectories are detected as
they unfold when the reconstruction dimension is incremented, or the method of Cao [6]. By
the FNN method, dE is the minimum embedding dimension which has no (or few) erroneous
foldings.

Distortions of the method of delays have been documented, for example by Potopov [7]
and Mindlin [8]. An inherent problem is that any point in the embedding is represented by a
finite time interval, [t, t+(dE−1)τ ], as opposed to an instant of time in the true phase space.
In contrast, the derivatives method of reconstructions establishes reconstruction vectors that
truly correspond to instants in time.

As an alternative to delay and derivative phase-space reconstructions, a mix of integrals
and derivatives has been suggested [9, 10]. The presence of an integral can introduce a drift
in the reconstruction. Gilmore and Lefranc [10] suggest removing the mean of the signal to
avoid such secular behavior, or incorporating history into the integral. High-pass filtering
might also be an option [11]. Fractional deriviatives were used to reconstruct the dynamics
of a Lorenz attractor [12].

In this work, we use fractional derivatives to reconstruct the dynamics of numerical and
experimental forced oscillators. Average mutual information calculations suggest that frac-
tional derivatives produce independent coordinates in the reconstructed phase space. Also,
a fractional derivative can be incremented several times before accumulating a large order to
the total derivative. Thus, it is possible to obtain moderate dimensions in the reconstructed
phase spaces of low-noise systems without excessive amplification of the noise. The main
task here is to illustrate the application of this idea to low-dimensional, forced oscillator
simulation and experiment. This is distinguished from [12] by addressing non-autonomous
systems in R2 × S1 space, with application to a real experiment. While the method stands
up to these examples, a rigorous mathematical justification is currently absent.
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2. Fractional Derivatives

2.1. Background

Example applications of fractional derivatives include visco-elasticity models in oscilla-
tors [13–15], flows through porous media [16], and the characterization of fractal functions
[17]. In the modeling examples, fractional derivatives appear as terms in the differential
equations of motion, or equivalently as fractional power terms in the denominator of a trans-
fer function. Recent special issues contain many applications of fractional derivatives in
dynamical systems, and methods of analysis [18, 19].

The Liouville-Riemann fractional derivative can be expressed for non-integer order a < 0
as

dax(t)

d(t − t0)a
=

1

Γ(−a)

∫ t

t0

x(τ)

(t − τ )a+1
dτ. (1)

For a > 0, one can apply

dax(t)

d(t − t0)a
=

dn

dtn
1

Γ(n − a)

∫ t

t0

x(τ)

(t − τ)a−n+1
dτ, (2)

for n > a [20]. The t0 is often chosen as zero.
The fractional derivative is difficult to interpret in a spatial domain (in comparison

to the familiar slope and curvature) and in the time domain (in comparison to velocity,
acceleration, and jerk). In fact, the integral definitions imply that fractional derivatives
have history dependence. However, it turns out that [20]

dax(t)

d(t − t0)a
eiωt → (iω)aeiωt, t0 → −∞. (3)

Hence, at steady state, we interpret derivatives of dynamic signals, with sinusoidal elements,
in the frequency domain based on a scaling of the amplitude by a fractional power of the
frequency, and a shifting of the phase by a fraction of π/2.

Thus in this work we compute the fractional derivative dax(t)/dta of fractional order
a of a signal x(t) by taking the fast Fourier transform (FFT) of the signal, multiplying
by (iω)a, and then transforming back to the time domain [21]. This is reminiscent of the
similar “generalized derivative,” obtained by exchanging the real and imaginary parts of the
Fourier coefficients and multiplying by |ω|a in the frequency domain, which was used to make
two-dimensional plots that resembled a two-dimensional phase portrait [10].

Since the FFT has some approximation built in, we will refer to the computed fractional
derivative of a signal x(t) as Dax(t), in lieu of the true fractional derivative dax(t)/dta.

The FFT comes with its own problems, one of which is leakage, which leads to transient
distortions at the endpoints of the the differentiated signal. To avoid geometric distortions,
we do not apply the usual windowing to fix the leakage effects [22], but instead truncate the
ends of the signal [12]. Another idea is to select a maximal subset of data for which the
endpoints nearly match [10].
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2.2. Phase-Space Reconstruction

We summarize the steps for reconstructing the phase space, of time series data x(tn)
with a constant sampling rate, with fractional derivatives [12].

First, we have some computations that need be performed once:

1. Use the FFT of x(tn) to obtain the data X(ωn) in the frequency domain.

2. Evaluate the post FFT leakage error by computing δ(tn) = |Dx(tn) − ẋ(tn)|, where
Dx(tn) is obtained from the inverse FFT of iωnX(ωn) and ẋ(tn) is obtained by finite
differences.

3. Find the interior range of samples for which δ(tn) < ǫ, for some suitable ǫ, to guide
the truncation of the fractal derivative signals. This idea should work as long as δ is
larger than the noise level. In large-noise cases, the truncation approach might occur
at near recurrences [10].

We then perform the following computations for each pseudo coordinate Dmax(t), m =
1, 2, . . . , d − 1, of the reconstructed phase space:

1. In the frequency domain, compute DmaXn = (iωn)maXn

2. Invert the FFT to obtain ŷma(tn) = Dmax(tn)

3. Retain the ŷma(tn) for the interior range of samples for which δ(tn) < ǫ (based on step
3 above).

4. We then normalize each axis of the data, such that yma(tn) = ŷma(tn)/Rm, where Rm =
maxn(ŷma(tn)) − minn(ŷma(tn)) is the span of the unnormalized coordinate ŷma(tn).

Then the d-dimensional reconstructed phase space vectors have the form

yn = [y0(tn), y1(tn), y2(tn), . . . , yd−1(tn)]

= [
x(tn)

R0
,
Dax(tn)

R1
,
D2ax(tn)

R2
, . . . ,

D(d−1)ax(tn)

Rd−1
].

The value of a is a reconstruction parameter analogous to the delay index in the method
of delays. Parameter a can be chosen with the help of an average-mutual-information com-
putation between y0(tn) and y1ax(tn). We seek a balance between a low average mutual
information, and a sufficiently low derivative order a(d − 1). The value of d = dE can then
be determined by using the methods in [5, 6].

We will use a derivative order such that several dimensions of the reconstruction will
not accumulate a very high derivative, and to compare with results on the Lorenz system
[12]. We will evaluate the choice of a using the average mutual information, and we will also
determine the embedding dimension dE, the correlation dimension, and the recurrence be-
havior, and compare the results between the fractional derivative and delay reconstructions.
These quantities have seldom been computed in an embedding not created by the method
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of delays [10]. However, with the Lorenz system [12], the value of a ≈ 0.75 produced the
first minimum of the average mutual information, outperforming integer derivatives. The
fractional derivative reconstruction was able to unfold the data effectively, but correlation
dimensions were high as the attractor foliation was visibly magnified in the reconstruction
[12]. We will compare these trends with the examples presented here.

One more note. The integral definition (2) implies that fractional derivatives, like inte-
grals, have history dependence. Whether this produces temporal distortions in the recon-
struction could be an item of investigation.

3. Examples

In this section, we reconstruct the phase space for the Duffing equation and data from
a two-well-potential experiment. In each example, the phase space is to be reconstructed
by means of fractional derivatives, and, for comparison and assessment of the reconstruction
parameters, by means of the delay method.

3.1. Duffing Equation

The chaotic dynamics of the Duffing equation

ẍ + αẋ + βx + γx3 = f cos ωt, (4)

have been thoroughly studied (e.g. [23–25]). We chose parameter values α = 0.2, β = γ =
1, f = 27, and ω = 1.333, for which the system has been used as a model for nonlinear string
vibrations [26], and studied subsequently for system identification [27]. Since β > 0, this
representation of Duffing’s equation does not have a two-well potential.

The simulation generated 57344 data with a sampling interval of ∆t = 0.05 (the driving
period is 4.7136).

In performing the fractional derivative reconstruction, we computed the fractional deriva-
tives, and then removed the leakage effects by truncating 150 sampled points off of each end
of the data. This corresponded to a maximum truncation error of |Dx− ẋ| < 0.0235 for the
remaining time series, where the maximum value of |ẋ| was about 13.9. The characteristic
is similar to the plot shown in [12] on the Lorenz system.

3.1.1. Average Mutual Information

For evaluating the choice of derivative order a, we looked at the average mutual informa-
tion Ī between x and Dax as a function of a (upper graph of Figure 1). The first minimum
in the plot indicates that optimally independent coordinates for x and Dax correspond to
the case of a = 1: displacement versus velocity. A wide range of values of a provide lower
average mutual information with x than the pair (x, D2x).

For reference, in the method of delays, the sampled observable and its delay are xn

and xn+h. We plotted the average mutual information between the delay coordinates, as a
function of h, as shown in the lower plot of Figure 1.
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Figure 1: The upper graph shows the average mutual information between the coordinates
x and Dax as a function of a. The lower plot shows the average mutual information between
delay coordinates xn and xn+h as a function of h.
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According to the first-local-minimum criterion this plot suggests a delay reconstruction
with a delay index of about h = 12 samples (if there is actually a local minimum there)
or h = 25 samples. (The value of h = 23.6 corresponds to a quarter period.) The value
of Ī at h = 25 is similar to the average mutual information between x and Dx. The delay
reconstruction would include coordinates with delay indices mh, for low integers m, whose
average mutual information would have non-optimal values. For example, if h = 12 were
chosen as the delay, then non-optimal delays 2h = 24, 3h = 36, and possibly 4h = 48
would be involved. The well of the minimum is rather wide, suggesting robustness in h
for the average mutual information, a bit more so in the delay reconstruction than in the
fractional derivative reconstruction. The trend in the Lorenz system for the average mutual
information was the opposite, showing lower average mutual information for a broader range
of a than h [12].

To obtain several reconstruction coordinates without letting the average mutual infor-
mation get “large,” and without letting the total order of the derivative get “large” so that
the noise amplification is reasonable, the choice of fractional derivative orders at multiples
of a = 2/7, for illustration of its use for phase-space reconstructions is reasonable. For this
value of a, the average mutual information Ī is slightly above one. A delay of h = 4 gives
about the same average mutual information between delay coordinates.

3.1.2. Fractional-Derivative Phase-Space Reconstruction

Figure 2 shows three fractional derivatives of the signal x from the Duffing system plotted
against x, and also the plot of D2x vs. x for noise reference.
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Figure 2: Plots of Dax versus x for various values of a for the Duffing oscillator.
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For visual comparison, Figure 3 shows plots of xn+h versus xn. The delay of h = 4 is
visually acceptable.
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Figure 3: Plots of xn+h versus xn for various values of h.

To determine the size of the phase space, we applied the method of global false nearest
neighbors (FNNs) [5]. For fractional-derivative reconstructions of the Duffing variable x with
orders of multiples of a = 2/7, we found the numbers of false nearest neighbors were 56433,
24819, 1162, 15, 0, 0, 0, and 0, for reconstruction dimensions of one through eight. Since
there are few FNNs at dimension four, and none at dimension five, we would be inclined to
choose four or five as the reconstruction dimension. It is reasonable to expect a dimension
of four or more, since we are embedding data generated in a space R2 × S1 into RdE , where
S1 itself embeds into R2.

For the case of delay reconstructions with h = 4 (the first pair of delay coordinates
have about the same average mutual information as the first pair of fractional derivative
coordinates), a “legal” choice of h, but not optimal based on the average mutual information
strategy, the numbers of false nearest neighbors were 56905, 21193, 1272, 0, 0, 0, 0, and 0 for
reconstruction dimensions of one through eight. Since there are no false nearest neighbors
at dimension four, we can choose an embedding dimension dE = 4 to fully unfold the data.

Thus, the fractional derivative method unfolded the data with similar efficiency as the
method of delays, and is thus considered to be effective.

3.1.3. Characterization of the Data

The purpose of performing a phase-space reconstruction is to enable the researcher to ef-
fectively characterize the dynamical system, and to enable steps toward system identification

8



or nonlinear prediction. Thus, we would like to see if the fractional derivative reconstruction
leads to reasonable characterizations of the data.

First we sought recurrences used for extracting unstable periodic orbits (UPOs) [26–31].
Recurrences are defined as instances for which |yn−yn+k| < ǫ, where ym is the reconstructed
vector, and ǫ is a tolerance chosen by prescription. ǫ is chosen to be small enough with respect
to the size of the attracting set such that it represents a near return of the trajectory, but
must be large enough that a practical number of recurrences are identified. It may often be
in the range of 0.5-1.5 % of the span of the data.

A recurrence plot from the four-dimensional fractional-derivative reconstruction for the
Duffing system, shown as the solid line in Figure 4, indicates the numbers of recurrences at
various multiples of the driving period. For comparison, the recurrence plot of the true phase
space is shown in the same figure. The recurrence plot shows that relatively similar numbers
of like-period orbits are found in both the reconstructed and the true phase spaces. The true
phase space reveals slightly more recurrences. Comparison of the recurrence indices indicate
that when a recurrence is found in both spaces, it occurs at nearly the same index. Hence,
the fractional-derivative leads to little distortion in the temporal location of recurrences.
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Figure 4: A recurrence plot of data from the Duffing oscillator. The solid line is from the
fractional derivative reconstruction, and the dotted line is from the true phase space.

Finally, we computed fractal dimensions of the reconstructed and true data sets. The
dimensions were computed in the Poincaré section, obtained transverse to the Md = R(d−1)×
S1 space by sampling at a fixed phase of excitation. (The assumption is that Md has similar
FNN characteristics as the reconstructed Rd space.) We computed the limit capacity (box
dimension) D0, the information dimension D1, and the correlation dimension D2, using a
fast box-covering algorithm [32, 33], and we also determined the correlation dimension, Dc,
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by computing the slower correlation integral C(r) for various ball sizes, r [34, 35]. The values
of the Di were computed over a three-decade range of ball sizes r (30 points equally spaced
in log2(r)) which produced a nearly linear scaling region, while Dc was estimated using a
linear scaling region covered by about about five logarithmically spaced correlation integral
data over three box-size doublings. Both dimension estimate methods are based on the slope
of a summed quantity N (e.g. number of boxes, partition sum, or correlation sum) plotted
against the log of the box size. Errors in the slope estimates are based on 95% confidence
intervals using the ideas in Beck and Arnold [36]. The error in the dimension estimate is
based on assumptions requiring additive, zero mean, constant variance, and uncorrelated
error in the sum N , as well as zero error in the box size. (While we are unable to check these
assumptions, they are probably reasonable for a computed sum.)

For the true phase space, we used a two-dimensional Poincaré section and obtained
D0 = 1.39 ± 0.06, D1 = 1.40 ± 0.05, and D2 = 1.38 ± 0.05. The correlation dimension was
estimated as Dc = 1.24±0.02. The dimension of the fractional derivative reconstruction was
obtained from three-dimensional Poincaré section data (consistent with the FNN results),
yielding D0 = 1.42±0.06, D1 = 1.50±0.08, and D2 = 1.46±0.10. We note that D1 should be
lower than D0 [37, 38]. The computations are based on the slope of the box-counted partition
function, which can be sensitive. Furthermore, in box-counting, the information dimension is
treated as a singular case in the computation [32, 37], which could lead to a small systematic
error. The dimension by correlation integral was Dc = 1.32 ± 0.04. The dimension of the
delay reconstruction phase space was obtained from three-dimensional Poincaré section data
as D0 = 1.48± 0.06, D1 = 1.38± 0.05, and D2 = 1.31± 0.06. The correlation dimension was
Dc = 1.26 ± 0.06.

The dimension estimates for the fractional derivative reconstruction of the Duffing system
was more consistent than as seen in the Lorenz system [12].

3.1.4. Comments on Noise

To get a brief glimpse of the effect of noise, we consider the case of additive noise, such
that the noisy signal is z(t) = x(t) + n(t), where x(t) is the true signal and n(t) is the noise.
Then the fractional derivative is Daz(t) = Dax(t) + Dan(t). As the Fourier transform is a
linear operation, the effect of noise on Daz(t) scales with the level of noise n(t). We have
added random noise to each sample of the Duffing displacement data. The random noise
was uniformly distributed in the range [−ǫ, ǫ], where ǫ = 0.01(xmax − xmin, that is 1 % of
the span of the displacement data. The data n(t) was generated using the ‘rand’ function
in Matlab. As such, n(t) had a mean squared value of ǫ/3. Figure 5 shows the normalized
error in Daz(t), i.e. the ratio of the root mean squared value of (Daz − Dax) to the root
mean squared value of Dax, for various values of a. At a = 0 we see the normalized error of
z. The plot shows an example of how this uniform (high-frequency) noise grows with a.

3.2. An Experimental Two-Well Oscillator

We now apply the fractional derivative reconstruction to data from a forced magneto-
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Figure 5: The root mean squared error, of the noisy Duffing data, as the ratio of the root
mean squared value of (Daz − Dax) to the root mean squared value of Dax, for various
values of a.

elastic oscillator that has a two-well potential [39]. A brief description is given below, al-
though a more detailed description can be found in references [40–42].

3.2.1. Experimental Setup

The experiment consisted of a stiffened beam buckled by two magnets. Two rare-earth
permanent magnets were placed on the base of the frame holding the beam to create the
two-well potential. The beam had extra rigidity in the form of steel bars epoxied and bolted
along the length away from the clamped end. This additional rigidity was included to make
the system behave as a single degree of freedom. The fruit of this effort includes the recovery
of the stable and unstable manifolds by means of stochastic interrogation [40]. The uncovered
portion of the beam near the clamped end acted as an elastic hinge from which the position
of the beam was measured by strain gauges. The frame was then fixed through a rigid mount
to an electromagnetic shaker. A periodic driving signal was fed through a power amplifier
to the shaker to provide the external forcing function.

Data from the strain gauges were acquired using a 12-bit, ±5 V data-acquisition (A/D)
board, with the digital values from -2048 to 2047 corresponding to -5 V to 5 V. With no
forcing, three equilibria exist: two are stable at digital values of -495 and 315 (-1.21 V and
0.77 V), and one is unstable (saddle) at approximately zero. The driving frequency was set
at 7.5 Hz with 1.5 V of the function generator output, by which chaotic data were generated,
passed through a 50 Hz low-pass filter, and collected at the sampling frequency of 187.5 Hz.
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At this sampling frequency and driving frequency, there are 25 samples per driving period.
A total of 57344 data were collected.

After computing the fractional derivatives, we truncated 150 points from both ends of
the time series data. The trend of the error |Dx − ẋ| was similar to the Duffing system.

3.2.2. Average Mutual Information

The optimal value of the average mutual information for the fractional-derivative pair
is less than 0.1, occurring at a = 1 (displacement vs. velocity), according to the upper plot
in Figure 6. In order to obtain several fractional derivative coordinates, while keeping the
largest derivative less than two, we again use multiples of a = 2/7, for which the average
mutual information is slightly above one.

The first local minimum of the average mutual information between delay coordinates
occurs at a delay of h = 8, with Ī ≈ 0.6 (Figure 6, lower plot). For a delay of h = 4,
the average mutual information between the delay pair is similar to the average mutual
information between the fractional-derivative pair with a = 2/7.

In this case, the average mutual information was more robustly low in value with respect
to a than to h in the vicinity of its first minimum, although lower for h than a for larger
values.

3.2.3. Reconstruction of the Phase Space

Figure 7 shows pseudo phase portraits involving three fractional derivatives of the signal
x from the two-well oscillator plotted against x, and also the plot of D2x vs. x for noise
reference. In this case, D2 is considerably noisy, and we probably would not want recon-
struction coordinates with a fractional derivative approaching this order. For comparison,
the delay-space plots of the two-well data are shown in Figure 8. The values of h shown
provide coordinate combinations for reconstructions based on h = 4 (which has a comparable
average mutual information with that of the fractional derivative with a = 2/7), and based
on h = 8, for which the average mutual information was minimum in the delay coordinates.

For fractional-derivative reconstructions of the two-well variable x with orders of multi-
ples of a = 2/7, we found the numbers of false nearest neighbors were 56461, 32032, 396, 8,
0, 0, 0, and 0, for reconstruction dimensions of one through eight. Since there are few FNNs
at dimension four and none for five and above, we would be inclined to choose dE = 4 or
dE = 5 as the reconstruction dimension.

For the case of delay reconstructions with h = 4, for which the average mutual infor-
mation matched that of the fractional derivative pair with a = 2/7, the numbers of false
nearest neighbors were 56952, 31999, 4103, 6, 2, 2, 0, and 0 for reconstruction dimensions of
one through eight. We might choose an embedding dimension in the range of dE = 4 or 5
to represent the data, if we assume that the low numbers of false nearest neighbors will not
affect calculations in the reconstruction space.

Thus, the ability of the fractional derivative method to unfold the data with increments
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Figure 6: The upper graph shows the average mutual information between the coordinates
x and Dax as a function of a for the two-well experiment. The lower plot shows the average
mutual information between delay coordinates xn and xn+h as a function of h.
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Figure 7: Plots of Da(x) versus x for various values of a for the two-well experiment.
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of a = 2/7 is similar to that of the method of delays with h = 4. The unfolding of the data
is in the range of the expected reconstruction dimension.

3.2.4. Characterization of the Data

A recurrence plot from the five-dimensional fractional-derivative reconstruction for the
two-well oscillator, shown in Figure 9, indicates the numbers of recurrences at various mul-
tiples of the driving period. For comparison, the recurrence plot of the true phase space is
shown in the same figure. The recurrence plot shows that relatively similar numbers of like-
period orbits are found in both the reconstructed and the true phase spaces. Comparison
of the recurrence indices indicates that when a recurrence is found in both spaces, it occurs
at nearly the same index. Hence, the fractional-derivative leads to little distortion in the
temporal location of recurrences, as compared to the true phase space.
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Figure 9: The number of recurrences versus the period index for of data from the two-
well experiment. The solid line shows the recurrence plot from the fractional derivative
reconstruction, and the dotted line shows the recurrence plot from the true phase space.

The dimensions D0, D1, and D2 were computed in the constant-phase Poincaré section
over two decades of box sizes. For the true phase space in a two-dimensional Poincaré section,
we obtained D0 = 1.68 ± 0.04, D1 = 1.67 ± 0.02, and D2 = 1.59 ± 0.03. For the fractional
derivative reconstruction in a three-dimensional phase space (based on FNN results), we had
D0 = 1.66± 0.04, D1 = 1.69± 0.03, and D2 = 1.65± 0.06. For a three-dimensional Poincaré
section of the delay reconstruction, D0 = 1.62±0.09, D1 = 1.65±0.04, and D2 = 1.58±0.06.
Again, the information dimension was sometimes larger than the box dimension, indicating
some error.
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Thus, the fractional derivative reconstruction led to dimension quantities that were on
par with estimates from both other representations of the phase space.

4. Conclusion

We have used fractional derivatives as a means of reconstructing the phase space of low-
dimensional forced nonlinear oscillators, including an experiment. The order of the fractional
derivative is a parameter in the reconstruction, analogous to the delay index in the method of
delays. The fractional order was chosen rather qualitatively to minimize the total derivative
order, and hence the noise amplification, in the reconstruction coordinates, while examining
the the average mutual information to assess the independence between the first coordinate
pair. In these forced oscillator examples, the “optimal” value of the derivative order a for
minimizing the average mutual information was a = 1, corresponding to displacement and
velocity. This is not the rule, as the Lorenz system was seen to optimize at a ≈ 0.75 [12].
Also, the fractional derivative and the delay reconstructions were comparable in their ability
to minimize the average mutual information, and thereby obtain independent coordinates in
the reconstruction.

The fractional derivatives successfully unfolded the phase space in the forced oscillators,
based on the FNN test applied to the reconstructed data. The resulting embedding dimen-
sions were within one dimension of the result for delay embeddings of the same systems,
with the delay chosen to produce the same average mutual information.

Further characterizations of the dynamics were similar for the various representations of
the phase space. The extraction of unstable periodic orbits from the fractional-derivative
pseudo phase space and the true phase space produced similar recurrence plots. Measures
of the fractal dimensions were computed in the fractional derivative reconstructions, the
delay reconstructions, and the true phase spaces. The box, information, and correlation
dimensions were consistent among the phase spaces for these examples.

The fractional derivative method is simple, requiring simple Matlab code, for example.
Of course, the method of delays is more simple, and is expected to continue as the pre-
ferred method, except in special situations. History dependence may make it applicable
to nonsmooth problems [11]. For example, a stick-slip trajectory causes a collapse in the
reconstructed phase space [43]. The fractional derivative can hold memory, and likely pre-
vent this collapse. The method is also interesting from the point of view of the increasing
awareness and applications of fractional derivatives. The successful application to low-noise
experimental data shows feasibility with real data.

While fractional derivatives have produced useful phase space reconstructions in these
examples, there is yet no mathematical proof of the ability of fractional derivative recon-
structions to perform embeddings.
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