DE-Vol. 84-1, 1995 Design Engineering Technical Conferences

Volume 3 — Part A
ASME 1995

WAVELET ANALYSIS OF STICK-SLIP IN AN OSCILLATOR WITH DRY FRICTION

J. W, Liang
B. F. Feeny
Department of Mechanical Engineering
Michigan State University
East Lansing, MI 48824

ABSTRACT

The dynamic behavior of the transition between slipping and
sticking motions of a mass-spring system with dry friction is stud-
ied numerically and experimentally. Three mathematical models of
dry friction are incorporated in the forced oscillator’s equation of
motion. The wavelet transform is used to analyze response signals
for both high and low frequency contents. For the simulated dy-
namical response, the wavelet transform can efficiently depict the
transition characteristics in the time/frequency domain. The signa-
tures observed in wavelet contour plot are compared to experimen-
tal results to evaluate the mathematical friction models. The wavelet
transform can also be used to detect the dynamics of the sensor. The
low-frequency experimental friction behavior is somewhat like the
Coulomb friction model and its smooth version.

1 INTRODUCTION

Dry friction has been studied for several hundred years by re-
searchers in control, dynamics, physics, tribology, and other com-
munities, through graphical, numerical, analytical, and experimen-
tal methods. The work goes back to Leonardoda Vinci (1452-1519),
who defined friction laws based on direct measurements. However,
there is still much to understand. In this paper, we focus on stick-
slip motion, which has been verified to exist in a frictional oscillator
theoretically and experimentally (Den Hartog, 1930; Hundal, 1979;
Shaw, 1986). Our approach is to apply the wavelet transform for
analyzing the dynamical stick-slip transition behaviors. The goal is
to understand the time-frequency characteristics associated with the
transition from sliding to sticking in numerical and experimental ac-
celeration signals.

If we consider a forced mass-spring with dry friction modeled
by the Coulomb law, an abrupt jump in the friction force occurs
at the instant that the mass sticks. On the other hand, Marui and
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Kato (1984) observed an oscillation in the friction force measure-
ment when the mass stuck. The oscillation frequency may say some-
thing about the dynamics of friction. Moreover, while dealing with
a boundary lubricated system, Polycarpou and Soom (1992) found
similar oscillations in the acceleration signal and suggested that they
were caused by the connected system's dynamical response instead
of dynamical friction behavior. Nevertheless, this phenomenon de-
serves more attention.

In this study, we will compare simulations with experimental ac-
celeration data. Choosing a friction model is a nontrivial task. Mod-
els range from the simple Coulomb law to complex surface descrip-
tions. The Coulomb friction law is a great simplification, and some
dynamical features of friction will not be modeled. For example,
while the Coulomb friction law can model stick-slip (Shaw, 1986;
Glocker and Pfeiffer, 1992) and forced response (Pierre et al., 1985)
in simple systems, it does not explain the hysteresis observed in slid-
ing rocks (Ruina, 1980). Different state-variable friction models
have been proposed to accommodate either hysteresis or the chang-
ing normal load case (Ruina, 1980; Dieterich, 1991; Dupont, 1994).

Three friction models will be used in our numerical study: the
Coulomb law, a smooth approximation to the Coulomb law, and a
state-variable law. For some range of parameters, the state-variable
law used in this study, applied as a substitute for the Coulomb law,
will cause some oscillation in acceleration signals during the tran-
sition from sliding to sticking. The smooth friction law is a contin-
uously differentiable version of Coulomb friction law, and it is in-
cluded to model the possibility in which no true sticking can be ob-
served.

The wavelet transform, an alternative to the classical Fourier
transform, is of interest for the analysis of transient signals. The
basic difference is as follows. In contrast to the Fourier transform,
which uses complex sinusoids as basis functions and averages the
signal over an infinite time interval to obtain frequency information,
the wavelet transform uses a “mother wavelet” together with dif-



ferent window sizes and time locations to generate its basis func-
tions. The wavelet transform has attracted the attention of vibra-
tion researchers. For example, Newland (1994) developed discrete
wavelet transform maps and analyzed some transient vibration sig-
nals. Onsay and Haddow (1994) used wavelet transform to analyze
the transient wave propagation behavior of beamn vibration in dis-
persive medium. A particular property of this transform is its ability
to identify and isolate the fine temporal, high-frequency structure of
a signal. The high-frequency stick-slip events associated with the
low-frequency forced response suggest that a stick-slip signal is a
good candidate for applying the wavelet transform.

In the longterm the wavelet transform may help in the study
of stick-slip, perhaps in understanding the connection between the
normal-directional motion and tangential sliding frictional behav-
ior which was emphasized by Oden and Martins (1985). Evidence
shows that the normal-directional motion has frequency contents
much higher than the tangential ones, such that it might be possible
to distinguish the individual effect in different directional dynam-
ics through the use of the wavelet transform. Moreover, it is known
that a controlled dither input can eliminate stick-slip (Armstrong-
Hélouvry et al., 1994). Through the identification of frequency con-
tents in transition behaviors, some insight might be obtained for
choosing the applied dither signals.

In the section below, a brief description of the mathematical
model for single degree of freedom oscillator associated with each
friction law will be given.

2 SYSTEM MODELS

The system under investigation is a base-excited mass-spring sys-
tern constrained to move in one dimension in the presence of dry
friction (Figure 1). The differential equation for this model is

mX + kX +Bf = kY (t), (1)
where 8 f indicates friction force, X is the displacement of the mass,

and Y{t) = Yo coswt denotes the base-excitation displacement.
We neglect viscous friction, since it is small, and dry friction domi-

nates.
X(t)
’ k Y@

Bf
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Figure 1: The forced oscillator with dry friction

In using the Coulomb law, we assume that there is a static coef-
ficient of friction u, and a kinetic coefficient of friction ux. When
the mass is at rest, the static friction will take the values necessary to
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balance forces. Thus, the normalized friction relation f( e }is multi-
valued at X = 0. Assuming ps = px (Which may be reasonable in
some cases but not others), the normalized friction function F(X) is
given by

fX) = 1, VX>0
-1 < f(X) <1, X=0 @
Xy = -1, vX<o.
If welet w2 = k/m, T = wnt, and z = mw} X /B, the non-
dimensional equation becomes
%+ z + f(z) = acos(fl7), 3)

where a = Yomw? /8, and Q) = w/w,. In equation (3) “ & ” refers
to differentiation of x with respect to 7. The model represented by
equation (3) can have stick-slip motion for arange of parameter val-
ues. This has been shown analytically by Den Hartog (1930), Shaw
(1986), Hundal (1979), and Pierre et al. (1985), and experimentally
by Marui and Kato (1984).

There are other possible candidates for friction models. A smooth
approximation of Coulomb friction law can be written as

f(#) = tanh(a), @

where o is a parameter that determines the closeness between the
discontinuous Coulomb model and its smooth approximation. The
convenience of using a smooth friction function is that we need not
be concerned with the presence of discontinuity while performing
the numerical integration. Applying this model to the system in Fig-
ure 1, the non-dimensional equation of motion will be the same as
equation (3), with f(&) expressed as in equation (4).

State-variable friction laws, based on the observation of friction
measurements, have been used to model different frictional systems
successfully (e.g. Ruina, 1980; Dieterich, 1991; Feeny and Moon,
1994). In these models there exists an additional “hidden” state,
which depicts the dynamic friction behavior. While this additional
state plays the role of the coefficient of friction, for nonzero velocity,
it evolves with time. If we apply a state-varjable law to the previous
system in the place of the Coulomb law, we have

b=—y(0-f(2) O

where f(z) is a Coulomb-like backbone function, 4 is the state that
can be thought as instantaneous value of the friction coefficient, and
~ defines the rate at which 6 tracks f(&) asymptotically. Asy — oo
the system in equation (5) approaches the 1 DOF system in equa-
tion (3) because the attraction strength of the force 8 to f(£). In
order to simplify the study, the backbone function will be taken as
the smooth version of Coulomb friction law, namely, equation (4)
instead of equation (2).

The following section shows a brief review of the wavelet trans-
form analysis and its computation scheme.

# 4z + 60 = acos((lr)

3 WAVELET TRANSFORM
In contrast to Fourier transform, wavelet transform has “short”
high frequency basis function and “long” low frequency ones.




Therefore, it can use the short basis functions to fetch the informa-
tion contained in the events which happen during a short time in-
terval, but will not lose the low frequency events. This zooming
property of wavelet transform is achieved by translating and dilat-
ing a “mother wavelet”. The mathematical definition of continuous
wavelet transform is given as an inner product of a signal and a par-
ticular set of functions

[

CWT:(a,b) = / 2(t)hss(t)dt. ©)

—00

where h* (t) stands for the conjugate of h(t). Equation (6) measures
the “similarity” between the signal and the basis functions

1 t—b

has(t) = —= h(===) @
|al a

called wavelets, where a,b € R, a # 0, and the constant 1/+/la|
is used for energy normalization. The parameters a and b determine
the dilation and translation of the mother wavelet, which is chosen
here as the Morlet wavelet (Morlet and Arens, 1982), and is given
by

h(t) - ﬂ—-l/l (e—iwct _ e—w:/2)8~t2/2, (8)

where w. is the center frequency of the mother wavelet. The second
term in the bracket on the right-hand side of equation (8) exists for
the purpose of the reconstructing (or inverse) process. In practice,
it can be neglected (Onsay and Haddow, 1994). Therefore, it will
not be included in our calculations. The mother wavelet is stretched
for large values of a, thus becoming a “Jong” low frequency func-
tion. Similarly, it becomes a “short” high frequency function when
a takes small values.

In order to implement the calculation of the wavelet transform,
a sublattice is constructed by discretizing the values of a and b. By
fixing the dilation and translation step size to ao and bo, and defining

a=ag; b = nboag’ )
with m,n € %, results in
Benn(t) = ag ™ h(ag ™t — nbo). (10)

The translation step depends on the dilation, since long wavelets are
advanced by large steps, and short ones by small steps. On this dis-
crete grid, the wavelet transform is thus

o0

WTe(m,n) = a;™"? [

-

Of particular interest is the discretizationona dyadic grid, which oc-
curs for ap = 2, bo = 1, and is used in this study. To implement the
calculation of wavelet coefficients, WT. (m,n), the numerical in-
tegration scheme is adopted. This algorithm may not be efficient in
the sense of computation. However, the number of data points in this
study is not huge. When applied io benchmark signals such as sinu-
soids and impulses, this algorithm gave reasonable results. There
are other algorithms which can be found in the signal processing lit-
erature (Onsay and Haddow 1994; Newland, 1994).

h*(ag ™t — nbo)z(t)dt.  (11)

4 NUMERICAL STUDIES

This section includes numerical examples of stable stick-slip mo-
tion and their corresponding wavelet transforms. The numerical in-
tegration of the Coulomb friction model is difficult because of the
discontinuity at zero velocity. Many researchers have proposed pre-
scriptions for solving this problem (Shaw, 1986; Feeny and Moon,
1994; Meijaard, 1994). This study follows the method used in Feeny
and Moon (1994). In the numerical integration scheme, conditions
for sticking (or sliding) can be determined by defining the sticking
region (Shaw, 1986; Feeny and Moon, 1994). There can be different
stick-slip motions for this system, including none, one, two, or marny
stops per cycle. Detailed analyses about the motion types and their
corresponding parameter space can be found in previous researchre-
sults (Shaw, 1986; Hundal, 1979; Marui and Kato, 1984).

The numerical study of the Coulomb model concentrates on the
parameter values 1 = 0.37, and @ = 1.5. The parameter “a” is not
chosen from an experimentally measured value, but as a value which
produces behavior qualitatively similar to the experiment. With our
current experiment set-up, we are unable to measure the friction, and
hence the force ratio “a”. Nevertheless, this should not have a large
effect on the study of dynamical frictional behavior.

Figure 2 shows the acceleration (and displacement) response to-
gether with the wavelet transform contour plot for the Coulomb fric-
tion case. The displacement plot depicts a stable stick-slip motion
with two stops per cycle. Due to the discontinuity of the Coulomb
friction model, the acceleration response has an abrupt jump at the
instant that the mass sticks, and has another sharp corner when the
mass starts to slide (if u, > p&, the sharp comer would instead ap-
pear as a jump). Both of these transitions involve high-frequencies
1o different degrees, with the jump having higher frequency content.

(a) Coulomb friction model: a=1.5 omega=0.37

(C) WT of accel. resp. shown in contour plot:70 dB; 12 levels
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Figure 2: Numerical simulation of stick-slip motion with the
Coulomb friction model: (a) displacement(b) accelerationresponse
(c) contour plot of wavelet transform of acceleration signal

The wavelet transform is calculated in accordance with equa-
tion (8)-(11) with w, = 4. To calculate the wavelet coefficients,
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WT.(m,n), which correspond to elements on a grid in the time-
frequency plane, we use numerical summation during a finite time
interval equal in length to the time length of acceleration signal. At
both ends of the time axis, there are some irregularities in the spec-
trum. Theses irregularities occur because the data values beyond
those two ends are set to be zero. This distorts the spectrum when the
convolution of the wavelets, h*(t), and signal, z(t) is conducted.
The contour plot represents the logarithmic values of the each co-
efficient’s magnitude. The blank region in the plot contains values
which are 70 dB below the maximum value. There are twelve lev-
els spanning the 70 dB range. The wavelet transform plot exposes
spikes corresponding to the jumps described above. It also has small
spikes which correspond to the sharp comers associated with the on-
set of slip. It is reasonable that the latter spikes are smaller because
no jump of the signal is involved.

A numerical simulation of the smooth Coulomb friction case is
shown in Figure 3.

@ Smooth triction model: alpha=30, a=1.5, Omega=0.37

L
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WT of accel. resp. shown in contour plot:70 dB, 12 levels
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Figure 3: Numerical simulation of stick-slip motion with the
smooth friction model: (a) displacement (b) acceleration response
(c) contour plot of wavelet transform of acceleration signal

In this case, we used equation (3) and (4) witha = 1.5, =
0.37, and & = 30. It is not surprising that the resulting responses
look quite similar to Coulomb friction case (except that the sharp
corners in acceleration signal do not appear, and no real sticking oc-
curs), since the smooth friction model is an approximated version
of the Coulomb friction. The qualitative characteristics in time do-
main traces are similar to the previous case. For example, there are
two near stops per cycle, and there are sudden changes in the accel-
eration signal, although those changes are continuous. The corre-
sponding wavelet contour plot also illustrates the same features as
in Figure 2, except that the small spikes do not exist obviously. The
main spikes corresponding to the transitions from sliding to sticking
are also less pronounced in this case.

Next, we present numerical results with a state-variable friction
model. In contrast to Figures 2 and 3, Figure 4 shows different fea-
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(a) State—variable model:alpha=50, a=1.5, Omega=0.37, gamma=10
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(C) WT of accel. resp. shown in contour plot: 70 dB, 12 levels
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Figure 4: Numerical simulation of stick-slip motion with the state-
variable friction model: (a) displacement (b) acceleration response
(c) contour plot of wavelet transform of acceleration signal

tures in transition zones. Parameter values for this simulation are
a =150 = 0.37, a = 50, and v = 10. While there are still
two near stops per cycle, the mass does not “stick” immediately dur-
ing the transition from sliding to sticking. The state-variable yields
some oscillations in the transition between slip and “stick”. Though
there is no visible movement in the displacement response, the dis-
placement is not absolutely constant when the oscillations in accel-
eration take place. The wavelet contour plot also illustrates differ-
ent characteristics. Rather than being symmetric with respect to the
spikes, the blurred low-frequency spectrum corresponds to oscilla-
tions in acceleration signal. As with the smooth friction case, there
is a “smooth” transition when the mass starts to slide. Thus no lower
spikes are observed.

According to the observations made from Figures 2, 3, & 4,
different friction models have different time/frequency signatures,
which are expected to help us in seeking similarities between the
simulating and experimental results. The next section will describe
the experiment apparatus, results of pretests of the set-up, and some
experimental studies of stick-slip motion.

5 EXPERIMENTAL INVESTIGATIONS

5.1 Apparatus and Instrumentations

The experiment consists of a mass attached to a cart, three
parallel-connected helical springs, an air-curtain guiding mecha-
nism, and an electromagnetic shaker. The schematic diagram is
shown in Figure 5. To sense the motion, we used the seismic ac-
celerometer (PCB, Model 393c), which has the frequency range
0.025 to 800 Hz, and sensitivity 1 Volt/g. Most of the mass consists




of the accelerometer. The total mass is 1.83 kg.

@ 1 acoelerometer

@:shnk:r

srommin (& :LVDT

A-A sectional view
Figure 5: Experimental set-up: (a) top view (b) side view

The accelerometer signal was amplified by using standard power
unit (PCB, Model 480M43). A battery-powered unit was chosen be-
cause of the low inherent noise. The accelerometer was placed on
the central position of the cart, which was made of aluminum plates.
In order to remove the friction, the cart was supported by a three-
surface air curtain, as shown in Figure 5(b). A pressure stabilizer
was used to control air pressure on each surface. In doing the fric-
tional study, the air pressure was kept low such that the net force
built up on the bottom surface could not support the weight of the
cart. Hence, there was a true contact on the bottom surface. Due to
the fact that the friction and exciting forces were not applied on the
same line, there will be a nonuniform normal load to compensate the
time-varying frictional moment. The air curtain on two sides of the
cart can guide its motion in a prescribed direction with negligible
friction. The counter surface which had contact with the cart was
made of ground stainless steel. The aluminum surface was ground
and coated. There was surface contact between the aluminum and
bottom track (made of ground stainless steel).

The electromagnetic shaker (LDS, Model 400), with a power am-
plifier/signal generator (LDS, Model P0300), is capable of produc-
ing a harmonic signal to excite the cart. The lowest operating fre-
quency for which the shaker can produce satisfactory harmonic sig-
nalis 1 Hz. The maximum displacement amplitude is 8 mm. During
the experiment, the typical amplitude of excitation was about 3 mm.
The displacement X (t) of mass m, and base-excitation displace-
ment, Y (t), were measured by linear variable differential trans-
former (LVDT, Robinson-Halpern CO., Model 210A-1000). The
data-acquisition system consists of a Macintosh computer, 12-bit
A/D converter (National Instrument, Model NB-MIO-16), and data-
acquisition software (LabView 3.0).

5.2 Pretest and Apparatus Dynamics

Protest were conducted to obtain the noise level. The noise power
spectrum level was 80 dB below the signal power spectrum level in
the range of DC to 2500 Hz. The main system’s natural frequency
was 5.37 Hz, which was determined by a free vibration test with a
full air curtain. Under this condition, the viscous damping ratio was
0.0032.

In order to distinguish the sensor dynamics from the dynami-
cal friction behavior, a pretest of the accelerometer mount was ex-
ecuted. The system containing the accelerometer and its mount-
ing structure will be denoted as the subsystem. The test was con-
ducted when the cart was locked and subjected to a impulse excita-
tion produced by a general-purpose impulse hammer (PCB, Model
086¢03). This impulse-excitation test was used to understand the
case in which mass sticks suddenly and there is an abrupt change
of acceleration, reminiscent of a step excitation. Figure 6 illustrates
the dynamical response of the subsystem. Tt includes the accelera-
tion response in time domain and its corresponding wavelet contour
plot.

Impulse response of the accelerometer mounting

o
n
v

acceleration (g)
o
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o
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-time(sec)
WT of accel. resp. shown in contour plot: 50 dB, 12 levels

frequency (HzL .
§88888

Figure 6: Acceleration signal and corresponding wavelet contour
plot for an impulse-response in the accelerometer’s mounting

The wavelet contour plot shows a striking tail structure corre-
sponding to the fundamental frequency of this subsystem. Accord-
ing to Figure 6, the first fundamental frequency of this subsystem is
close to 200 Hz, which is much higher than that of the main system.
The results in Figure 6(b) were verified by comparing the frequency
domain information with the results obtained by the FFT method.
The characteristics in Figure 6 can also be used to determine if there
is any dynamical behavior induced by this mounting, affecting the
sensing of stick-slip motion.

5.3 Experimental Studies of Stick-Slip Motion
Some examples of stable stick-slip motions obtained in the exper-
iment will be shown in this section. These results were all obtained
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under the following conditions: (a) the observed motions had ex-
isted more than half of an hour; (b) there was low air pressure such
that the cart had an anti-friction guide on the sides and also a bottom
contact with the stainless steel surface; (c) for the wavelet transform
contour plot, a 50 dB gap was set between the minimum and maxi-
mum magnitude of wavelet coefficients, with 12 level curves span-
ning this range to illustrate the magnitude distribution.

Figure 7 recorded a typical base-excitation displacement, Y'(t),
which is much like a sinusoidal signal. The excitation frequency
in Figure 7 is 2.5 Hz. Figure 8 includes the displacement re-
sponse, X (t), the acceleration response, X (t), and its correspond-
ing wavelet contour plot for the 3.0 Hz excitation frequency case.

Excitation freq.«2.5 Hz, excitation amplitude=2.9 mm

Y{t) (mm)

L N : N
0.2 0.4 0.6 0.8 1 1.2
time(sec)

Figure 7: Experimental base excitation motion

(a) Exditation freq.=3.0 Hz, exditation amplitude=2.7 mm
10 T T T T T T T T

X{1) {mm)

XDo() (9)

“o 0.1 0.2 03 0.4 0.5 06 0.7 08 09 1
tme(sec)
(C) WT of accel. resp. shown in contour plot: 50 dB, 12 levels

frequency (Hz)
338388

0 0.1 0.2

Figure 8: Experimental stick-slip motion with 3.0 Hz excitation:
(a) displacement (b) acceleration time response (¢) wavelet contour
plot of acceleration signal

In accordance with Figure 8, some observations can be made.
(1) There are two stops in each cycle. This is qualitatively simi-
lar to the simulation results. Clear definition of sticking in the real
world depends on the scale of viewing. Therefore, when we say that
there are two stops in each cycle, we mean that there is no visible
slip motion during two time intervals per cycle, and the displace-
ment trace indicates a constant response. (2) During the transition
from sliding to sticking, some high-frequency oscillation occurred.
These oscillations might lead us to think that illustrated evidence
has been obtained for state-variable friction model in this system.
However, this is not true! We focus on the wavelet contour plot and
compare it with the pretest results on the accelerometer mounting.
The dominant part of the high-frequency oscillation in Figure 8 cor-
responds to the fundamental natural response of the accelerometer
mounting. A similar observation has been obtained by Polycarpou
and Soom (1992), in which the boundary-lubricated transition from
sliding to sticking was investigated. This observation shows that the
wavelet transform can efficiently detect different effects involved in
a dynamical response. On the other hand, the real dynamical fric-
tion features may be covered by the subsystem’s response. An idca
for handling this problem, in the signal processing point of view,
might be the addition of a low-pass filter to remove the accelerome-
ter dynamics. Nevertheless, due to the step-like nature of the accel-
eration jumps, Gibbs phenomenon will occur and cause other low-
frequency oscillations to show up if the filter were applied. (3) The
phenomenon observed in (2) can be explained by the fact that there
exists an abrupt jump in acceleration response, which can be inter-
preted as a step effect in the subsystem. Therefore, the subsystem's
dynamical response is excited. The extent to which these dynamics
are involved will depend on the magnitude of the acceleration jump,
which will be verified in the later cases with lower excitation {re-
quency. (4) During the sliding phase, random fluctuations of the ac-
celeration signal occurred. This phenomenon may have something
to do with the normal contact vibration or surface roughness. (5) A
remarkably “smooth” acceleration signal was shown at each onset
of sliding, and its occurrence seems to be independent of the exci-
tation frequency or the magnitude of the acceleration jump. Since
it happens during a significant time interval with invisible displace-
ment change, it inspires us to speculate about microsliding or normal
vibrations.

Similar to Figure 8, Figures 9 and 10 illustrate cases in which the
excitation frequencies are 2.0 Hz and 1.5 Hz. The 2.0 Hz case cor-
responds to the simulation case in the sense that the normalized fre-
quency, {1, is approximately equal to this excitation frequency di-
vided by the main system'’s natural frequency. According to the ob-
servations made with respect to Figure 8, different features are given
from Figure 9, & 10 and described as the following. (1) Although
similar subsystem dynamics can still be observed in Figures 9 and
10, it becomes weaker. This is evident by looking at acceleration
time traces or wavelet contour plots. It is possibly caused by smaller
acceleration changes or a smoother transition. (2) If we concentrate
more in the acceleration time trace (especially, in Figure 9), a low-
frequency, small-amplitude oscillation can be observed right afier
the transition instant from sliding to sticking. This gives us hope to
further investigate the existence of dynamical friction behavior, if
the subsystem dynamics can be excluded and the noise level can be
lowered. However, the resolution of wavelet contour plot neceds to
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(a) Excitation freq.=2.0 Hz excitation amplitude=1.36 mm
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Figure 9: Experimental stick-slip motion with 2.0 Hz excitation:
(a) displacement (b) acceleration time response (c) wavelet contour
plot of acceleration signal
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Figure 10: Experimental stick-slip motion with 1.5 Hz excitation:
(a) displacement (b) acceleration time response (c) wavelet contour
plot of acceleration signal

be increased to magnify the effect of such a small-amplitude oscilla-
tion. (3) Longer sticking times existed for these cases, during which
there was anoisy acceleration signal in the case of 1.5 Hz excitation.
This is suspected to have something to do with the shaker dynamics,
microslip, or normal vibrations.

In order to further compare the experimental results with differ-
ent simulation results, we zoom in on the low-frequency range of
the wavelet transform plot. Figure 11(a), (b), and (c) show the simu-
lated acceleration responses of Coulomb, state-variable, and smooth
friction models. These plots are the same as in Figure 2, 3, and 4
except for the frequency range of the wavelet transform plot. Fig-
ure 11(d) shows the experimental acceleration response correspond-
ing to the 2.0 Hz excitation frequency. The range of the frequency
in both simulation and experimental results are nearly equivalentif
one converts the experimental data into normalized time coordinate.
Furthermore, since the experimental data contains noise, the wavelet
transform plot in Figure 11(d) was shown in different dB range for
a clearer presentation.

By observing structures in different wavelet transform plots of
Figure 11, some qualitative observations can help in validating the
friction model. For example, although the Coulomb model cannot
describe all the features in the experimental results, it does predict
the abrupt jump at the onset of sticking. For the transition from stick
to slip, the smooth and state-variable friction models seem to work
better in the sense that they depict a less pronounced spike in the
wavelet transform plot.

6 DISCUSSIONS AND CONCLUSIONS

This study shows that the wavelet transform can be used to dis-
tinguish different simulation friction models by obvious features
shownin the time-frequency plane. This is helpful in investigating a
complicated dynamical behavior such as the transition of stick-slip
motion. From the lower-order dynamical system point of view, the
Coulomb friction model or its smooth version may be enough to de-
scribe the frictional oscillator like the one in this study. The exis-
tence of “hidden” state in the transition zone is rather a open ques-
tion, since some acceleration time traces did show a small-amplitude
oscillation.

There are some aspects of the experiment set-up which can be en-
hanced for future work. For example, different combinations of ma-
terials may have different features in frictional study, which can be
included. We believe that ground surfaces are more general com-
pared with the polished ones in an industrial sense. However, it is
worthwhile to try surfaces with various properties. For applying the
wavelet analysis, including the phase of the wavelet transform might
help in interpreting the time/frequency domain information. The en-
vironmental dynamics can dominate if its frequency response cannot
be separated from that of the frictional main system. For instance,
the coupling between the dynamics of the main system and subsys-
tem in this study is strong enough that the dynamic friction behav-
ior might be concealed by the subsystem’s response. Increasing the
stiffness of the mount of the measuring device will help isolate its
dynamics from the main system. The friction force and normal load
should be measured in order to estimate the normalized parameters
of experimental system, so that a more quantitative comparison can
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Excitation freq.=2.0 Hz, excitation amplitude=1.36 mm
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Figure 11: Comparison of the simulation and experimental accel-
eration signal zooming into the low frequency range: (a) simulation
result of the Coulomb friction model, (b) simulation of the state-
variable friction model, (c) simulation of the smooth friction model,
(d) experimental resulit.

be obtained. Next, the mechanism for applying the friction force can
be modified such that a nonuniform distribution of the normal load
can be avoided. The observation of dynamic friction behavior, if it
exists, requires a sophisticated experimental set-up.
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