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Abstract. This study focuses on an algorithm for the simultaneous identification of Coulomb and viscous damping
effects from free-vibration decrements in a damped linear single degree-of-freedom (DOF) mass-spring system.
Analysis shows that both damping effects can indeed be separated. Numerical study of a combined-damping
system demonstrates a perfect match between the simulation parameters and the estimated values, Experimental
study includes two types of real systems. The method is applied to an experimental industrial bearing. Experi-
mental results are compared with numerical simulations to illustrate the reliability of this method. An analysis

provides conservative bounds on error estimates. An example of the effect of quantization error on the estimations
is included.
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1. Introduction

The idea of exploiting the exponential decay of a free vibration of a viscously damped system
goes back to Helmholtz, who used it in determining frequency information in musical tones
in 1863 [1]. Rayleigh [2] introduced the term ‘logarithmic decrement’ in applying it to the
estimation of the damping factor. The linear-decay property of systems with purely Coulomb
friction was found in Lorenz’s work as early as 1924 [3]. Calculating the amplitude decrement
for consecutive cycles gives an estimation of the dry-friction effect.

However, many machines and structures have both sources of damping. Jacobsen and
Ayre [4] derived an approximate scheme for estimating both quantities from free vibration
decrements by noting that the viscous friction dominates in the large-amplitude responses,
and that Coulomb friction dominates in the small-amplitude oscillations. An exact estimation
scheme was presented by Watari [5] in 1969. It seems to have remained unknown beyond the
Japanese-speaking community until the idea was recently re-derived [6].

This paper builds on the previous work by applying it to an industrial system and including
an analysis of the effects of measurement error on the estimations.

Systems with solely viscous damping or dry friction can be considered as specials cases
of this study. Many real frictional systems may exhibit other frictional characteristics, such
as contact compliance [7-10]. Stribeck friction or unsteady friction velocity characteristics
[11, 12] and state-variable friction [13, 14]. The method is not designed to account for these
dynamical friction behaviors.
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2 J W.Liang and B. F. Feeny

The next section summarizes the derivation of the key equations from the free vibration of
a single-degree-of-freedom system with viscous and dry friction. In Section 3, these ideas are
applied to a linear-bearing system. Section 4 contains an analysis of the effect of measurement
error on the estimates. Section 5 closes with concluding remarks.

2. Derivation of the Identification Equations

The identification equations are derived from the free-vibration solution. We consider a me-
chanical system modeled as

mi + cx +kx + f(%) =0, (1)

where x denotes the displacement of the mass and spring from the unstretched equilibrium
position, and m, ¢, and k represent the mass, viscous damping coefficient, and the spring
stiffness. The dry friction is modeled as f(X) = fsign(x), % # 0, and —f; < f(0) < f;. If
there exists a coefficient of friction, such that f () = Nu (%), where N is the normal load and
w is the coefficient of friction consisting of a static coefficient, u, and a kinetic coefficient
of friction, uy, then this friction law corresponds to Coulomb’s law. Nevertheless, we loosely
refer to f(x) as Coulomb friction.

The equilibrium solution of this equation of motion can be obtained by letting ¥ = % = 0.
This gives rise to a locus of equilibria, i.e. —x; < x < x;, where x; = f;/k. Equation (1) is
piecewise solvable, and can be recast as

X+ 2t wpk + 0ix = —wlx;, % >0, )
and
X4+ 2tw,x + w,Z,x £ +(o,2,xk, X <0, €))

where w? = k/m, 2{w, = c/m, and x; = fi/k.
If we begin with initial conditions x(y) = X, > x;, and %(fy) = 0, then motion starts with
% < 0. The response to Equation (3) has the form

x(®) = (Xo — xe)e™5“n =) (cos wy (t — 1)
+ Bsinwy(t — 1)) + xx, )

where Wy = wp/1 —¢2 and B = ¢/4/1 — ¢£2, This equation is valid until ¥ = 0 at which
timet =t =ty + w/wy, and X1 = x(1)) = —e " Xo + (e7P™ + )x;. If X < —x,, then the
mass will reverse direction and continue sliding with ¥ > 0 according to Equation (2). The
solution for this interval of motion is

x(t) = Xy +x)e " (cos wy(r — 1)
+ Bsinwy(t —t;)) — xt, )

which is valid until ¥ = 0, at which time ¢ = #, = #; + 7 /wy, and X, = x(5,) = —ehTX, —
(€™ + 1)x;. If X, > x,, motion will continue.
This process can be iterated until —x; < X, < x,, at which time the motion stops.

This iterated process leads to a recursive relation for the successive peaks and valleys in the
oscillatory response:

X; = —e‘ﬂ"X,-_l + (_1)i-1(e-ﬂ7' +Dxx, i=12,...,n. 6
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Identifying Coulomb and Viscous Friction 3

From this evolution of decaying peaks and valleys, we can isolate the viscous effect, and
then extract the Coulomb effect. A sum of consecutive extreme displacement values cancels
out the dry-friction contribution. Taking the ratio between successive sums yields

Xi + X1 B
—_— = T, 7
Xia+X; @)
Thus, a logarithmic decrement reveals the viscous dependence:
Xi+ Xip1
log(—————) = — 8. 8
g( x;-,+x,) B ®)

Once the quantity 8 has been estimated, we can estimate ¢, and also the dry-friction
parameter x; from Equation (6).

A fundamental problem in an experimental system is that, because of the locus of equi-
libria, it may be difficult to determine the position in which the spring is unstretched. Thus,
measurement may have a constant bias with respect to our formulation. There is a simple way
to deal with this. If the biased measurement is y = x + ¢, we remove the bias € by subtracting
two measured peaks (or valleys) ¥;. Since ¥; —¥; = X; — X ;, we can work with the difference
between two recursive relations (6) such that

Y =Yi=—=e @ =Y ) +2D' P +Dx,, i=1,2,....,n—1 )

By summing the equation for ¥, — ¥; with that of ¥; — ¥;_;, we eliminate dry-friction
contribution. An alternate decrement equation is thus
— _gfn

Yipr — Y _

) 10
Y, =Y (10)

or

Yis1 =¥
log(——mM8M8M8M8—
g( Y — Y, )

This idea has been tested numerically and in controlled experiments [6].

= —ﬂn’. (11)

3. Experimental Linear Bearing System

Linear bearings are widely used in high-speed position control systems. It is important to
quantify the friction contribution to provide modeling information for control engineers.

This system has inherent damping with no modeling information known a priori. Its pres-
ence in the system cannot be controlled. The displacement will be referred to as y(z) instead
of x(¢) due to the unknown unstretched spring position.

The system consists of two linear bearings with very low viscous and dry friction effects.
The linear bearings were made by Thomson Industries, Inc. (Model, 1CC-08-HAA). In order
to compare the estimated results to the data provided by the linear bearing company, the seals
at both ends of the linear bearings were removed. A sliding table mounted on the top of linear
bearings was connected by three helical springs. The schematic diagram is shown in Figure 1.

The displacement response was sensed by a linear variable differential transformer (LVDT)
which had a resolution of 0.01 mm after quantization in the data-acquisition process.

To investigate damping characteristics of this system, initial conditions were applied to
conduct a free-vibration test. Figures 2 and 3 show the displacement response and the decay
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Figure 1. Schematic diagram of the experimental linear bearing system.
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Figure 2. Comparison between experimental and identified displacement responses for the linear-bearing system.
The solid line represents the experimental time trace, and the dashed line indicates the numerical result based on
the identified parameters.

of amplitude differences respectively. The estimations of system parameters areAﬁ;, =0.0177
(with a standard deviation of o = 0.0164), Z; = 0.0177 (0 = 0.0164), and f; = 0.413 N
(0 = 0.0249 N). The subscript k refers to the word “kinetic’.

Figure 3 suggests that the system has low viscous damping because the envelopes bend
slightly and the deviations of amplitude differences from two envelopes are quite small. To
check the validity of the Coulomb and viscous friction model, we numerically simulated the
system response by applying the estimated parameters. The mass and stiffness were deter-
mined: m = 1.92 kg and k = 2310 N/m. These parameters were incorporated with the
estimated damping information for accomplishing the numerical simulation. The simulation
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Figure 3. Experiment results showing the exponential decay of amplitude differences in the linear-bearing system.
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Figure 4. Comparison between experimental and identified displacement responses of the linear-bearing system
(solid line: experimental result; dashed line: identified result).
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initial conditions were similar to those of experimental study. The comparison between numer-
ical and experimental displacement responses is presented in Figure 4. Figure 4 shows that the
numerical result catches most of the features of the experimental data. Dividing the estimated
friction force by the weight of sliding table, the coefficient of sliding friction was found to
be 0.022, which is about ten times greater than the value provided by the manufacturer. The
reason for this discrepancy calls for further investigation. (The manufacturer measured the dry
friction coefficient by applying a normal load N, measuring the tangential load P when the
bearing is set in motion, and taking 4 = P/N. It did not distinguish whether the coefficient
was for static or kinetic friction.)

4. Error Analysis

The experimental implementation of this identification method involves measurements of
the oscillation amplitudes. The reliability of the estimation depends on the accuracy of the
measurements and the coherence of the model to the physical system. We address the mea-
surement error, which is inevitable, and may result from digitization in time and displacement
magnitude or other sources. It is of interest to understand how measurement error affects the
estimation accuracy.

Consider the oscillation amplitudes and denote the physical or real values of amplitudes
by ¥;,i = 1,2,...,n. If the measured values of amplitudes are represented by ¥;,i =
1,2,...,n,then¥; = ¥;+6;,i = 1,2, ...n, where 8 is the error associated with digitization,
random error, transducer error, etc. Equations (10) and (11) are the crux of the proposed
decrement method for experimental systems. In order to study the effects of quantization
error, we extend the idea of Equation (10) into

Yiem+1 — Yigm— N .
= (=" P i=1,2,...,n,
Yit1 — Y

and m=12,...,n—i-—1. (12)

where m is the number of extreme excursions accumulated for the estimation process.

If the estimated nondimensional viscous-damping parameter B (note in previous sections
this magnitude was called ﬂ) were calculated from Equation (12) using the measured extreme
excursions ¥;, then

?j+;_n+i = 1:’I+m—l = (_l)m.e—ﬁmn'. (13)
Yit1 —Yiy

We relate the estimated and real damping parameters such that 8 = B + 88, where 58
represents the estimation error.

We would like to understand how the bound of the estimation error in viscous-damping
parameter, |§8|, depends on the measurement error. Therefore, Equations (12) and (13), and
expressions ¥; = ¥; +6;, and 8 = B+ 8B must be considered. If we expand Equation (12) into
a Taylor series and consider only the first-order terms, the following equation can be achieved:

Sitmtt — Sipmey = mu(=1)y"ePm(F  _F,_ )88

+ (=1yme P (5 — 8i1), (14)
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where 8;m+1, 8i4m—1, 8i—1, 8;41 are errors of different displacement measurements. We next
assume that there exists an upper bound & on the deviations in displacement measurements,
namely |6;] < 6 Vj = 1,2,..., n. Based on this assumption and taking the bounds of both
sides of Equation (14), an expression which relates the estimation etror and the upper bound
of the measurement error can be obtained as follows:

2(1+ePrmys
mue=Pm |V, — ¥y

1881 < (15)

This expression suggests that the bound « of the estimation error is directly proportional to
the bound § of the measurement error, and that o can be minimized by a clever choice of m. If
B is small, for example, the optimal choice of m will be large. Additionally, to increase |¥;,; —
Y;_1| so as to reduce e, use of the initial cycles of a free-vibration response is recommended
so that a larger amplitude difference can be achieved.

We proceed to investigate the estimation of the dry-friction effect by applying Equation (9).
As with the study of the viscous-damping estimation, the real value of the Coulomb friction
parameter can be written as x; = X; + 8x;. Moreover, if Equation (9) is expressed in a Taylor
series, the following equation can be obtained after neglecting the high-order terms, and using
the jth extreme excursion as a reference:

Sj41—8; = mePT(T; —¥;1)8p — e PT(8; — 8;-1)
+ 2(=1)* (e P %88 + 2(—=1) (1 + e~ P™)sx,. (16)
Rearranging and taking bounds in the above equation yields

me BT (|7, — V)| +2%)

x| < -
ISRl 2(1 + )

1881 + 6 = 9. )

Applying the bound of the error on 8 derived for general value of m (inequality (15)) to
the above equation, and taking m = 1, leads to ‘

|¥; — ¥ 1l+2xk

[6xk] < {1+
1¥i1 — ¥y

1=y (18)

This equation gives the bound on the error in the estimated dry friction for the case in which
the viscous friction is estimated based on Equation (13) using m = 1 and the extreme excu-
sions centered at the i, and then imported into Equation (9) to estimate the dry friction based
on extreme excusions centered at j. The equation is not applicable if m > 1 is used, although
if the effort increases the accuracy of B, it will increase the accuracy of .

Inequality (17) relates the magnitude of the error in the dry-friction estimation, namely
|8x,, to different quantities including the bound of measurement error, 8, the magnitude of the
error in the viscous-damping estimation, |88], the magnitude of measured dry-friction effect,
X, and the span between a consecutive peak and valley, |Y - 7; i—1l. The bound on [6x|, ¥,
is proportional to |88 and &, and nonlinearly dependent on . Given 8 and %, ¥ decreases if
values of 8, |88], or lY -Y; -1l are small. To reduce &, a high-precision quantization machine
with a fast sampling rate and a noise-free experimental environment are required. Procedures
of making [58| small have been discussed. To achieve small magnitude of |Y - ¥; j—1l, the
amplitudes of the last couple oscillatory cycles are recommended.
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Figure 5. Simulation containing the effects of quantization error: (a) displacement response, and (b) detail
showing the quantization error.

In contrast, inequality (18) suggests that given & and Xy, y decreases when B increases. This
is true because the quantity |¥;,, — ¥;_|, representing the amplitude difference between two
consecutive peaks (or valleys) and appearing in the denominator of Equation (18), increases
as B increases. Similarly, the magnitude |¥; — ¥;_,|, corresponding to a span between peak
and valley in one cycle, decreases as the viscous damping increases, which will reduce y
as well. The quantity [¥;4; — ¥;_,| in the denominator suggests using the early stage of the
response for computing B, while the term lf’j - 17]_1 | in the numerator suggests using the last
few oscillations for estimating x;.

Thus, we have shown that estimations bounds on |88] and |8x| depend directly on the
quantization error 8. If the viscous damping is small, a cumulative selection of amplitudes
increases the accuracy of viscous-damping estimation. The accuracy of the dry-friction esti-
mation depends on the estimation error of the viscous damping.

4.1. NUMERICAL EXAMPLE

An illustration of the effect of measurement error induced by quantization is given next.
Quantization is an unavoidable source of measurement error in the digital data acquisition
process.

We numerically simulated Equation (1) with the parameter values m = 1.0, k = 10.0,
¢ = 0.2, and f; = 0.2, and the initial conditions x(0) = 1.0 and %(0) = 0. The viscous-
damping parameter is 8 = 0.0316 and the dry-friction parameter is x, = 0.2. The integration
algorithm was based on a fifth-order Runge—Kutta method. The discontinuity due to Coulomb
friction was handled in the same way as Shaw [15] and Feeny and Moon [16]. The quantization
error was artificially imposed in the data collection.

The quantization step size in this example is 0.001, which equals the upper bound of the
measurement error. The signal with this quantization resolution is shown in Figure 5. Based
on this figure, different amplitude measurements were taken and listed in Table I. The values
of §; were obtained by comparing the quantized data with the pure data. Calculations were
then carried out based on i = j = 2 and the results are shown in Table II. These calculations
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Table 1. Extreme excursions and errors in Figure ??

(8 = 0.001).

extrema X 5 X, 8
1.0 0.0000 -0.8670 —0.0003

extrema X, 82 X3 83
0.7470  0.0001  -0.6380 -0.0003

extrema X4 84 Xs 8s
0.5400 -0.0002 -0.4510 0.0004

extrema Xg 8 X, 87
03700 -0.0001 -0.2970 0.0002

extrema Xg 83 X 9 89
0.2310 -0.0004 -0.1710 0.0003

extrema Xj 810 X1 811
0.1160 0.0004 -0.0670 —0.0003

Table 2. Estimation errors and bounds for the case of quantiza-
tion error (8 = 0.001). '

m B 1881 1881/8(%6) ]
B 1 0.0322 0.00055 1.74 0.0059
(0.0316) 3 0.0316 0.00001 0.03 0.0022
5 0.0318 0.00018 0.58 0.0015
7 0.0313 0.00028 0.88 0.0012
m. X 18xel  [Bxil/xe (%) ¥
Xg 1 0.0194 0.00058 2.91 0.0017
(0.02) 3 0.0201 0.00005 0.26 0.0010
5 0.0198 0.00015 0.75 0.0012
7 0.0204 0.00039 1.96 0.0013

9

include v, which is based on known values of 88, which would not typically be available.
Some observations can be made from Table II. (1) The bound of viscous-damping error (c)
decreases as m increases, which follows the results of Equation (15). (2) Although the bound
of the viscous-damping error decreases as the value of m increases, the actual error |§8] does
not follow the same trend. This is symptomatic of the fact that Equation (15) addresses nothing
about the actual estimation error. More specially, the actual estimation is affected by the actual
errors in the individual extrema. (3) The estimation errors of dry friction are less accurate
compared to those of viscous damping, and the trend in the bound 1 follows that of the actual
estimation error of viscous damping. This agrees with Equation (17).
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10 J. W. Liang and B. F. Feeny

Other examples of the effects of error in the data were studied, such as the case of random
noise and the effect of the sampling time. These examples can be found in Liang [17].

5. Conclusion

A method for simultaneously estimating the viscous and dry friction effects in a mechanical
system has been applied. The method complements existing ideas for using free-vibration
decrements to estimate damping parameters in linear systems with a single form of damp-
ing. Previous numerical and experimental studies focusing on a combined-damping system
illustrated the validity of this decrement method.

We estimated the damping characteristics of an industrial-bearing system. Although there
was no damping information provided for this system, the numerical simulation of the identi-
fied model caught most of the features of the experimental results.

An error analysis addressed the effect of measurement error on the estimations. A cumulative-
based approach is recommended for high accuracy estimations in viscous damping when this
damping is small. The dry-friction estimation depends on the estimation of viscous damp-
ing. Bounds of both estimation errors are proportional to measurement error. The recipe for
reducing the error bounds is to reduce the measurement error 5, optimize the number m of
extreme excursions, use the initial oscillations for estimating 8, and use the final oscillations
for estimating x;.

A numerical example of the error analysis was performed for the case of quantization error.
In this example, the bounds on the estimation errors were an order of magnitude larger than
the actual estimation errors.
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