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ABSTRACT 

Wavelet transforms were compared between various simulated friction models and real 
stick-slip data.  While simulations of several models produced stick-slip transition oscillations seen 
in the real data, the wavelet features of the compliant contact model with light damping best 
captured the characteristics of the experimental signal.  The wavelet contours were also used to 
estimate the contact stiffness. 
 
1 INTRODUCTION 

 We characterize stick-slip motion by examining wavelet-transform contour plots 
corresponding to stick-slip responses in an experiment and in simulations of three different friction 
models.  We then evaluate whether the friction model can successfully describe observed 
transition-oscillation dynamics.  Stick-slip displacement, velocity, acceleration and friction force 
measurements from an mass-spring experiment [1] are shown in Figure 1.  Transition oscillations 
occurring at the start of the sticking phase can be observed in the friction force and acceleration 
measurements.  Intermittent high- and low-frequency stick-slip response components are well 
suited for wavelet analysis.  If the wavelet transform successfully draws out these intermittent 
features, it may make a good tool for evaluating friction models.  This study compares wavelet 
features of three simulated stick-slip models with an experiment.   

Choosing a proper friction model is not always straight forward, and may benefit from additional 
evaluation tools.  Oscillators with rigid Coulomb friction contacts have abrupt jumps in the friction 
force, and hence the acceleration, at the stick-slip transitions [2-4].  More complicated friction 
models [5-12] bring out finer details of stick-slip transitions.  The goal is to explore the 
time/frequency transition features associated with different friction models.  These wavelet 
transition features can be used for analyzing the experimental stick-slip signals, and evaluating 
friction models.   
 The wavelet transform has been applied to previous friction studies.  Liang and Feeny [13] used 
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the wavelet transform to detect the existence of subsystem dynamics occurring during the transition 
of stick-slip friction process. Jalali et al. [14] used the wavelet transform to detect the presence of 
stick-slip phenomena in granular flows.  Other friction-vibration studies include [15, 16].   

 

Figure 1: Experimental stick-slip signals (a) displacement, (b) velocity, (c) acceleration, and (d) 
friction force responses. 

 
 
 In this study, the wavelet transform is implemented using numerical-integration scheme [13, 17].  
The mother wavelet is chosen as the Morlet wavelet while a dyadic grid was applied to discretize 
the scale-time plane.  By numerically integrating the wavelet transform of acceleration signals, 
wavelet coefficients corresponding to different frequency scales and time positions can be obtained, 
and represented as wavelet contour plots.  Thus, comparisons focusing on signatures registered in 
the wavelet-contour plots can be made.   
 
 
2.  WAVELET TRANSFORM 
 The wavelet transform is an inner product of a signal x(t) and a particular set of functions h(t), as 

        (1) 

where  represents the complex conjugate of .  Equation (1) measures the “similarity” 

between the signal  and the basis functions 
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        (2) 

called wavelets, in which , , and the constant  is used for energy normalization 

(Önsay and Haddow [18], Staszewski [19]).  The parameters  and  determine the dilation and 
translation of the mother wavelet which is chosen here as the Morlet wavelet (Morlet and Arens 
[20], Mallat [21], and Strang and Nguyen [22]) given by 

       (3) 

       (4) 

where  is the center frequency of the mother wavelet.   represents the Fourier transform of 
.  The wavelet basis functions have no DC component, i.e.  evaluated at  is zero.  

The second term in the bracket on the right-hand side of Equation (3) exists for the purpose of 
reconstructing (or inverting) the process.  In practice, it can be neglected (Önsay and Haddow [18]). 
Therefore, it will not be included in our calculations. 
 The analyzing wavelet function,  ( ), can be considered as a window function in both 
the time and frequency domains.   Equations (3) and (4) state that the time window  is centered 
at , whereas the frequency window  is centered .    When the translation and 
dilation actions are switched on, the time window will be centered at  and the frequency 
window at  as shown in Equation (2). 
 In order to implement the calculation of the wavelet transform, a sub lattice is constructed by 
discretizing the values of  and .  Fixing the dilation and translation step size to  and , and 

defining ; , with , results in 

       (5) 

 Based on Equation (5), the translation step  depends on the dilation step .  This choice is 
natural, since long wavelets will then advance by large steps and shorts ones by small steps.  On 
this discrete grid, the wavelet transform is thus 

    (6) 

 Of particular interest is the discretization on a dyadic grid which occurs for ,  and is 
used in this study.  To implement the calculation of wavelet coefficients, , the numerical 
integration scheme is adopted.  This algorithm may not be efficient computationally, but the number 
of data points in this study is not huge.  The same algorithm was used by Kishimoto et al. [17] 
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successfully in studying a flexible beam vibration problem and by Liang and Feeny [13] for a 
transient friction vibration investigation.  There are many other algorithms which can be found in 
the signal process literature (Mathworks [23], Newland [24]). 

 

Figure 2: Wavelet analysis of the simulated stick-slip acceleration, Coulomb friction model: (a) 
time-domain response, and (b) wavelet contour plot. 

 
 We have tested the numerical computation scheme to the benchmarks signals such as sinusoids 
and impulses.  It gives reasonable results [25].  In the next section, this method will be used to 
investigate both simulated and experimental acceleration signals that contain stick-slip motion. 
 
3. WAVELET TRANSFORM OF STICK-SLIP SIGNALS 
 In this section, Coulomb, state-variable, and compliant-contact friction models are used to imitate 
the real stick-slip process shown in Figure 1.  Wavelet contour plots are generated for the simulated 
stick-slip signals, and finally for the experimental stick-slip signal.   
 
3.1 Wavelet Analysis of the Coulomb Model Stick-Slip Acceleration Signal 
 The harmonically forced Coulomb oscillator can be written as  

     (7) 
where , ; , ; and .   Also,  denotes the kinetic friction 
and  represents the amplitude of base excitation.  The kinetic and static friction are modeled as 
equal.  The main system parameters are: kg, N/m, and N, whereas the 
excitation parameters include: m, and Hz.   
 The stick-slip acceleration signal and its wavelet transform are presented in Figure 2, in which a 
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jump event takes place at each onset of sticking.  Note that high-frequency information is contained 
in those acceleration jumps while the zero-value acceleration appearing during the rest of the 
sticking interval corresponds to a DC displacement behavior.  The presence of both high- and 
low-frequency information in this time-domain signal makes the wavelet transform valuable.   The 
wavelet contour plot presented in Figure 2(b) shows spikes at the jump events. The maximum 
wavelet coefficient repeats at the forcing frequency (2.5Hz).  There are 18 contour curves spanning 
80 dB between the maximum wavelet coefficient and the threshold.  In what follows, a constant 
span (80 dB) will be applied to different simulation cases and the experimental data for consistent 
comparison. 
  
3.2 Wavelet Analysis of the State-Variable Model Stick-Slip Signal 
 Next, the stick-slip process of the state-variable friction oscillator is studied. In the state-variable 
friction model, there is an additional friction state which evolves dynamically about some backbone 
friction curve.  Additional dynamics can be captured by this friction state. This study adopts a 
Coulomb law as the backbone friction characteristic, since experimental observations [1] showed 
little friction-velocity dependence.  A similar choice was made by Dahl in his state-variable model 
[26].  An example [27] of an oscillator with a state-variable friction model is 

     (8) 
and 

      (9) 

where  denotes the friction force as a state that tracks the backbone, steady-state friction 
characteristic .  For the convenience of numerical integration, a smooth version of a Coulomb 
model, , with a large value of , is implemented.    
 The system parameters used in the state-variable model simulation are kg, 

N/m, N, m, Hz, and .  The simulated 
stick-slip signal and its wavelet-transform contour plot are presented in Figure 3.  Unlike the 
Coulomb case, no abrupt jump event appears in the acceleration response.  Rather, transition 
oscillation occurs during what would otherwise be the “sticking” interval.   Thus, the state-variable 
chosen here brings forth a transition oscillation, which occurs during the transition from slip to stick.  
The transition oscillation is somewhat similar to that illustrated in Figure 1(c). 
 The wavelet transform contour plot depicts the transition oscillation shown in Figure 3(a) with 
less-pronounced spikes in comparison with those of the Coulomb case.  Furthermore, two spikes 
rather than one appear whenever the mass sticks.  These spikes point at two sharp “kinks” in the 
time-domain signal.  In the Coulomb case, only one spike and one sharp kink show up.     
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Figure 3: Wavelet analysis of the simulated stick-slip acceleration, state-variable friction model: 
(a) time-domain response, and (b) wavelet contour plot. 

 
 

 

Figure 4: A schematic diagram showing the massless compliant contact model. 
 
3.3 Wavelet Analysis of the Compliant-Contact Model Stick-Slip Signal 
 Finally, a compliant-contact friction model is investigated.   A schematic diagram illustrating 
the forced Coulomb oscillator together with the idealized compliant-contact model with tangential 
stiffness is presented in Figure 4, in which represents the displacement response of the sliding 
mass,  denotes the base excitation motion,  depicts the displacement response of the 

hypothetical contact surface, and  represents the stiffness of the contact joint.  Coulomb friction 
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with equal static and kinetic friction is modeled at the surface. 
  The equation of motion is 

      (9) 
where  is the amplitude of a harmonic base motion, and   represents the non-constant friction 
force occurring at the contact interface.  The friction force  can function in two different ways 
depending on the relative motion occurring at the contact interface.  First, during the sliding interval 
the mass (Figure 4) moves relative to the contact surface, and the massless contact surface is 

assumed to be motionless.  In that case, , whereas .  There are no 

dynamics in  during the sliding phase and the friction force takes constant values. 
   “Microsticking” starts when the relative velocity is zero, or .  During microsticking, 
both the sliding mass and the contact surface undergo the same motion such that , until 
the static friction force can no longer sustain the stiffness force exerted by the compliant contact 

joint, i.e. .  The motion is called microsticking since when  is large, both the 

sticking interval and the elastic displacement are small.  Based on the above description, the model 
in the sliding phase is 

      (10)  
and during the microsticking phase, the model becomes 

    (11) 

     (12) 

where  (positive number) is the maximum deflection of the contact and  (number with a sign) 
is the displacement of the mass before microsticking motion begins,  represents the time instant at 
which the mass sticks.  A damping factor is employed in the simulations of the sticking motion.  

The damping effect is only added to the contact model, so that , and is 

neglected during sliding, under the assumption that sliding contact dynamics are fast due to the 

large value of  and small contact mass.   The system parameters for simulation are kg, 

N/m, N, m, Hz, N/m,  N-sec/m for 

the heavier damping case, and  N-sec/m for the lighter damping case. 

Figure 5(a) demonstrates the simulated stick-slip acceleration signal ( N-sec/m) in which 
the transition oscillation is very close to a damped sinusoid.   The wavelet transform contour plot 
corresponding to this simulated stick-slip signal illustrates two striking features.  First, a local 
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maximum of wavelet coefficients emerges at the transition oscillation, seen as a circular contour 
centered at about 45 Hz.  The small circular contour indicates a local maximum because the global 
maximum is actually a 2.5 Hz plateau existing along the entire time axis, corresponding to the low 
frequency forced response.  Secondly, only one major spike appears in every transition from sliding 
to sticking rather than two spikes as the state-variable case does in Figure 3(b).  These features 
imply that the transition oscillation in this case resembles a single damped harmonic function, 
which oscillates at 45 Hz.  Thus, the wavelet contour plot of this case is different from those of the 
state-variable and the Coulomb cases in which no local maximum exists during the stick-slip 
transition.   

We can obtain quantitative modeling information from the 45 Hz microstick oscillation.  
During microsticking, the oscillator behaves like a mass attached with high contact stiffness in 
parallel to the softer spring attachment.  The total stiffness (dominated by the contact stiffness) can 

be estimated as  N/m, which is a reasonable estimate of the total stiffness 

used in the simulation.  This estimate is limited by the resolution of our contour plots. 
 If we slightly decrease viscous-damping effect in the compliant contact model, the micro-slip 
phenomenon will emerge in the transition oscillations [1].  To illustrate the phenomenon, the 
acceleration signal and its associated wavelet-transform plot of this lighter damping case 
( N-sec/m) are presented in Figures 6(a) and 6(b).   Some observations can be made from 
Figures 6(a) and 6(b).  First, similar to the heavier damping case, there are local maximum 
structures occurring in Figure 6(b).  This local maximum contour describes the nearly sinusoidal 
feature of the transition oscillation presented in Figure 6(a).  Secondly, several grouped spikes occur 
during each transition interval illustrating the occurrences of the microscale stick-slip events.  The 
grouped-spike structure has not been observed in the Coulomb, state-variable, or even the 
compliant-contact model with heavier damping.   The so-called double (two-scale) stick-slip event 
takes place during the macroscopic sticking interval, which occurs because the friction force, during 
the transition, temporarily reaches its maximum values twice before it finally stays at that value for 
a macroscopic sliding phase.   When the friction force reaches its maximum value during the 
macroscopic sticking interval, the sliding mass will break free for a short time and micro-slip event 
occurs [1].  Corresponding to the transition oscillation, the wavelet contour plot again shows a local 
maximum at approximately 45 Hz, indicating the frequency of the transition oscillation, and leading 
to the same contact stiffness estimation as above. 
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Figure 5: Wavelet analysis of the simulated stick-slip acceleration, tangential contact model with 
heavier viscous damping ( ): (a) time-domain response, and (b) wavelet 
contour plot. 

 

 

Figure 6: Wavelet analysis of the simulated stick-slip acceleration, tangential contact mode with 
lighter viscous damping ( ): (a) time-domain response, and (b) wavelet 
contour plot. 
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Figure 7: Wavelet analysis of the experimental stick-slip acceleration: (a) time-domain response, 
and (b) wavelet contour plot. 

 
 
 
3.4 Wavelet Contour Plots of the Experimental Stick-Slip Signal 
 An experimental stick-slip acceleration signal is shown in Figure 7(a).   The corresponding 
wavelet contour plot is presented in Figure 7(b).  It can be seen that a local maximum (circular 
contour) similar to the one appearing in Figures 5(b) and 6(b) occurs in Figure 7(b) at about 45 Hz.  
This local maximum indicates a nearly sinusoidal oscillation based on the observations made from 
Figures 5(b) and 6(b).  The ungrouped contour structures, existing around sec and sec, 
are the results of the irregularities in response.  These are possibly caused by the surface roughness.  
Furthermore, there are several grouped spike structures occurring during each transition phase.  The 
grouped spikes are consistent with those seen in the simulation of the compliant contact model with 
micro stick-slip events, namely Figure 6(b). 
  The 45 Hz transition oscillation can be used together with the mass of the experimental slider, 
m = 2.42 kg, to obtain the same estimated contact stiffness as in the simulations.  This stiffness 
approximation is limited by the resolution of the contour plots, but it is in approximate agreement 
with the contact stiffness obtained by examining features in friction measurements [1]. 
   The presence of noise in the experimental signal conceals its wavelet representation; hence, 
quantitative comparison between Figure 6(b) and Figure 7(b) is not a trivial task.  Nevertheless, the 
qualitative characteristics of these two wavelet contour plots definitely show some consistencies.   
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3.5 Discussion 
 We have shown the signatures addressed in the wavelet transition plots of the Coulomb law, the 
state-variable law, and the compliant-contact model with two different degrees of damping.   Each 
model shows the presence of high-frequency content at the onset of sticking.  In the Coulomb 
model, this corresponds to a step change in the acceleration, after which the high-frequency 
contours in the wavelet transform go away.   In the dynamical models the sudden high-frequency 
content corresponds to a sudden change to high-frequency transition oscillations, during which 
much high-frequency content is sustained in the wavelet contour plots.  Thus, the wavelet contour 
plot in Figure 4(b) reflects the fact that there is no oscillation involved in the Coulomb friction case.  
Since the wavelet contours indicate transition oscillations in the experiment, it suggests (without 
surprise) that the dynamical friction models are better at accommodating this experimental feature.  
  If the transition oscillation is close to a damped sinusoid, there will be a local maximum 
corresponding to the transition-oscillation frequency.  From this point of view, the transition 
oscillation occurring in the state-variable model case is not close to a sinusoidal function.  The 
existence of the local maximum in the compliant-contact models and the experiment, but not in the 
state-variable model, provides diagnostic evidence in favor of the compliant-contact model for the 
physical system.  
 The wavelet contour plots also detect the presence of two-scale stick slip, in which case the 
micro stick-slip transitions each gives birth to a spike of high-frequency content in the wavelet 
contours.  The presence of these micro-stick-slip spikes in the experiment as well as in the 
compliant-contact model with lighter damping, but not in the model with slightly larger damping, 
indicates that lighter damping is favorable in modeling the physical system. 
 Thus, we are able to use qualitative features in the wavelet contours to assist in the evaluation of 
friction models.  In some cases, quantitative features are also useful.  In our study, we used the local 
maximum in the compliant-contact models, as an indicator of the transition-oscillation frequency, 
together with the slider mass, to obtain realistic estimates of the contact stiffness.  Higher resolution 
in the wavelet contours would lead to a more accurate estimation of the local maximum, and hence 
the contact stiffness. 
 
4.  CONCLUSIONS 
 In this investigation, the wavelet transform was used to explore time-frequency transition 
features of the numerical and experimental stick-slip signals.  Wavelet contour features were 
compared between various simulated friction models and real stick-slip data.  While simulations of 
several models can depict the transition oscillations, the compliant-contact model with light 
damping captures most of the characteristics of the experimental results.  The wavelet transform 
produced signatures that distinguished the nature of the transition oscillations and the occurrence of 
micro stick-slip events.  These features were used to evaluate the friction models. 
 The wavelet transform has been known to be applicable to the analysis of transient time signals.  
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This work shows that the wavelet transform applied to acceleration response data can be a useful 
tool in the evaluation of friction models in oscillators.  Elements of the evaluation can be qualitative, 
such as in identifying the presence of spikes and local maxima, or quantitative, as in the 
identification of transition oscillation frequencies. 
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